Simpson’s Type Inequalities for s-Convex Functions via a Generalized Proportional Fractional Integral
Abstract
:1. Introduction and Preliminaries
2. Main Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of simpson’s type for s-convex functions with applications. Res. Rep. Collect. 2009, 12, 9. [Google Scholar]
- Alomari, M.; Hussain, S. Two inequalities of simpson type for quasi-convex functions and applications. Appl. Math. E-Notes 2011, 11, 110–117. [Google Scholar]
- Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On simpson’s inequality and applications. J. Inequal. Appl. 2000, 5, 533–579. [Google Scholar] [CrossRef] [Green Version]
- Kashuri, A.; Meftah, B.; Mohammed, P.O. Some weighted simpson type inequalities for differentiable s-convex functions and their applications: Some weighted simpson type inequalities. J. Fract. Calc. Nonlinear Syst. 2020, 1, 75–94. [Google Scholar] [CrossRef]
- Kermausuor, S. Simpson’s type inequalities for strongly (s,m)-convex functions in the second sense and applications. Open J. Math. Sci. 2019, 3, 74–83. [Google Scholar] [CrossRef]
- Kermausuor, S. Simpson’s type inequalities via the katugampola fractional integrals for s-convex functions. Kragujev. J. Math. 2021, 45, 709–720. [Google Scholar] [CrossRef]
- Rangel-Oliveros, Y.; Nwaeze, E.R. Simpson’s type inequalities for exponentially convex functions with applications. Open J. Math. Sci. 2021, 5, 84–94. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Fitzpatrick, S. The Hadamard inequalities for s-convex functions in the second sense. Demonstr. Math. 1999, 32, 687–696. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Jarad, F.; Abdeljawad, T.; Alzabut, J. Generalized fractional derivatives generated by a class of local proportional derivatives. Eur. Phys. J. Spec. Top. 2017, 226, 3457–3471. [Google Scholar] [CrossRef]
- Chen, J.; Huang, X. Some new inequalities of simpson’s type for s-convex functions via fractional integrals. Filomat 2017, 31, 4989–4997. [Google Scholar] [CrossRef] [Green Version]
- Matłoka, M. Some inequalities of simpson type for h-convex functions via fractional integrals. Abstr. Appl. Anal. 2015, 2015, 956850. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, M.Z.; Set, E.; Ozdemir, M.E. On new inequalities of simpson’s type for s-convex functions. Comput. Math. Appl. 2010, 60, 2191–2199. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desalegn, H.; Mijena, J.B.; Nwaeze, E.R.; Abdi, T. Simpson’s Type Inequalities for s-Convex Functions via a Generalized Proportional Fractional Integral. Foundations 2022, 2, 607-616. https://doi.org/10.3390/foundations2030041
Desalegn H, Mijena JB, Nwaeze ER, Abdi T. Simpson’s Type Inequalities for s-Convex Functions via a Generalized Proportional Fractional Integral. Foundations. 2022; 2(3):607-616. https://doi.org/10.3390/foundations2030041
Chicago/Turabian StyleDesalegn, Henok, Jebessa B. Mijena, Eze R. Nwaeze, and Tadesse Abdi. 2022. "Simpson’s Type Inequalities for s-Convex Functions via a Generalized Proportional Fractional Integral" Foundations 2, no. 3: 607-616. https://doi.org/10.3390/foundations2030041