On the Semi-Local Convergence of a Traub-Type Method for Solving Equations
Abstract
:1. Introduction
- (i)
- Convergence has been shown in Potra and Pták in [14] usingDefine the setMoreover, we introduced the restricted-Lipschitz conditionHowever, then we notice thatSupposeIt follows that (9), (13), andHowever, we get
- (ii)
- In our case we useThen, condition
2. Majorizing Sequences
- (a)
- for alland
- (b)
- Function is continuous, increasing andfor each Then, sequences converge monotonically to which is their unique upper bound (least).
- (A1)
- There exists such that and
- (A2)
- For all
- (A3)
- Function has a smallest positive solution Set
- (A4)
- For each
- (A5)
- Hypotheses of Lemma 1 or Lemma 2 or Lemma 3 hold and
- (A6)
- (or ).
- (i)
- There exists a simple solution of equation
- (ii)
- There exists such that
3. Examples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Argyros, I.K. On the Newton-Kantorovich hypothesis for solving equations. J. Comput. Math. 2004, 169, 315–332. [Google Scholar] [CrossRef] [Green Version]
- Argyros, I.K. Convergence and Applications of Newton-Type Iterations; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Argyros, I.K.; Hilout, S. Weaker conditions for the convergence of Newton’s method. J. Complex. 2012, 28, 364–387. [Google Scholar] [CrossRef] [Green Version]
- Argyros, I.K.; Magréñan, A.A. A Contemporary Study of Iterative Methods; Elsevier (Academic Press): New York, NY, USA, 2018. [Google Scholar]
- Kantorovich, L.V.; Akilov, G.P. Functional Analysis; Pergamon Press: Oxford, UK, 1982. [Google Scholar]
- Nashed, M.Z.; Chen, X. Convergence of Newton-like methods for singular operator equations using outer inverses. Numer. Math. 1993, 66, 235–257. [Google Scholar] [CrossRef]
- Ortega, L.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Zabrejko, P.P.; Nguen, D.F. The majorant method in the theory of Newton-Kantorovich approximations and the Pták error estimates. Numer. Funct. Anal. Optim. 1987, 9, 671–684. [Google Scholar] [CrossRef]
- Argyros, I.K. Computational Theory of Iterative Methods; Chui, C.K., Wuytack, L., Eds.; Series: Studies in Computational Mathematics 15; Elsevier Publishing Co.: New York, NY, USA, 2007. [Google Scholar]
- Argyros, I.K.; Hilout, S. On an improved convergence analysis of Newton’s method. Appl. Math. Comput. 2013, 225, 372–386. [Google Scholar] [CrossRef]
- Behl, R.; Maroju, P.; Martinez, E.; Singh, S. A study of the local convergence of a fifth order iterative method. Indian J. Pure Appl. Math. 2020, 51, 439–455. [Google Scholar]
- Ezquerro, J.A.; Hernandez, M.A. Newton’s Method: An Updated Approach of Kantorovich’s Theory; Birkhäuser: Cham, Switzerland, 2018. [Google Scholar]
- Magréñan, A.A.; Gutiérrez, J.M. Real dynamics for damped Newton’s method applied to cubic polynomials. J. Comput. Appl. Math. 2015, 275, 527–538. [Google Scholar] [CrossRef]
- Potra, F.A.; Pták, V. Nondiscrete Induction and Iterative Processes; Research Notes in Mathematics, 103; Pitman Advanced Publishing Program: Boston, MA, USA, 1984. [Google Scholar]
- Proinov, P.D. New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems. J. Complex. 2010, 26, 3–42. [Google Scholar] [CrossRef] [Green Version]
- Shakhno, S.M.; Iakymchuk, R.P.; Yarmola, H.P. Convergence analysis of a two step method for the nonlinear squares problem with decomposition of operator. J. Numer. Appl. Math. 2018, 128, 82–95. [Google Scholar]
- Sharma, J.R.; Guha, R.K.; Sharma, R. An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numer. Algorithms 2013, 62, 307–323. [Google Scholar] [CrossRef]
- Verma, R. New Trends in Fractional Programming; Nova Science Publisher: New York, NY, USA, 2019. [Google Scholar]
- Rheinboldt, W.C. An Adaptive Continuation Process of Solving Systems of Nonlinear Equations; Polish Academy of Science, Banach Center Publications: Greifswald, Germany, 1978; Volume 3, pp. 129–142. [Google Scholar]
- Soleymani, F.; Lotfi, T.; Bakhtiari, P. A multi-step class of iterative methods for nonlinear systems. Optim. Lett. 2014, 8, 1001–1015. [Google Scholar] [CrossRef]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice Hall: Upper Saddle River, NJ, USA, 1964. [Google Scholar]
- Traub, J.F.; Werschulz, A.G. Complexity and Information, Lezioni Lince; Lincei Lectures; Cambridge University Press: Cambridge, UK, 1998; p. xii+139. ISBN 0-521-48506-1. [Google Scholar]
T | |||
---|---|---|---|
2.09899 | 0.9976613778 | 1.007515200 | 0.9639223786 |
2.19897 | 0.9831766058 | 1.055505600 | 0.9678118280 |
2.29597 | 0.9698185659 | 1.102065600 | 0.9715205068 |
3.095467 | 0.87963113211 | 1.485824160 | 1.000082409 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Regmi, S.; Argyros, C.I.; Argyros, I.K.; George, S. On the Semi-Local Convergence of a Traub-Type Method for Solving Equations. Foundations 2022, 2, 114-127. https://doi.org/10.3390/foundations2010006
Regmi S, Argyros CI, Argyros IK, George S. On the Semi-Local Convergence of a Traub-Type Method for Solving Equations. Foundations. 2022; 2(1):114-127. https://doi.org/10.3390/foundations2010006
Chicago/Turabian StyleRegmi, Samundra, Christopher I. Argyros, Ioannis K. Argyros, and Santhosh George. 2022. "On the Semi-Local Convergence of a Traub-Type Method for Solving Equations" Foundations 2, no. 1: 114-127. https://doi.org/10.3390/foundations2010006
APA StyleRegmi, S., Argyros, C. I., Argyros, I. K., & George, S. (2022). On the Semi-Local Convergence of a Traub-Type Method for Solving Equations. Foundations, 2(1), 114-127. https://doi.org/10.3390/foundations2010006