Predictive Ability of Systems of Postural Control for 1-Year Risk of Falls and Frailty in Community-Dwelling Older Adults: A Preliminary Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Assessment
2.3.1. Fall Assessment
2.3.2. Assessment of Balance Function
2.3.3. Physical Frailty Assessment
2.4. Statistical Analysis
3. Results
3.1. Overview of the Follow-Up
3.2. Associations Between Falls and Balance Functions
3.3. Associations Between Physical Frailty and Balance Functions
3.4. Predictive Ability of 1-Year Changes Anchored to Fall Status
3.5. Predictive Ability of 1-Year Changes Anchored to Frail Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nippon Communications Foundation. Japan’s Senior Population Ratio World’s Highest by Far at Nearly 30%. Nippon.com. 4 October 2021. Available online: https://www.nippon.com/en/japan-data/h01120/ (accessed on 22 June 2025).
- Rakugi, H.; Sugimoto, K.; Arai, H.; Kozaki, K.; Matsui, Y.; Mizukami, K.; Ohyagi, Y.; Okochi, J.; Akishita, M. Statement on falls in long-term care facilities by the Japan Geriatrics Society and the Japan Association of Geriatric Health Services Facilities. Geriatr. Gerontol. Int. 2022, 22, 193–205. [Google Scholar] [CrossRef]
- Kojima, G. Frailty as a predictor of future falls among community-dwelling older people: A systematic review and meta-analysis. J. Am. Med. Dir. Assoc. 2015, 16, 1027–1033. [Google Scholar] [CrossRef]
- Yang, Z.C.; Lin, H.; Jiang, G.H.; Chu, Y.H.; Gao, J.H.; Tong, Z.J.; Wang, Z.H. Frailty is a risk factor for falls in older adults: A systematic review and meta-analysis. J. Nutr. Health Aging 2023, 27, 487–595. [Google Scholar] [CrossRef] [PubMed]
- Ellmers, T.J.; Delbaere, K.; Kal, E.C. Frailty, falls and poor functional mobility predict new onset of activity restriction due to concerns about falling in older adults: A prospective 12-month cohort study. Eur. Geriatr. Med. 2023, 14, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Baek, W.; Min, A.; Ji, Y.; Park, C.G.; Kang, M. Impact of activity limitations due to fear of falling on changes in frailty in Korean older adults: A longitudinal study. Sci. Rep. 2024, 14, 19121. [Google Scholar] [CrossRef] [PubMed]
- Horak, F.B.; Wrisley, D.M.; Frank, J. The Balance Evaluation Systems Test (BESTest) to differentiate balance deficits. Phys. Ther. 2009, 89, 484–498. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.; Almeida, S.; Carvalho, J.; Cruz, J.; Oliveira, A.; Jácome, C. Reliability, validity, and ability to identify fall status of the Balance Evaluation Systems Test, Mini-Balance Evaluation Systems Test, and Brief-Balance Evaluation Systems Test in older people living in the community. Arch. Phys. Med. Rehabil. 2016, 97, 2166–2173. [Google Scholar] [CrossRef]
- Franchignoni, F.; Horak, F.; Godi, M.; Nardone, A.; Giordano, A. Using psychometric techniques to improve the Balance Evaluation Systems Test: The Mini-BESTest. J. Rehabil. Med. 2010, 42, 323–331. [Google Scholar] [CrossRef]
- Padgett, P.K.; Jacobs, J.V.; Kasser, S.L. Is the BESTest at its best? A suggested brief version based on interrater reliability, validity, internal consistency, and theoretical construct. Phys. Ther. 2012, 92, 1197–1207. [Google Scholar]
- Shinohara, T.; Saida, K.; Miyata, K. Ability of the Brief-Balance Evaluation Systems Test to evaluate balance deficits in community-dwelling older adults: A cross-sectional study. Physiother. Theory Pract. 2021, 37, 1326–1335. [Google Scholar] [CrossRef]
- Magnani, P.E.; Genovez, M.B.; Porto, J.M.; Zanellato, N.F.G.; Alvarenga, I.C.; Freire Jr, R.C.; de Abreu, D.C.C. Use of the BESTest and the Mini-BESTest for fall risk prediction in community-dwelling older adults between 60 and 102 years of age. J. Geriatr. Phys. Ther. 2020, 43, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Marques, L.T.; Rodrigues, N.C.; Angeluni, E.O.; Dos Santos Pessanha, F.P.A.; da Cruz Alves, N.M.; Freire Júnior, R.C.; Ferriolli, E.; de Abreu, D.C.C. Balance evaluation of prefrail and frail community-dwelling older adults. J. Geriatr. Phys. Ther. 2019, 42, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, T.; Saida, K.; Miyata, K.; Usuda, S. The balance function is associated with frailty in community-dwelling older women. Int. J. Rehabil. Res. 2021, 44, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Takeda, R.; Miyata, K.; Igarashi, T. The minimal clinically important difference of the Mini-Balance Evaluation Systems Test in patients with early subacute stroke. Top. Stroke Rehabil. 2023, 30, 672–680. [Google Scholar] [CrossRef]
- Godi, M.; Arcolin, I.; Giardini, M.; Corna, S.; Schieppati, M. Responsiveness and minimal clinically important difference of the Mini-BESTest in patients with Parkinson’s disease. Gait Posture 2020, 80, 14–19. [Google Scholar] [CrossRef]
- Godi, M.; Franchignoni, F.; Caligari, M.; Giordano, A.; Turcato, A.M.; Nardone, A. Comparison of reliability, validity, and responsiveness of the Mini-BESTest and Berg Balance Scale in patients with balance disorders. Phys. Ther. 2013, 93, 158–167. [Google Scholar] [CrossRef]
- Kalbe, E.; Calabrese, P.; Schwalen, S.; Kessler, J. The Rapid Dementia Screening Test (RDST): A New Economical Tool for Detecting Possible Patients with Dementia. Dement. Geriatr. Cogn. Disord. 2003, 16, 193–199. [Google Scholar] [CrossRef]
- Sakai, Y.; Kotaka, A.; Murayama, N.; Takano, M.; Hirose, K.; Eto, K.; Arai, H. Japanese version of the Rapid Dementia Screening Test—Effectiveness in detecting possible patients with dementia. Ronen Seishin Igaku Zasshi 2006, 17, 539–549, (In Japanese with English Abstract). [Google Scholar]
- Montero-Odasso, M.; Van Der Velde, N.; Martin, F.C.; Petrovic, M.; Tan, M.P.; Ryg, J.; Aguilar-Navarro, S.; Alexander, N.B.; Becker, C.; Blain, H.; et al. World guidelines for falls prevention and management for older adults: A global initiative. Age Ageing 2022, 51, afac205. [Google Scholar] [CrossRef]
- Otaka, E.; Otaka, Y.; Morita, M.; Yokoyama, A.; Kondo, T.; Liu, M. Validation of the Japanese version of the Mini-Balance Evaluation Systems Test (Mini-BESTest). Jpn. J. Rehabil. Med. 2014, 51, 565–573. [Google Scholar] [CrossRef]
- Satake, S.; Arai, H. The revised Japanese version of the Cardiovascular Health Study criteria (revised J-CHS criteria). Geriatr. Gerontol. Int. 2020, 20, 992–993. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.S.; Weiss, C.O.; Xue, Q.L.; Fried, L.P. Association between Inflammatory-Related Disease Burden and Frailty: Results from the Women’s Health and Aging Studies (WHAS) I and II. Arch. Gerontol. Geriatr. 2012, 54, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Hao, Q.; Flaherty, J.H.; Cao, L.; Zhou, J.; Su, L.; Shen, Y.; Dong, B. Comparison of Procalcitonin, a Potentially New Inflammatory Biomarker of Frailty, to Interleukin-6 and C-Reactive Protein among Older Chinese Hospitalized Patients. Aging Clin. Exp. Res. 2018, 30, 1459–1464. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Çorbacıoğlu, Ş.K.; Aksel, G. Receiver operating characteristic curve analysis in diagnostic accuracy studies: A guide to interpreting the area under the curve value. Turk. J. Emerg. Med. 2023, 23, 195–198. [Google Scholar] [CrossRef]
- Turner, D.; Schünemann, H.J.; Griffith, L.E.; Beaton, D.E.; Griffiths, A.M.; Critch, J.N.; Guyatt, G.H. Using the entire cohort in the receiver operating characteristic analysis maximizes precision of the minimal important difference. J. Clin. Epidemiol. 2009, 62, 374–379. [Google Scholar] [CrossRef]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Terwee, C.B.; Roorda, L.D.; Dekker, J.; Bierma-Zeinstra, S.M.A.; Peat, G.; Jordan, K.P.; Croft, P.; de Vet, H.C.W. Mind the MIC: Large variation among populations and methods. J. Clin. Epidemiol. 2010, 63, 524–534. [Google Scholar] [CrossRef]
- Salari, N.; Darvishi, N.; Ahmadipanah, M.; Shohaimi, S.; Mohammadi, M. Global Prevalence of Falls in the Older Adults: A Comprehensive Systematic Review and Meta-Analysis. J. Orthop. Surg. Res. 2022, 17, 334. [Google Scholar] [CrossRef]
- Yamada, M.; Terao, Y.; Kojima, I.; Tanaka, S.; Saegusa, H.; Nanbu, M.; Soma, S.; Matsumoto, H.; Saito, M.; Okawa, K.; et al. Characteristics of Falls in Japanese Community-Dwelling Older Adults. Geriatr. Gerontol. Int. 2024, 24, 1181–1188. [Google Scholar] [CrossRef]
- Hayashi, T.; Kondo, K.; Suzuki, K.; Yamada, M.; Matsumoto, D. Factors Associated with Falls in Community-Dwelling Older People with Focus on Participation in Sport Organizations: The Japan Gerontological Evaluation Study Project. Biomed. Res. Int. 2014, 2014, 537614. [Google Scholar] [CrossRef] [PubMed]
- Ofori-Asenso, R.; Chin, K.L.; Mazidi, M.; Zomer, E.; Ilomaki, J.; Zullo, A.R.; Gasevic, D.; Ademi, Z.; Korhonen, M.J.; LoGiudice, D.; et al. Global Incidence of Frailty and Prefrailty Among Community-Dwelling Older Adults: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2019, 2, e198398. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, T.; Murata, C.; Hayashi, T.; Watanabe, R.; Saito, M.; Kojima, M.; Kondo, K.; Saito, T. Association between Community-Level Social Capital and Frailty Onset among Older Adults: A Multilevel Longitudinal Study from the Japan Gerontological Evaluation Study (JAGES). J. Epidemiol. Community Health 2022, 76, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Doi, T.; Makizako, H.; Tsutsumimoto, K.; Nakakubo, S.; Kim, M.J.; Kurita, S.; Hotta, R.; Shimada, H. Transitional Status and Modifiable Risk of Frailty in Japanese Older Adults: A Prospective Cohort Study. Geriatr. Gerontol. Int. 2018, 18, 1562–1566. [Google Scholar] [CrossRef]
- Hopewell, S.; Adedire, O.; Copsey, B.J.; Boniface, G.J.; Sherrington, C.; Clemson, L.; Close, J.C.; Lamb, S.E. Multifactorial and multiple component interventions for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 2018, 7, CD012221. [Google Scholar] [CrossRef]
- Muir, S.W.; Berg, K.; Chesworth, B.; Klar, N.; Speechley, M. Balance Impairment as a Risk Factor for Falls in Community-Dwelling Older Adults Who Are High Functioning: A Prospective Study. Phys. Ther. 2010, 90, 338–347. [Google Scholar] [CrossRef]
- Oliveira, M.R.; Vieira, E.R.; Gil, A.W.O.; Fernandes, K.B.P.; Teixeira, D.C.; Amorim, C.F.; da Silva, R.A. One-Legged Stance Sway of Older Adults with and without Falls. PLoS ONE 2018, 13, e0203887. [Google Scholar] [CrossRef]
- Kojima, G.; Masud, T.; Kendrick, D.; Morris, R.; Gawler, S.; Treml, J.; Iliffe, S. Does the Timed Up and Go Test Predict Future Falls among British Community-Dwelling Older People? Prospective Cohort Study Nested within a Randomised Controlled Trial. BMC Geriatr. 2015, 15, 38. [Google Scholar] [CrossRef]
- Thrane, G.; Joakimsen, R.M.; Thornquist, E. The Association between Timed Up and Go Test and History of Falls: The Tromsø Study. BMC Geriatr. 2007, 7, 1. [Google Scholar] [CrossRef]
- Kim, J.; Choi, S. Association of Timed Up and Go Test Results with Future Injurious Falls among Older Adults by Sex: A Population-Based Cohort Study. BMC Geriatr. 2024, 24, 1035. [Google Scholar] [CrossRef]
- Rydwik, E.; Bergland, A.; Forsén, L.; Frändin, K. Psychometric properties of Timed Up and Go in elderly people: A systematic review. Phys. Occup. Ther. Geriatr. 2011, 29, 102–125. [Google Scholar] [CrossRef]
- Christopher, A.; Kraft, E.; Olenick, H.; Kiesling, R.; Doty, A. The reliability and validity of the Timed Up and Go as a clinical tool in individuals with and without disabilities across a lifespan: A systematic review. Disabil. Rehabil. 2021, 43, 1799–1813. [Google Scholar] [CrossRef]
N = 127 | |
---|---|
Age, mean (±SD) | 74.5 (±7.3) |
Gender (Female), n (%) | 99 (78.0%) |
RDST, median (25th–75th percentile) | 11.0 (10.0–12.0) |
Days from baseline to follow-up, mean (±SD) | 370.0 (18.2) |
Morbidity | |
Hypertension | 20 (15.7%) |
Cardiac disease | 9 (7.1%) |
Diabetes mellitus | 8 (6.3%) |
Cancer | 8 (6.3%) |
Fracture | 6 (4.7%) |
Item | Non-Fallers n = 97 | Fallers n = 32 | p-Value † | Effect Size r | |
---|---|---|---|---|---|
Baseline | S1 | 3.0 [1.0–3.0] | 2.5 [0.8–3.0] | 0.559 | 0.086 |
S2 | 2.0 [2.0–3.0] | 2.0 [2.0–2.2] | 0.559 | 0.077 | |
S3B | 3.0 [3.0–3.0] | 3.0 [1.0–3.0] | 0.036 * | 0.194 | |
S3P | 3.0 [2.0–3.0] | 1.5 [1.0–3.0] | 0.018 * | 0.253 | |
S4B | 3.0 [3.0–3.0] | 3.0 [2.0–3.0] | 0.275 | 0.107 | |
S4P | 3.0 [2.0–3.0] | 2.0 [2.0–3.0] | 0.054 | 0.187 | |
S5 | 3.0 [2.0–3.0] | 3.0 [2.0–3.0] | 0.947 | −0.005 | |
S6 | 3.0 [3.0–3.0] | 3.0 [2.0–3.0] | 0.045 * | 0.159 | |
One-year change | S1 | 0.0 [−1.0–0.0] | 0.0 [−1.0–1.0] | 0.697 | 0.062 |
S2 | 0.0 [0.0–0.0] | 0.0 [0.0–0.0] | 0.723 | 0.039 | |
S3B | 0.0 [0.0–0.0] | 0.0 [0.0–0.0] | 0.697 | −0.043 | |
S3P | 0.0 [0.0–0.0] | 0.0 [0.0–0.0] | 0.559 | −0.080 | |
S4B | 0.0 [0.0–0.0] | 0.0 [0.0–0.0] | 0.697 | −0.043 | |
S4P | 0.0 [−0.5–0.0] | 0.0 [−0.2–0.0] | 0.767 | −0.033 | |
S5 | 0.0 [0.0–0.0] | 0.0 [−1.2–0.0] | 0.159 | 0.151 | |
S6 | 0.0 [0.0–0.0] | 0.0 [0.0–0.0] | 0.947 | 0.004 |
Item | Non-Frailty n = 117 | Frailty n = 10 | p-Value † | Effect Size r | |
---|---|---|---|---|---|
Baseline | S1 | 3.0 [1.0–3.0] | 0.0 [0.0–1.0] | 0.003 * | 0.259 |
S2 | 2.0 [2.0–3.0] | 2.0 [2.0–2.0] | 0.026 * | 0.191 | |
S3B | 3.0 [3.0–3.0] | 1.0 [1.0–2.5] | 0.001 ** | 0.261 | |
S3P | 3.0 [2.0–3.0] | 1.0 [1.0–1.0] | 0.001 ** | 0.309 | |
S4B | 3.0 [3.0–3.0] | 2.5 [2.0–3.0] | 0.050 | 0.144 | |
S4P | 3.0 [2.0–3.0] | 1.5 [0.2–2.0] | 0.001 ** | 0.272 | |
S5 | 3.0 [2.0–3.0] | 2.0 [1.0–3.0] | 0.100 | 0.133 | |
S6 | 3.0 [3.0–3.0] | 2.0 [2.0–2.8] | 0.000 ** | 0.259 | |
One-year change | S1 | 0.0 [−1.0–0.0] | 0.0 [−0.8–0.8] | 1.000 | −0.003 |
S2 | 0.0 [0.0–0.0] | 0.0 [0.0–0.0] | 1.000 | 0.006 | |
S3B | 0.0 [0.0–0.0] | 0.0 [0.0–0.0] | 1.000 | 0.000 | |
S3P | 0.0 [0.0–0.0] | 0.0 [−0.8–0.0] | 0.573 | 0.056 | |
S4B | 0.0 [0.0–0.0] | 0.0 [−0.8–0.0] | 0.285 | 0.086 | |
S4P | 0.0 [0.0–0.0] | 0.0 [−0.8–0.0] | 1.000 | 0.000 | |
S5 | 0.0 [0.0–0.0] | −1.0 [−2.0–0.0] | 0.010 * | 0.219 | |
S6 | 0.0 [0.0–0.0] | −0.5 [−2.0–0.0] | 0.002 ** | 0.205 |
Item | AUC (95%CI) | MIC (95%CI) | Sensitivity (95%CI) | Specificity (95%CI) | ||||
---|---|---|---|---|---|---|---|---|
S1 | 0.542 | (0.424–0.661) | −0.773 | (−2.486–0.941) | 0.397 | (0.021–0.773) | 0.753 | (0.384–1.000) |
S2 | 0.537 | (0.452–0.622) | −0.152 | (−1.086–0.782) | 0.454 | (0.000–1.000) | 0.634 | (0.000–1.000) |
S3B | 0.489 | (0.399–0.578) | −0.812 | (−1.786–0.161) | 0.188 | (0.000–0.463) | 0.878 | (0.632–1.000) |
S3P | 0.467 | (0.379–0.555) | −0.931 | (−2.329–0.467) | 0.245 | (0.000–0.827) | 0.798 | (0.219–1.000) |
S4B | 0.477 | (0.385–0.569) | −1.266 | (−3.581–1.048) | 0.219 | (0.000–0.833) | 0.842 | (0.216–1.000) |
S4P | 0.489 | (0.393–0.585) | −0.208 | (−2.457–2.041) | 0.472 | (0.000–1.000) | 0.591 | (0.000–1.000) |
S5 | 0.601 | (0.498–0.704) | −0.698 | (−2.154–0.758) | 0.438 | (0.000–0.908) | 0.743 | (0.236–1.000) |
S6 | 0.504 | (0.410–0.599) | −1.285 | (−2.296–−0.273) | 0.159 | (0.000–0.346) | 0.947 | (0.797–1.000) |
Item | AUC (95%CI) | MIC (95%CI) | Sensitivity (95%CI) | Specificity (95%CI) | ||||
---|---|---|---|---|---|---|---|---|
S1 | 0.497 | (0.317–0.677) | 0.280 | (−2.781–3.341) | 0.684 | (0.058–1.000) | 0.458 | (0.000–1.000) |
S2 | 0.540 | (0.395–0.686) | −0.200 | (−1.099–0.699) | 0.479 | (0.000–1.000) | 0.655 | (0.034–1.000) |
S3B | 0.524 | (0.379–0.669) | −0.948 | (−2.345–0.448) | 0.318 | (0.000–0.879) | 0.822 | (0.228–1.000) |
S3P | 0.563 | (0.421–0.705) | −0.011 | (−0.991–0.969) | 0.706 | (0.122–1.000) | 0.439 | (0.000–1.000) |
S4B | 0.592 | (0.448–0.736) | −0.461 | (−1.818–0.895) | 0.502 | (0.000–1.000) | 0.670 | (0.000–1.000) |
S4P | 0.507 | (0.310–0.703) | −0.191 | (−2.804–2.422) | 0.514 | (0.000–1.000) | 0.620 | (0.000–1.000) |
S5 | 0.734 | (0.593–0.875) | −0.598 | (−1.519–0.323) | 0.638 | (0.305–0.970) | 0.777 | (0.452–1.000) |
S6 | 0.716 | (0.543–0.889) | −0.981 | (−2.029–0.067) | 0.490 | (0.150–0.830) | 0.925 | (0.747–1.000) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shinohara, T.; Maruyama, A.; Yabana, Y.; Kamijo, M.; Saito, S. Predictive Ability of Systems of Postural Control for 1-Year Risk of Falls and Frailty in Community-Dwelling Older Adults: A Preliminary Study. J. Ageing Longev. 2025, 5, 45. https://doi.org/10.3390/jal5040045
Shinohara T, Maruyama A, Yabana Y, Kamijo M, Saito S. Predictive Ability of Systems of Postural Control for 1-Year Risk of Falls and Frailty in Community-Dwelling Older Adults: A Preliminary Study. Journal of Ageing and Longevity. 2025; 5(4):45. https://doi.org/10.3390/jal5040045
Chicago/Turabian StyleShinohara, Tomoyuki, Ayumi Maruyama, Yuta Yabana, Miyu Kamijo, and Shota Saito. 2025. "Predictive Ability of Systems of Postural Control for 1-Year Risk of Falls and Frailty in Community-Dwelling Older Adults: A Preliminary Study" Journal of Ageing and Longevity 5, no. 4: 45. https://doi.org/10.3390/jal5040045
APA StyleShinohara, T., Maruyama, A., Yabana, Y., Kamijo, M., & Saito, S. (2025). Predictive Ability of Systems of Postural Control for 1-Year Risk of Falls and Frailty in Community-Dwelling Older Adults: A Preliminary Study. Journal of Ageing and Longevity, 5(4), 45. https://doi.org/10.3390/jal5040045