Multivariate Analysis of Risk Factors for Cerebral Infarction Based on Specific Health Checkups in Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef]
- Ministry of Health, Labor and Welfare. Dynamic Statistics of Population 2019 (Japan). Available online: https://www.mhlw.go.jp/toukei/saikin/hw/jinkou/kakutei19/ (accessed on 12 September 2022).
- Ministry of Health, Labor and Welfare. National Livelihood Survey 2019 (Japan). Available online: https://www.mhlw.go.jp/toukei/list/20-21.html (accessed on 12 September 2022).
- Ministry of Health, Labor and Welfare. Current Status of Measures for Sementia 2014 (Japan). Available online: https://www.mhlw.go.jp/file/05-Shingikai-11901000-Koyoukintoujidoukateikyoku-Soumuka/0000069443.pdf (accessed on 12 September 2022).
- Dufouil, C.; Beiser, A.; McLure, L.A.; Wolf, P.A.; Tzourio, C.; Howard, V.J.; Westwood, A.J.; Himali, J.J.; Sullivan, L.; Aparicio, H.J.; et al. Revised Framingham stroke risk profile to reflect temporal trends. Circulation 2017, 135, 1145–1159. [Google Scholar] [CrossRef] [PubMed]
- Salaycik, K.J.; Kelly-Hayes, M.; Beiser, A.; Nguyen, A.H.; Brady, S.M.; Kase, C.S.; Wolf, P.A. Depressive symptoms and risk of stroke: The Framingham Study. Stroke 2007, 38, 16–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bineau, S.; Dufouil, C.; Helmer, C.; Ritchie, K.; Empana, J.P.; Ducimetière, P.; Alpérovitch, A.; Bousser, M.G.; Tzourio, C. Framingham stroke risk function in a large population-based cohort of elderly people: The 3C study. Stroke 2009, 40, 1564–1570. [Google Scholar] [CrossRef] [Green Version]
- Beer, C.; Alfonso, H.; Flicker, L.; Norman, P.E.; Hankey, G.J.; Almeida, O.P. Traditional risk factors for incident cardiovascular events have limited importance in later life compared with the health in men study cardiovascular risk score. Stroke 2011, 42, 952–959. [Google Scholar] [CrossRef] [Green Version]
- Tamaki, Y.; Okamoto, E.; Hiratsuka, Y.; Kumakawa, T. Influence of Specific Health Guidance on the Consultation Rate of Metabolic-Related Diseases. Adv. Public Health 2019, 2019, 9735127. [Google Scholar] [CrossRef]
- Ministry of Health, Labor and Welfare. NDB Open Data (Japan). Available online: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000177182.html (accessed on 12 September 2022).
- Japanese Ministry of Health, Labour and Welfare. Ethical Guidelines for Epidemiological Research. Ministry of Education, Culture, Sports, Science and Technology. Available online: http://www.lifescience.mext.go.jp/files/pdf/n796_01.pdf (accessed on 12 September 2022).
- Japanese Ministry of Health, Labour and Welfare. Guideline for Provision of Database for National Health Insurance Claim and the Specific Medical Checkup and Specific Health Guidance. Available online: http://www.mhlw.go.jp/file/05-Shingikai-12401000-Hokenkyoku-Soumuka/0000064238_3.pdf (accessed on 12 October 2021).
- Japanese Ministry of Health, Labour and Welfare. Security Guidelines for Health Information Systems. Available online: http://www.mhlw.go.jp/file/05-Shingikai-12601000-Seisakutoukatsukan-Sanjikanshitsu_Shakaihoshoutantou/0000166260.pdf (accessed on 12 September 2022).
- Bertram, M.Y.; Sweeny, K.; Lauer, J.A.; Chisholm, D.; Sheehan, P.; Rasmussen, B.; Upreti, S.R.; Dixit, L.P.; George, K.; Deane, S. Investing in non-communicable diseases: An estimation of the return on investment for prevention and treatment services. Lancet 2018, 391, 2071–2078. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Aravkin, A.Y.; Zheng, P.; Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdollahi, M.; Abedi, P.; Abedi, A.; Abolhassani, H.; et al. Five insights from the Global Burden of Disease Study 2019. Lancet 2020, 396, 1135–1159. [Google Scholar] [CrossRef]
- Johnson, W.; Onuma, O.; Owolabi, M.; Sachdev, S. Stroke: A global response is needed. Bull. World Health Organ. 2016, 94, 634A. [Google Scholar] [CrossRef]
- Yatsuya, H.; Iso, H.; Yamagishi, K.; Kokubo, Y.; Saito, I.; Suzuki, K.; Sawada, N.; Inoue, M.; Tsugane, S. Development of a point-based prediction model for the incidence of total stroke: Japan public health center study. Stroke 2013, 44, 1295–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miglinas, M.; Cesniene, U.; Janusaite, M.M.; Vinikovas, A. Cerebrovascular Disease and Cognition in Chronic Kidney Disease Patients. Front. Cardiovasc. Med. 2020, 7, 96. [Google Scholar] [CrossRef] [PubMed]
- Dad, T.; Weiner, D.E. Stroke and chronic kidney disease: Epidemiology, pathogenesis, and management across kidney disease stages. Semin. Nephrol. 2015, 35, 311–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toyoda, K.; Ninomiya, T. Stroke and cerebrovascular diseases in patients with chronic kidney disease. Lancet Neurol. 2014, 13, 823–833. [Google Scholar] [CrossRef]
- Arnold, J.; Sims, D.; Ferro, C.J. Modulation of stroke risk in chronic kidney disease. Clin Kidney J. 2016, 9, 29–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamouchi, M. Stroke features and management in patients with chronic kidney disease. Contrib. Nephrol. 2013, 179, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Miwa, K.; Koga, M.; Nakai, M.; Yoshimura, S.; Sasahara, Y.; Koge, J.; Sonoda, K.; Ishigami, A.; Iwanaga, Y.; Miyamoto, Y.; et al. Etiology and Outcome of Ischemic Stroke in Patients with Renal Impairment Including Chronic Kidney Disease: Japan Stroke Data Bank. Neurology 2022, 98, e1738–e1747. [Google Scholar] [CrossRef]
- Stevens, J.; Erber, E.; Truesdale, K.P.; Wang, C.H.; Cai, J. Long- and short-term weight change and incident coronary heart disease and ischemic stroke: The Atherosclerosis Risk in Communities Study. Am. J. Epidemiol. 2013, 178, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Ye, Y.; Zhang, Y.; Pan, X.F.; Pan, A. Weight change across adulthood in relation to all cause and cause specific mortality: Prospective cohort study. BMJ 2019, 367, l5584. [Google Scholar] [CrossRef] [Green Version]
- Kisanuki, K.; Muraki, I.; Yamagishi, K.; Kokubo, Y.; Saito, I.; Yatsuya, H.; Sawada, N.; Iso, H.; Tsugane, S.; JPHC Study Group. Weight change during middle age and risk of stroke and coronary heart disease: The Japan Public Health Center-based Prospective Study. Atherosclerosis 2021, 322, 67–73. [Google Scholar] [CrossRef]
- Tamaki, Y.; Hiratsuka, Y.; Kumakawa, T. Risk Factors for Dementia Incidence Based on Previous Results of the Specific Health Checkups in Japan. Healthcare 2020, 8, 491. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, Y.; Hiratsuka, Y.; Kumakawa, T. Evaluation of Risk Factors for Dementia Incidence Based on Previous Questionnaire Results of Specific Health Checkups in Japan. J. Ageing Longev. 2021, 1, 48–59. [Google Scholar] [CrossRef]
Incidence of Cerebral Infarction | |||||
---|---|---|---|---|---|
Item | Category | Nonexistence | Existence | Total | p-Value |
Uric protein | Normal | 4736 | 825 | 5561 | 0.592 |
85% | 15% | 100% | |||
Follow-up | 9 | 3 | 12 | ||
75% | 25% | 100% | |||
Requires further testing | 223 | 35 | 258 | ||
86% | 14% | 100% | |||
Requires treatment | 64 | 14 | 78 | ||
82% | 18% | 100% | |||
Urinary sugar | Normal | 4935 | 854 | 5789 | 0.083 |
85% | 15% | 100% | |||
Follow-up | 6 | 0 | 6 | ||
100% | 0% | 100% | |||
Requires further testing | 44 | 7 | 51 | ||
86% | 14% | 100% | |||
Requires treatment | 47 | 16 | 63 | ||
75% | 25% | 100% | |||
Uric blood | Normal | 4162 | 734 | 4896 | 0.589 |
85% | 15% | 100% | |||
Follow-up | 51 | 11 | 62 | ||
82% | 18% | 100% | |||
Requires further testing | 706 | 110 | 816 | ||
87% | 13% | 100% | |||
Requires treatment | 113 | 22 | 135 | ||
84% | 16% | 100% | |||
Creatinine | Normal | 4733 | 791 | 5524 | <0.001 |
86% | 14% | 100% | |||
Follow-up | 299 | 86 | 385 | ||
78% | 22% | 100% | |||
Requires further testing | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Requires treatment | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Urea nitrogen | Normal | 4863 | 845 | 5708 | 0.662 |
85% | 15% | 100% | |||
Follow-up | 169 | 32 | 201 | ||
84% | 16% | 100% | |||
Requires further testing | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Requires treatment | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Urinary acid | Normal | 4661 | 793 | 5454 | 0.024 |
85% | 15% | 100% | |||
Follow-up | 371 | 84 | 455 | ||
82% | 18% | 100% | |||
Requires further testing | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Requires treatment | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Leucocyte | Normal | 4739 | 844 | 5583 | 0.014 |
85% | 15% | 100% | |||
Follow-up | 293 | 33 | 326 | ||
90% | 10% | 100% | |||
Requires further testing | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Requires treatment | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Erythrocyte | Normal | 3409 | 607 | 4016 | 0.690 |
85% | 15% | 100% | |||
Follow-up | 1451 | 241 | 1692 | ||
86% | 14% | 100% | |||
Requires further testing | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Requires treatment | 172 | 29 | 201 | ||
86% | 14% | 100% | |||
Hemoglobin | Normal | 4477 | 776 | 5253 | 0.906 |
85% | 15% | 100% | |||
Follow-up | 459 | 83 | 542 | ||
85% | 15% | 100% | |||
Requires further testing | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Requires treatment | 96 | 18 | 114 | ||
84% | 16% | 100% | |||
Hematocrit | Normal | 4734 | 824 | 5558 | 0.950 |
85% | 15% | 100% | |||
Follow-up | 266 | 48 | 314 | ||
85% | 15% | 100% | |||
Requires further testing | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Requires treatment | 32 | 5 | 37 | ||
86% | 14% | 100% | |||
Platelet | Normal | 4887 | 857 | 5744 | 0.319 |
85% | 15% | 100% | |||
Follow-up | 145 | 20 | 165 | ||
88% | 12% | 100% | |||
Requires further testing | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Requires treatment | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
AST(GOT) | Normal | 4443 | 766 | 5209 | 0.689 |
85% | 15% | 100% | |||
Follow-up | 536 | 102 | 638 | ||
84% | 16% | 100% | |||
Requires further testing | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Requires treatment | 53 | 9 | 62 | ||
85% | 15% | 100% | |||
ALT(GPT) | Normal | 4365 | 754 | 5119 | 0.826 |
85% | 15% | 100% | |||
Follow-up | 547 | 101 | 648 | ||
84% | 16% | 100% | |||
Requires further testing | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Requires treatment | 120 | 22 | 142 | ||
85% | 15% | 100% | |||
γGTP | Normal | 4357 | 751 | 5108 | 0.563 |
85% | 15% | 100% | |||
Follow-up | 493 | 88 | 581 | ||
85% | 15% | 100% | |||
Requires further testing | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Requires treatment | 182 | 38 | 220 | ||
83% | 17% | 100% | |||
Amylase | Normal | 4753 | 830 | 5583 | 0.824 |
85% | 15% | 100% | |||
Follow-up | 279 | 47 | 326 | ||
86% | 14% | 100% | |||
Requires further testing | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Requires treatment | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
ALP | Normal | 4775 | 830 | 5605 | 0.755 |
85% | 15% | 100% | |||
Follow-up | 257 | 47 | 304 | ||
85% | 15% | 100% | |||
Requires further testing | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Requires treatment | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
LDL-cholesterol | Normal | 1817 | 312 | 2129 | 0.762 |
85% | 15% | 100% | |||
Follow-up | 3215 | 565 | 3780 | ||
85% | 15% | 100% | |||
Requires further testing | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Requires treatment | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Total protein | Normal | 4876 | 853 | 5729 | 0.563 |
85% | 15% | 100% | |||
Follow-up | 156 | 24 | 180 | ||
87% | 13% | 100% | |||
Requires further testing | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Requires treatment | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Total-cholesterol | Normal | 2335 | 414 | 2749 | 0.335 |
85% | 15% | 100% | |||
Follow-up | 2093 | 373 | 2466 | ||
85% | 15% | 100% | |||
Requires further testing | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Requires treatment | 604 | 90 | 694 | ||
87% | 13% | 100% | |||
HDL-cholesterol | Normal | 4859 | 845 | 5704 | 0.107 |
85% | 15% | 100% | |||
Follow-up | 137 | 20 | 157 | ||
87% | 13% | 100% | |||
Requires further testing | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Requires treatment | 36 | 12 | 48 | ||
75% | 25% | 100% | |||
Neutral fat | Normal | 4034 | 680 | 4714 | 0.110 |
86% | 14% | 100% | |||
Follow-up | 864 | 176 | 1040 | ||
83% | 17% | 100% | |||
Requires further testing | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Requires treatment | 134 | 21 | 155 | ||
86% | 14% | 100% | |||
Blood glucose level | Normal | 3481 | 574 | 4055 | 0.086 |
86% | 14% | 100% | |||
Follow-up | 1194 | 231 | 1425 | ||
84% | 16% | 100% | |||
Requires further testing | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Requires treatment | 357 | 72 | 429 | ||
83% | 17% | 100% | |||
HbA1C | Normal | 2634 | 400 | 3034 | 0.001 |
87% | 13% | 100% | |||
Follow-up | 1974 | 384 | 2358 | ||
84% | 16% | 100% | |||
Requires further testing | 0 | 0 | 0 | ||
0% | 0% | 0% | |||
Requires treatment | 424 | 93 | 517 | ||
82% | 18% | 100% | |||
Total | 5032 | 877 | 5909 | ||
85% | 15% | 100% |
Incidence of cerebral infarction | |||||
---|---|---|---|---|---|
Nonexistence | Existence | Total | p-Value | ||
A medicine to lower blood pressure | Yes | 1776 | 410 | 2186 | <0.001 |
81.2% | 18.8% | 100.0% | |||
No | 3256 | 467 | 3723 | ||
87.5% | 12.5% | 100.0% | |||
Insulin injections or a medicine to lower blood glucose | Yes | 383 | 103 | 486 | <0.001 |
78.8% | 21.2% | 100.0% | |||
No | 4649 | 774 | 5423 | ||
85.7% | 14.3% | 100.0% | |||
A medicine to lower cholesterol | Yes | 1151 | 248 | 1399 | 0.001 |
82.3% | 17.7% | 100.0% | |||
No | 3881 | 629 | 4510 | ||
86.1% | 13.9% | 100.0% | |||
Heart disease history | Yes | 258 | 77 | 335 | <0.001 |
77.0% | 23.0% | 100.0% | |||
No | 4774 | 800 | 5574 | ||
85.6% | 14.4% | 100.0% | |||
Chronic renal failure history | Yes | 8 | 2 | 10 | 0.646 |
80.0% | 20.0% | 100.0% | |||
No | 5024 | 875 | 5899 | ||
85.2% | 14.8% | 100.0% | |||
Anemia history | Yes | 555 | 95 | 650 | 0.863 |
85.4% | 14.6% | 100.0% | |||
No | 4477 | 782 | 5259 | ||
85.1% | 14.9% | 100.0% | |||
Current regular smoker | Yes | 621 | 72 | 693 | <0.001 |
89.6% | 10.4% | 100.0% | |||
No | 4411 | 805 | 5216 | ||
84.6% | 15.4% | 100.0% | |||
Weight gained more than10kg since 20 years old | Yes | 1545 | 289 | 1834 | 0.184 |
84.2% | 15.8% | 100.0% | |||
No | 3487 | 588 | 4075 | ||
85.6% | 14.4% | 100.0% | |||
Exercising for 30 minutes or more, 2 days or more every week | Yes | 2256 | 404 | 2660 | 0.498 |
84.8% | 15.2% | 100.0% | |||
No | 2776 | 473 | 3249 | ||
85.4% | 14.6% | 100.0% | |||
Walking more than 1hour everyday | Yes | 2620 | 469 | 3089 | 0.443 |
84.8% | 15.2% | 100.0% | |||
No | 2412 | 408 | 2820 | ||
85.5% | 14.5% | 100.0% | |||
Walk faster than people of your age and sex | Yes | 2803 | 471 | 3274 | 0.272 |
85.6% | 14.4% | 100.0% | |||
No | 2229 | 406 | 2635 | ||
84.6% | 15.4% | 100.0% | |||
Weight gain or loss of more than 3kg over the last year | Yes | 911 | 185 | 1096 | 0.035 |
83.1% | 16.9% | 100.0% | |||
No | 4121 | 692 | 4813 | ||
85.6% | 14.4% | 100.0% | |||
Eating pace | Faster | 383 | 64 | 447 | 0.551 |
85.7% | 14.3% | 100.0% | |||
Normal | 3505 | 599 | 4104 | ||
85.4% | 14.6% | 100.0% | |||
Slower | 1144 | 214 | 1358 | ||
84.2% | 15.8% | 100.0% | |||
Evening meal within 2 hours before going to bed | Yes | 506 | 106 | 612 | 0.069 |
82.7% | 17.3% | 100.0% | |||
No | 4526 | 771 | 5297 | ||
85.4% | 14.6% | 100.0% | |||
Have snack after the evening meal | Yes | 498 | 75 | 573 | 0.214 |
86.9% | 13.1% | 100.0% | |||
No | 4534 | 802 | 5336 | ||
85.0% | 15.0% | 100.0% | |||
Skip breakfast 3 days or more per week | Yes | 295 | 32 | 327 | 0.008 |
90.2% | 9.8% | 100.0% | |||
No | 4737 | 845 | 5582 | ||
84.9% | 15.1% | 100.0% | |||
Drink alcohol | Rarely(can’t drink) | 972 | 155 | 1127 | 0.383 |
86.2% | 13.8% | 100.0% | |||
Sometimes | 1096 | 205 | 1301 | ||
84.2% | 15.8% | 100.0% | |||
Everyday | 2964 | 517 | 3481 | ||
85.1% | 14.9% | 100.0% | |||
Feel refreshed after a night’s sleep | Yes | 3929 | 675 | 4604 | 0.463 |
85.3% | 14.7% | 100.0% | |||
No | 1103 | 202 | 1305 | ||
84.5% | 15.5% | 100.0% | |||
Start lifestyle modifications | no plan to improve | 1059 | 199 | 1258 | 0.83 |
84.2% | 15.8% | 100.0% | |||
going to start in the future (within 6 months) | 413 | 73 | 486 | ||
85.0% | 15.0% | 100.0% | |||
going to start soon (in a month) | 566 | 93 | 659 | ||
85.9% | 14.1% | 100.0% | |||
already started (<6 months ago) | 1453 | 252 | 1705 | ||
85.2% | 14.8% | 100.0% | |||
already started (≥6 months ago) | 1541 | 260 | 1801 | ||
85.6% | 14.4% | 100.0% | |||
Willing to have Health Guidance | Yes | 2565 | 471 | 3036 | 0.135 |
84.5% | 15.5% | 100.0% | |||
No | 2467 | 406 | 2873 | ||
85.9% | 14.1% | 100.0% | |||
Total | 5032 | 877 | 5909 | ||
85.2% | 14.8% | 100.0% |
Item | Multivariate Adjusted Odds Ratio | 95% CI | p-Value | |
---|---|---|---|---|
Lower Limit | Upper Limit | |||
Age | 1.081 | 1.064 | 1.098 | <0.001 |
Sex(Women/Men) | 1.070 | 0.824 | 1.389 | 0.613 |
Height (cm) | 0.996 | 0.979 | 1.012 | 0.590 |
Weight (kg) | 0.999 | 0.982 | 1.016 | 0.881 |
Abdominal circumference(cm) | 1.007 | 0.992 | 1.021 | 0.382 |
A medicine to lower blood pressure(+/−) | 1.166 | 0.988 | 1.376 | 0.070 |
Insulin injections or a medicine to lower blood glucose(+/−) | 1.294 | 0.995 | 1.682 | 0.055 |
A medicine to lower cholesterol (Yes/No) | 1.044 | 0.876 | 1.245 | 0.628 |
Systolic blood pressure(mmHg) | 1.009 | 1.003 | 1.016 | 0.005 |
Diastolic blood pressure(mmHg) | 0.999 | 0.989 | 1.009 | 0.865 |
Uric protein(+±/−) | 0.853 | 0.619 | 1.176 | 0.331 |
Urinary sugar(+±/−) | 1.164 | 0.710 | 1.909 | 0.548 |
Uric blood(+±/−) | 0.937 | 0.764 | 1.148 | 0.529 |
Creatinine(+±/−) | 1.494 | 1.136 | 1.964 | 0.004 |
Urea nitrogen(+±/−) | 0.966 | 0.643 | 1.451 | 0.866 |
Urinary acid(+±/−) | 1.186 | 0.896 | 1.569 | 0.232 |
Leucocyte(+±/−) | 0.784 | 0.537 | 1.143 | 0.206 |
Erythrocyte(+±/−) | 0.919 | 0.773 | 1.092 | 0.338 |
Hemoglobin(+±/−) | 0.967 | 0.753 | 1.243 | 0.796 |
Hematocrit(+±/−) | 1.005 | 0.713 | 1.416 | 0.977 |
Platelet(+±/−) | 0.755 | 0.463 | 1.231 | 0.260 |
AST(GOT)(+±/−) | 0.985 | 0.737 | 1.316 | 0.918 |
ALT(GPT)(+±/−) | 1.022 | 0.768 | 1.360 | 0.882 |
γGPT(+±/−) | 1.092 | 0.858 | 1.390 | 0.473 |
Amylase(+±/−) | 0.856 | 0.613 | 1.196 | 0.362 |
ALP(+±/−) | 0.969 | 0.696 | 1.348 | 0.851 |
LDL-cholesterol(+±/−) | 1.033 | 0.851 | 1.255 | 0.742 |
Total protein(+±/−) | 0.779 | 0.494 | 1.231 | 0.285 |
Total-cholesterol(+±/−) | 1.027 | 0.853 | 1.237 | 0.780 |
HDL-cholesterol(+±/−) | 0.836 | 0.554 | 1.262 | 0.394 |
Neutral fat (+±/−) | 1.049 | 0.867 | 1.270 | 0.622 |
Blood glucose level (+±/−) | 0.929 | 0.774 | 1.115 | 0.428 |
HbA1C (+±/−) | 1.104 | 0.935 | 1.303 | 0.243 |
Outpatient Medical Expenditures in 2009 | 1.000 | 1.000 | 1.000 | <0.001 |
_cons | 0.000 | 0.000 |
Item | Multivariate Adjusted Odds Ratio | 95% CI | p-Value | ||
---|---|---|---|---|---|
Lower Limit | Upper Limit | ||||
Age | years | 1.066 | 0.886 | 1.281 | 0.499 |
Sex | (Female/Male) | 1.086 | 1.070 | 1.103 | 0.000 |
A medicine to lower blood pressure | (−/+) | 1.272 | 1.086 | 1.489 | 0.003 |
Insulin injections or a medicine to lower blood glucose | (−/+) | 1.291 | 1.011 | 1.648 | 0.041 |
A medicine to lower cholesterol | (−/+) | 1.052 | 0.886 | 1.248 | 0.566 |
Heart disease history | (−/+) | 1.300 | 0.984 | 1.719 | 0.065 |
Chronic renal failure history | (−/+) | 1.101 | 0.227 | 5.336 | 0.905 |
Anemia history | (−/+) | 1.038 | 0.815 | 1.322 | 0.764 |
Current regular smoker | (−/+) | 0.799 | 0.607 | 1.051 | 0.108 |
Weight gained more than10kg since 20 years old | (−/+) | 0.971 | 0.821 | 1.149 | 0.734 |
Exercising for 30 minutes or more, 2 days or more every week | (−/+) | 0.947 | 0.802 | 1.119 | 0.524 |
Walking more than 1hour everyday | (−/+) | 0.977 | 0.829 | 1.152 | 0.784 |
Walk faster than people of your age and sex | (−/+) | 0.923 | 0.790 | 1.079 | 0.314 |
Weight gain or loss of more than 3kg over the last year | 1.232 | 1.019 | 1.489 | 0.031 | |
Eating pace Normal | Reference Group | 0.239 | |||
Faster | 1.160 | 0.970 | 1.388 | 0.103 | |
Slower | 0.971 | 0.729 | 1.293 | 0.840 | |
Evening meal within 2 hours before going to bed | (−/+) | 1.322 | 1.042 | 1.677 | 0.022 |
Have snack after the evening meal | (−/+) | 0.962 | 0.736 | 1.256 | 0.774 |
Skip breakfast 3 days or more per week | (−/+) | 0.788 | 0.532 | 1.166 | 0.233 |
Drink alcohol Rarely (can’t drink) | Reference Group | 0.171 | |||
Sometimes | 1.184 | 0.982 | 1.429 | 0.078 | |
Everyday | 1.000 | 0.794 | 1.261 | 0.997 | |
Feel refreshed after a night’s sleep | (−/+) | 0.897 | 0.751 | 1.073 | 0.234 |
Start lifestyle modifications | 0.941 | ||||
no plan to improve | Reference Group | ||||
going to start in the future (within 6 months) | 0.949 | 0.704 | 1.280 | 0.733 | |
going to start soon ( in a month) | 1.001 | 0.747 | 1.341 | 0.995 | |
already started (<6 months ago) | 0.919 | 0.653 | 1.294 | 0.630 | |
already started (≥6 months ago) | 1.013 | 0.748 | 1.372 | 0.932 | |
Willing to have Health Guidance | (−/+) | 1.138 | 0.972 | 1.332 | 0.109 |
Outpatient Medical Expenditures (2009) | 1.000 | 1.000 | 1.000 | 0.001 | |
_cons | 0.001 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamaki, Y.; Hiratsuka, Y.; Kumakawa, T. Multivariate Analysis of Risk Factors for Cerebral Infarction Based on Specific Health Checkups in Japan. J. Ageing Longev. 2022, 2, 277-292. https://doi.org/10.3390/jal2040023
Tamaki Y, Hiratsuka Y, Kumakawa T. Multivariate Analysis of Risk Factors for Cerebral Infarction Based on Specific Health Checkups in Japan. Journal of Ageing and Longevity. 2022; 2(4):277-292. https://doi.org/10.3390/jal2040023
Chicago/Turabian StyleTamaki, Yoh, Yoshimune Hiratsuka, and Toshiro Kumakawa. 2022. "Multivariate Analysis of Risk Factors for Cerebral Infarction Based on Specific Health Checkups in Japan" Journal of Ageing and Longevity 2, no. 4: 277-292. https://doi.org/10.3390/jal2040023
APA StyleTamaki, Y., Hiratsuka, Y., & Kumakawa, T. (2022). Multivariate Analysis of Risk Factors for Cerebral Infarction Based on Specific Health Checkups in Japan. Journal of Ageing and Longevity, 2(4), 277-292. https://doi.org/10.3390/jal2040023