Preliminary Design Proposals for Dovetail Wood Board Elements in Multi-Story Building Construction
Abstract
:1. Introduction
2. Research Methods
3. Findings
3.1. Preliminarily Design Proposals for the Horizontal Frame (Floor Slab)
3.2. Preliminary Design Proposals for the Vertical Frame (Shear Wall)
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stepinac, M.; Šušteršic, I.; Gavric, I.; Rajcic, V. Seismic Design of Timber Buildings: Highlighted Challenges and Future Trends. Appl. Sci. 2020, 10, 1380. [Google Scholar] [CrossRef] [Green Version]
- Karjalainen, M. A Study of the Finnish Multi-story Timber Frame Buildings 1995–2018 S. ARCH 2019. In Proceedings of the 6th International Conference on Architecture and Engineering, Havana, Cuba, 5–7 March 2019. [Google Scholar]
- Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.U.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; et al. The wood from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Shahnewaz, M.; Tannert, T.; Alam, M.S. Popovski, M. In-Plane Stiffness of Cross-Laminated Timber Panels with Openings. Struct. Eng. Int. 2017, 27, 217–223. [Google Scholar] [CrossRef]
- Harte, A.M. Mass Timber-The Emergence of a Modern Construction Material. J. Struct. Integr. Maint. 2017, 2, 121–132. [Google Scholar] [CrossRef]
- Sikora, K.S.; McPolin, D.O.; Harte, A.M. Effects of the thickness of cross-laminated timber (CLT) panels made from Irish Sitka spruce on mechanical performance in bending and shear. Constr. Build. Mater. 2016, 116, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Abrahamsen, R.B. Mjøstårnet-Construction of an 81 m Tall Timber Building; Internationales Holzbau-Forum IHF: Garmisch-Partenkirchen, Germany, 2017. [Google Scholar]
- CTBUH. Council on Tall Buildings and Urban Habitat. Illinois Institute of Technology, S.R. Crown Hall, 3360 South State Street, Chicago, Illinois, USA. Available online: http://www.ctbuh.org (accessed on 15 September 2021).
- HoHo. Available online: http://www.hoho-wien.at/ (accessed on 15 September 2021).
- Abrahamsen, R.B.; Malo, K.A. Structural Design and Assembly of“Treet”-A 14-Storey Timber Residential Building in Norway. In Proceedings of the WTCE 2014, World Conference on Timber Engineering, Quebec City, QC, Canada, 10–14 August 2014. [Google Scholar]
- Gamerro, J.; Bocquet, J.F.; Weinand, Y. A Calculation Method for Interconnected Timber Elements Using Wood-Wood Connections. Buildings 2020, 10, 61. [Google Scholar] [CrossRef] [Green Version]
- Solta, P.; Konnerth, J.; Gindl-Altmutterb, W.; Kantnerc, W.; Moser, J.; Mitterd, R.; van Herwijnen, H.W.G. Technological performance of formaldehyde-free adhesive alternatives for particleboard industry. Int. J. Adhes. Adhesives 2019, 94, 99–131. [Google Scholar] [CrossRef]
- Frihart, C.R. Introduction to special issue, wood adhesives: Past, present, and future. For. Prod. J. 2015, 65, 4–8. [Google Scholar] [CrossRef]
- Pizzi, A. Synthetic adhesives for wood panels: Chemistry and technology—A critical review. Rev. Adhes. Adhes. 2014, 2, 85–126. [Google Scholar] [CrossRef]
- Stoeckel, F.; Konnerth, J.; Gindl-Altmutter, W. Mechanical properties of adhesives for bonding wood—A review. Int. J. Adhes. Adhes. 2013, 45, 32–41. [Google Scholar] [CrossRef]
- Kozicki, M.; Guzik, K. Comparison of VOC Emissions Produced by Different Types of Adhesives Based on Test Chambers. Materials 2021, 14, 1924. [Google Scholar] [CrossRef]
- Khoshnava, S.M.; Rostami, R.; Zin, R.M.; Štreimikienė, D.; Mardani, A.; Ismail, M. The Role of Green Building Materials in Reducing Environmental and Human Health Impacts. Int. J. Environ. Res. Public Health 2020, 10, 2589. [Google Scholar] [CrossRef] [PubMed]
- Summary, E. WHO Housing and Health Guidelines; WHO-CED-PHE-18.10-eng; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Guan, Z.; Sotayo, A.; Oudjene, M.; El Houjeyri, I.; Harte, A.; Mehra, S.; Haller, P.; Namari, S.; Makradi, A.; Belouettar, S.; et al. Development of Adhesive Free Engineered Wood Products-Towards Adhesive Free Timber Buildings. In Proceedings of the 2018 World Conference on Timber Engineering, WCTE 2018, Seoul, Korea, 20–23 August 2018. [Google Scholar]
- Chang, W.-S.; Nearchou, N. Hot-pressed Dowels in Bonded-in rod Timber Connections. Wood Fiber Sci. 2015, 47, 199–208. [Google Scholar]
- Hemmila, V. Adamopoulos S, Karlsson O, Kumar, A. Development of Sustainable Bio-adhesives for Engineered Wood Panels-A Review. RSC Adv. 2017, 7, 38604–38630. [Google Scholar] [CrossRef]
- Norström, E.; Fogelström, L.; Nordqvist, P.; Khabbaz, F.; Malmström, E.; Xylan, A. Green binder for wood adhesives. Eur. Polym. J. 2015, 67, 483–493. [Google Scholar] [CrossRef]
- Schneider, J.; Tannert, T.; Tesfamariam, S.; Stiemer, S.F. Experimental assessment of a novel steel tube connector in cross-laminated timber. Eng. Struct. 2018, 177, 283–290. [Google Scholar] [CrossRef]
- Loferski, J.R.; Bouldin, J.C.; Hindman, D.P. Development of a Methodology for the Visual Inspection of Engineered Wood Products and Metal Hangers in Residential Construction. Adv. Mater. Res. 2013, 778, 342–349. [Google Scholar] [CrossRef]
- Sotayo, A.; Bradley, D.; Bather, M.; Sareh, P.; Oudjene, M.; El-Houjeyri, I.; Harte, A.; Mehra, S.; O’Ceallaigh, C.; Haller, P.; et al. Review of state of the art of dowel laminated timber members and densified wood materials as sustainable engineered wood products for construction and building applications. Dev. Built Environ. 2020, 1, 1–11. [Google Scholar] [CrossRef]
- O’Loinsigh, C.; Oudjene, M.; Shotton, E.; Pizzi, A.; Fanning, P. Mechanical behaviour and 3D stress analysis of multi-layered wooden beams made with weldedthrough wood dowels. Compos. Struct. 2012, 94, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Toivonen, R.; Lähtinen, K. Sustainability—A Literature Review on Concealed Opportunities for Global Market Diffusion for the Cross-laminated Timber (CLT) in the Urbanizing Society; BioProducts Business: Curitiba, Brazil, 2019. [Google Scholar]
- Ilgın, H.E.; Karjalainen, M.; Koponen, O. Review of the Current State-of-the-Art of Dovetail Massive Wood Elements; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Ronquillo, G.; Hopkin, D.; Spearpoint, M. Review of large-scale fire tests on cross-laminated timber. J. Fire Sci. 2021, 39, 5. [Google Scholar] [CrossRef]
- Xing, Z.; Wang, Y.; Zhang, J.; Ma, H. Comparative study on fire resistance and zero strength layer thickness of CLT floor under natural fire and standard fire. Constr. Build. Mater. 2021, 302, 124368. [Google Scholar] [CrossRef]
- Li, M.; Zhang, S.; Gong, T.Z.; Ren, H. Gluing Techniques on Bond Performance and Mechanical Properties of Cross-Laminated Timber (CLT) Made from Larix kaempferi. Polymers 2021, 13, 733. [Google Scholar] [CrossRef] [PubMed]
- Lukacs, I.; Björnfot, A.; Tomasi, R. Strength and Stiffness of Cross-laminated Timber (CLT) Shear Walls: State-of-the-Art of Analytical Approaches. Eng. Struct. 2019, 178, 136–147. [Google Scholar] [CrossRef]
- Chiniforush, A.; Akbarnezhad, A.; Valipour, H.; Xiao, J. Energy implications of using steel-timber composite (STC) elements in buildings. Energy Build. 2018, 176, 203–215. [Google Scholar] [CrossRef]
- O’Ceallaigh, C.; Sikora, K.; Harte, A.M. The Influence of Panel Lay-Up on the Characteristic Bending and Rolling Shear Strength of CLT. Buildings 2018, 8, 114. [Google Scholar] [CrossRef] [Green Version]
- Milner, H.R.; Woodard, A.C. Sustainability of engineered wood products. Sustain. Constr. Mater. 2016, 159–180. [Google Scholar]
- Karacabeyli, E.; Douglas, B. CLT Handbook: Cross-Laminated Timber; US Edition; FP Innovations: Quebec, QC, Canada, 2013. [Google Scholar]
- Jorissen, A.; Fragiacomo, M. General notes on ductility in timber structures. Eng Struct. 2011, 33, 2987–2997. [Google Scholar] [CrossRef]
- Zhang, J.; Yixiang, X.Y.; Mei, F.; Li, C. Experimental study on the fire performance of straight-line dovetail joints. J. Wood Sci. 2018, 64, 193–208. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, Y.; Linfeng, L.; Xu, Q. Thermo-mechanical behaviour of dovetail timber joints under fire exposure. Fire Saf. Journal. 2019, 107, 75–88. [Google Scholar] [CrossRef]
- Jasieńko, J.; Nowak, T.; Karolak, A. Historical carpentry joints. J. Herit. Conserv. 2014, 40, 58–82. [Google Scholar]
- Tannert, T.; Keller, N.; Frei, R.; Vallee, T. Improved Performance of Rounded Dovetail Joists, WTCE. In Proceedings of the World Conference on Timber Engineering, Auckland, New Zealand, 15–19 July 2012. [Google Scholar]
- Pang, S.-J.; Oh, J.-K.; Park, C.-Y.; Lee, J.-J. Effects of Size Ratios on Dovetail Joints in Korean Traditional Wooden Building, WTCE. In Proceedings of the World Conference on Timber Engineering, Auckland, New Zealand, 15–19 July 2012. [Google Scholar]
- Xie, Q.; Zhang, B.; Zhang, L.; Guo, L.; Wu, Y. Normal contact performance of mortise and tenon joint: Theoretical analysis and numerical simulation. J. Wood Sci. 2021, 67, 31. [Google Scholar] [CrossRef]
- Sha, B.; Wang, H.; Li, A. The Influence of the Damage of Mortise-Tenon Joint on the Cyclic Performance of the Traditional Chinese Timber Frame. Appl. Sci. 2019, 9, 3429. [Google Scholar] [CrossRef] [Green Version]
- Jeong, G.Y.; Song, J.K. Evaluation of Structural Properties of Dovetail Connections under Tensile Load Using Three Methods of Data Analysis. J. Mater. Civ. Eng. 2017, 29, 06017011. [Google Scholar] [CrossRef]
- Branco, J.M.; Descamps, T. Analysis and strengthening of carpentry joints. Constr. Build. Mater. 2015, 97, 34–47. [Google Scholar] [CrossRef] [Green Version]
- Jeong, G.Y.; Park, M.J.; Park, J.S.; Hwang, K.H. Predicting Load-Carrying Capacity of Dovetail Connections Using the Stochastic Finite Element Method. Wood Fiber Sci. 2012, 44, 430–439. [Google Scholar]
- Ozkaya, K.; Burdurlu, E.; Ilce, C.; Ciritcioglu, H.H. Diagonal Tensile Strength of An Oriented Strandboard (OSB) Frame with Dovetail Corner Joint. BioResources 2010, 5, 2690–2701. [Google Scholar]
- Jeong, G.Y.; Park, M.-J.; Hwang, K.; Park, J.S. Effects of Geometry on Mechanical Behavior of Dovetail Connection, WTCE. In Proceedings of the World Conference on Timber Engineering, Auckland, New Zealand, 15–19 July 2012. [Google Scholar]
- Robeller, C.; Weinand, Y. Interlocking Folded Plate-Integral Mechanical Attachment for Structural Wood Panels. Int. J. Space Struct. 2015, 30, 111–122. [Google Scholar] [CrossRef]
- Pozza, L.; Scotta, R.; Trutalli, D.; Pinna, M.; Polastri, A.; Bertoni, P. Experimental and Numerical Analyses of New Massive Wooden Shear-Wall Systems. Buildings 2014, 4, 355–374. [Google Scholar] [CrossRef] [Green Version]
- Pozza, L.; Scotta, R.; Trutalli, D.; Polastri, A. Behaviour factor for innovative massive timber shear walls. Bull Earthq. Eng. 2015, 13, 3449–3469. [Google Scholar] [CrossRef]
- Jeong, G.Y.; Hindman, D.P. Ultimate Tensile Strength of Loblolly Pine Strands Using Stochastic Finite Element Method. J. Mater. Sci. 2009, 44, 3824–3832. [Google Scholar] [CrossRef]
- Jeong, G.Y.; Hindman, D.P.; Zink-Sharp, A. Orthotrpic Properties of Loblolly Pine Strands. J. Mater. Sci. 2010, 45, 5820–5830. [Google Scholar] [CrossRef]
- Park, C.Y.; Lee, J.J. Moment Carrying Capacity of Dovetailed Mortise and Tenon Joints with or without Beam Shoulders. J. Struct. Eng. ASCE 2010, 137, 785–789. [Google Scholar]
- Sebera, V.; Šimek, M. Finite element analysis of dovetail joint made with the use of CNC technology. Acta Univ. Agric. Silvic. Mendel. Brun. 2010, 58, 321–328. [Google Scholar] [CrossRef]
- Mashrah, W.A.H.; Chen, Z.; Liu, H.; Amer, M.A. Mechanical behaviour of a novel steel dovetail joint subjected to axial compression loading. Eng. Struct. 2021, 245, 112852. [Google Scholar] [CrossRef]
- Groat, L.; Wang, D. Architectural Research Methods. Nexus Netw. J. 2004, 6, 51–53. Available online: https://link.springer.com/content/pdf/10.1007/s00004-004-0006-7.pdf (accessed on 15 September 2021).
- Groat, L.N.; Wang, D. Architectural Research Methods, 2nd ed.; Wiley: New York, NY, USA, 2013. [Google Scholar]
- Vasilenko, N.A. General System Principles of Architectural Systems Formation, IOP Conf. Ser. Mater. Sci. Eng. 2020, 753, 032048. [Google Scholar]
- Akšamija, A. Research Methods for the Architectural Profession; Routledge: New York, NY, USA, 2021. [Google Scholar]
- Fu, F. Design and Analysis of Tall and Complex Structures; Butterworth-Heinemann: Oxford, UK; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Bhooshan, S. Parametric design thinking: A case-study of practice-embedded architectural research. Des. Stud. 2017, 52, 115–143. [Google Scholar] [CrossRef]
- Miller, J.F.; Bulleit, W.M. Analysis of Mechanically Laminated Timber Beams Using Shear Keys. J. Struct. Eng. 2011, 137, 124–132. [Google Scholar] [CrossRef]
- Marcos, L.K.; Carrazedo, R. Parametric study on the vibration sensitivity of hollow-core slabs floors. In Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014, Porto, Portugal, 30 June–2 July 2014. [Google Scholar]
- Ahmed, I.M.; Tsavdaridis, K.D. The evolution of composite flooring systems: Applications, testing, modelling and Eurocode design approaches. J. Constr. Steel Res. 2019, 155, 286–300. [Google Scholar] [CrossRef]
- Al-Shaarbaf, I.A.; Al-Azzawi, A.A.; Abdulsattar, R. A State of the Art Review on Hollow Core Slabs. ARPN J. Eng. Appl. Sci. 2018, 13, 9. [Google Scholar]
- Voth, C.; White, N.; Yadama, V.; Cofer, W. Design and Evaluation of Thin-Walled Hollow-Core Wood-Strand Sandwich Panels. J. Renew. Mater. 2015, 3, 234–243. [Google Scholar] [CrossRef]
- Montgomery, W.G. Hollow Massive Timber Panels: A High-Performance, Long-Span Alternative to Cross Laminated Timber. Civil Engineering, Clemson University, Clemson. 2014. Available online: https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=3017&context=all_theses (accessed on 15 September 2021).
- Van Aken, B. Hollow Core Cross-Laminated Timber Optimized for A More Efficient Use of Material. MSc Thesis, Delft University of Technology, Delft, Netherlands, 2017. Available online: http://homepage.tudelft.nl/p3r3s/MSc_projects/reportVanAken.pdf (accessed on 15 September 2021).
- The CLT Handbook CLT Structures–Facts and Planning; Swedish Wood: Stockholm, Sweden, 2019. Available online: https://www.svenskttra.se/siteassets/5-publikationer/pdfer/clt-handbook-2019-eng-m-svensk-standard-2019.pdf (accessed on 15 September 2021).
- Huang, H.; Lin, X.; Zhang, J.; Wu, Z.; Wang, C.; Brad, J.W. Performance of the hollow-core cross-laminated timber (HC-CLT) floor under human-induced vibration. Structures 2021, 32, 1481–1491. [Google Scholar] [CrossRef]
- Wang, Y.L.; He, M.X.; Zhou, X.J. Wall-Frame and Hollow Shear Wall Structural System and its Application. Appl. Mech. Mater. 2015, 744, 356–360. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Lu, Z.; Xu, J. Experimental study on seismic performance of precast hollow shear walls. Struct. Des. Tall Spec. Build. 2021, 30, e1856. Available online: https://onlinelibrary.wiley.com/doi/10.1002/tal.1856 (accessed on 15 September 2021). [CrossRef]
- Xu, G.; Li, A. Research on the response of concrete cavity shear wall under lateral load. Struct. Des. Tall Spec. Build. 2019, 28, e1577. [Google Scholar] [CrossRef]
- European Technical Assessment ETA-19/0066, Prefabricated Wood Slab Element Made of Mechanically Jointed Square-Sawn Timber Members to Be Used as a Structural Element in Buildings. Available online: https://static1.squarespace.com/static/5dd6a33a354a76685e153039/t/5e18976b6cb0c9586a405bed/1578669934345/ETA-19-0066_ECopy_en.pdf (accessed on 15 September 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilgın, H.E.; Karjalainen, M. Preliminary Design Proposals for Dovetail Wood Board Elements in Multi-Story Building Construction. Architecture 2021, 1, 56-68. https://doi.org/10.3390/architecture1010006
Ilgın HE, Karjalainen M. Preliminary Design Proposals for Dovetail Wood Board Elements in Multi-Story Building Construction. Architecture. 2021; 1(1):56-68. https://doi.org/10.3390/architecture1010006
Chicago/Turabian StyleIlgın, Hüseyin Emre, and Markku Karjalainen. 2021. "Preliminary Design Proposals for Dovetail Wood Board Elements in Multi-Story Building Construction" Architecture 1, no. 1: 56-68. https://doi.org/10.3390/architecture1010006
APA StyleIlgın, H. E., & Karjalainen, M. (2021). Preliminary Design Proposals for Dovetail Wood Board Elements in Multi-Story Building Construction. Architecture, 1(1), 56-68. https://doi.org/10.3390/architecture1010006