Systemic Administration of Docosahexaenoic Acid Suppresses Trigeminal Secondary Nociceptive Neuronal Activity in Rats
Abstract
1. Introduction
2. Materials and Methods
2.1. Extracellular Single-Unit Recording of WDR Neuronal Activity in the SpVc
2.2. Experimental Protocols
2.3. Data Analysis
3. Results
3.1. Characteristics of SpVc WDR Neurons Innervating the Facial Skin
3.2. Changes in Excitability of SpVc WDR Neurons Due to Intravenous DHA in Response to Non-Noxious and Noxious Stimuli
3.3. Response of SpVc WDR Neurons to Noxious Stimuli Compared to Non-Noxious Stimuli Following DHA Treatment
4. Discussion
4.1. SpVc WDR Neuron Excitability Is Inhibited by Intravenous DHA
4.2. Mechanisms Underlying DHA’s Inhibition of the Excitability of SpVc WDR Neurons
4.3. The Functional Impact of DHA in Reducing the Excitability of SpVc Neurons Triggered by Nociceptive Stimulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sessle, B.J. Acute and chronic craniofacial pain: Brainstem mechanisms of nociceptive transmission and neuroplasticity and their clinical correlates. Crit. Rev. Oral Biol. Med. 2000, 11, 57–91. [Google Scholar] [CrossRef] [PubMed]
- Takeda, M.; Matsumoto, S.; Sessle, B.J.; Shinoda, M.; Iwata, K. Peripheral and central mechanisms of trigeminal neuropathic pain and inflammatory pain. J. Oral Biosci. 2011, 53, 318–329. [Google Scholar] [CrossRef]
- Scholz, J.; Woolf, C.J. Can we conquer pain? Nat. Neurosci. 2002, 5 (Suppl. S11), 1062–1067. [Google Scholar]
- Millan, M.J. The induction of pain: An integrative review. Prog. Neurobiol. 1999, 57, 1–164. [Google Scholar]
- Iwata, K.; Takeda, M.; Oh, S.; Shinoda, M. Neurophysiology of orofacial pain. In Contemporary Oral Medicine; Farah, C.S., Balasubramaniam, R., McCullough, M.J., Eds.; Springer International Publishing: New York, NY, USA, 2017; pp. 1–23. [Google Scholar]
- Crawford, M.A.; Casperd, N.M.; Sinclair, A.J. The long-chain metabolites of linoleic and linolenic acids in liver and brain in herbivores and carnivores. Comp. Biochem. Physiol. 1976, 54, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, M.; Hossain, S. Neuroprotective and ameliorative actions of polyunsaturated fatty acids against neuronal diseases: Beneficial effect of docosahexaenoic acid on cognitive decline in Alzheimer’s disease. J. Pharmacol. Sci. 2011, 116, 150–162. [Google Scholar]
- Kim, Y.J.; Chung, H.Y. Antioxidative and anti-inflammatory actions of docosahexaenoic acid and eicosapentaenoic acid in renal epithelial cells and macrophages. J. Med. Food 2007, 10, 225–231. [Google Scholar] [PubMed]
- Rao, J.K.; Mihaliak, K.; Kroenke, K.; Bradley, J.; Tierney, W.M.; Weinberger, M. Use of complementary therapies for arthritis among patients of rheumatologists. Ann. Intern. Med. 1999, 131, 409–416. [Google Scholar]
- Konvicka, J.J.; Meyer, T.A.; McDavid, A.J.; Roberson, C.R. Complementary/alternative medicine use among chronic pain clinic patients. J. Perianesth. Nurs. 2008, 23, 17–23. [Google Scholar] [CrossRef]
- Rosenberg, E.I.; Genao, I.; Chen, I.; Mechaber, A.J.; Wood, J.A.; Faselis, C.J.; Kurz, J.; Menon, M.; O’Rorke, J.; Panda, M.; et al. Complementary and alternative medicine use by primary care patients with chronic pain. Pain Med. 2008, 9, 1065–1072. [Google Scholar]
- Shir, Y.; Raja, S.N.; Weissman, C.S.; Campbell, J.N.; Seltzer, Z.E. Consumption of soy diet before nerve injury preempts the development of neuropathic pain in rats. Anesthesiology 2001, 95, 1238–1244. [Google Scholar] [CrossRef] [PubMed]
- Ernst, E. Complementary medicine. Curr. Opin. Rheumatol. 2003, 15, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Tall, J.M.; Raja, S.N. Dietary constituents as novel therapeutics for pain. Clin. J. Pain 2004, 20, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Matta, J.A.; Miyares, R.L.; Ahern, J.P. TRPV1 is a novel target for omega-3 polyunsaturated fatty acids. J. Physiol. 2007, 578, 397–411. [Google Scholar] [CrossRef]
- Vreugdenhil, M.; Bruehl, C.; Voskuyl, R.A.; Kang, J.X.; Leaf, A.; Wadman, W.J. Polyunsaturated fatty acids modulate sodium and calcium currents in CA1 neurons. Proc. Natl. Acad. Sci. USA 1996, 93, 12559–12563. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.-P.; Kim, H.I.; Shin, Y.K.; Lee, C.S.; Park, M.; Song, J.-H. Effects of free fatty acids on sodium currents in rat dorsal root ganglion neurons. Brain Res. 2004, 1008, 81–91. [Google Scholar] [CrossRef]
- Xiao, Y.F.; Kang, J.X.; Morgan, J.P.; Leaf, A. Blocking effects of polyunsaturated fatty acids on Na+ channels of neonatal rat ventricular myocytes. Proc. Natl. Acad. Sci. USA 1995, 92, 11000–11004. [Google Scholar] [CrossRef]
- Hong, M.-P.; Kim, H.I.; Shin, Y.K.; Lee, C.S.; Park, M.; Song, J.-H. Docosahexaenoic acid inhibits synaptic transmission and epileptiform activity in the rat hippocampus. Synapse 2000, 37, 90–94. [Google Scholar]
- Eto, K.; Arimura, Y.; Mizuguchi, H.; Nishikawa, M.; Noda, M.; Ishibashi, H. Modulation of ATP-induced inward currents by docosahexaenoic acid and other fatty acids in rat nodose ganglion neurons. J. Pharmacol. Sci. 2006, 102, 343–346. [Google Scholar] [CrossRef]
- Taha, A.Y.; Zahid, T.; Epps, T.; Trepanier, M.-O.; Burnham, W.; Bazinet, R.P.; Zhang, L. Selective reduction of excitatory hippocampal sharp waves by docosahexaenoic acid and its methyl ester analog ex-vivo. Brain Res. 2013, 537, 9–17. [Google Scholar] [CrossRef]
- Cao, D.; Kevala, K.; Kim, J.; Moon, H.; Jun, S.B.; Lovinger, D.; Kim, H. Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function. J. Neurochem. 2009, 111, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Takehana, S.; Kubota, Y.; Uotsu, N.; Yui, K.; Iwata, K.; Shimazu, Y.; Takeda, M. The dietary constituent resveratrol suppresses nociceptive transmission via NMDA receptor. Mol. Pain 2017, 13, 1744806917697010. [Google Scholar] [CrossRef] [PubMed]
- Mitome, K.; Takehana, S.; Oshima, K.; Shimazu, Y.; Takeda, M. Local anesthetic effect of docosahexaenoic acid on the nociceptive jaw-opening reflex in rats. Neurosci. Res. 2018, 137, 30–35. [Google Scholar] [CrossRef]
- Zimmermann, M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983, 16, 109–110. [Google Scholar] [CrossRef]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 2nd ed.; Academic Press: New York, NY, USA, 1986. [Google Scholar]
- Hammno, H.; Nabekura, J.; Nishikawa, M.; Ogawa, T. Docosahexaenoic acid reduces GABA response in substantia nigra neurons of rat. J. Neurophysiol. 1996, 75, 1264–1270. [Google Scholar] [CrossRef]
- Nabekura, J.; Noguchi, K.; Witt, M.R.; Nielsen, M.; Akaike, N. Functional modulation of human recombinant gamma aminobutyric acid type A receptor by docosahexaenoic acid. J. Biol. Chem. 1998, 273, 1156–1161. [Google Scholar] [CrossRef]
- Søgaard, R.; Werge, T.M.; Bertelsen, C.; Lundbye, C.; Madsen, K.L.; Nielsen, C.H.; Lundbæk, J.A. GABAA receptor function is regulated by lipid bilayer elasticity. Biochemistry 2006, 45, 13118–13129. [Google Scholar] [CrossRef]
- Nakamoto, K.; Nishinaka, T.; Matsumoto, K.; Kasuya, F.; Mankura, M.; Koyama, Y.; Tokuyama, S. Involvement of long-chain fatty acid receptor GPR40 as a novel pain regulatory system. Brain Res. 2012, 1432, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, K.; Nishinaka, T.; Sato, N.; Mankura, M.; Koyama, Y.; Kasuya, F.; Tokuyama, S. Hypothalamic GPR40 signaling activated by free long chain acids suppresses CFA-induced inflammatory chronic pain. PLoS ONE 2013, 8, e81563. [Google Scholar] [CrossRef]
- Fujiwara, K.; Maekawa, F.; Yada, T. Oleic acid interacts with GPR40 to induce Ca2+ signaling in rat islet beta-cells: Mediation by PLC and L-type Ca2+ channel and link to insulin release. Am. J. Physiol. Endocrinol. Metab. 2005, 289, E670–E677. [Google Scholar] [CrossRef]
- Nakazaki, S.; Tadokoro, K.; Takehana, S.; Syoji, Y.; Shimazu, Y.; Takeda, M. Docosahexaenoic acid attenuates inflammation-induced hyperexcitability of trigeminal spinal nucleus caudalis neurons associated with hyperalgesia in rats. Eur. J. Oral Sci. 2018, 126, 458–465. [Google Scholar] [PubMed]
- Osaki, H.; Mori, M.; Oshima, K.; Shimazu, Y.; Takeda, M. Effect of local administration of eicosapentaenoic acid on the jaw-opening reflex in rats. Eur. J. Oral Sci. 2023, 131, e12917. [Google Scholar] [CrossRef] [PubMed]
- Perkins, F.M.; Kehlet, H. Chronic pain as an outcome of surgery. A review of predictive factors. Anesthesiology 2000, 93, 1123–1133. [Google Scholar] [PubMed]
- Kehlet, H.; Jensen, T.S.; Woolf, C.J. Persistent postoperative pain: Risk factors and prevention. Lancet 2006, 367, 1618–1625. [Google Scholar]
- Locher-Claus, M.T.; Erickson, T.E.; Law, A.S.; Johnson, W.T.; Gebhart, G.F. Effect of pre-emptive morphine, ibuprofen or local anesthetic on fos-expression in the spinal trigeminal nucleus following tooth pulp exposure in rat. J. Endod. 2005, 31, 578–583. [Google Scholar]
- Tillu, D.V.; Melemedjian, O.K.; Asiedu, M.N.; Qu, N.; De Felice, M.; Dussor, G.; Price, T.J. Resveratrol engages AMPK to attenuate ERK and mTOR signaling in sensory neurons and inhibits incision-induced acute and chronic pain. Mol. Pain 2012, 8, 5. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, H.; Sashide, Y.; Takeda, M. Systemic Administration of Docosahexaenoic Acid Suppresses Trigeminal Secondary Nociceptive Neuronal Activity in Rats. Int. J. Transl. Med. 2025, 5, 13. https://doi.org/10.3390/ijtm5020013
Takahashi H, Sashide Y, Takeda M. Systemic Administration of Docosahexaenoic Acid Suppresses Trigeminal Secondary Nociceptive Neuronal Activity in Rats. International Journal of Translational Medicine. 2025; 5(2):13. https://doi.org/10.3390/ijtm5020013
Chicago/Turabian StyleTakahashi, Hanano, Yukito Sashide, and Mamoru Takeda. 2025. "Systemic Administration of Docosahexaenoic Acid Suppresses Trigeminal Secondary Nociceptive Neuronal Activity in Rats" International Journal of Translational Medicine 5, no. 2: 13. https://doi.org/10.3390/ijtm5020013
APA StyleTakahashi, H., Sashide, Y., & Takeda, M. (2025). Systemic Administration of Docosahexaenoic Acid Suppresses Trigeminal Secondary Nociceptive Neuronal Activity in Rats. International Journal of Translational Medicine, 5(2), 13. https://doi.org/10.3390/ijtm5020013