Foods Containing Pantoea agglomerans LPS Reduce Eye-Nose Allergies—A Double-Blind, Placebo-Controlled, Randomized, Parallel-Group Comparative Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Foods
2.2. Subjects
2.3. Study Design
2.4. Number of Days of Cold and Hay Fever Onset and Measurement of Symptom Severity
2.5. Phagocytosis Assayy
2.6. Lymphocyte Count
2.7. Hematology and Blood Biochemistry Tests
2.8. Statistical Analysis
3. Results
3.1. Subject Background
3.2. Cold Symptoms
3.3. Eye–Nose Allergic Symptoms
3.4. Phagocytic Capacity
3.5. Lymphocyte Count
3.6. Safety Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rossol, M.; Heine, H.; Meusch, U.; Quandt, D.; Klein, C.; Sweet, M.J.; Hauschildt, S. LPS-induced cytokine production in human monocytes and macrophages. Crit. Rev. Immunol. 2011, 31, 379–446. [Google Scholar] [CrossRef]
- Lebre, M.C.; van der Aar, A.M.; van Baarsen, L.; van Capel, T.M.; Schuitemaker, J.H.; Kapsenberg, M.L.; de Jong, E.C. Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9. J. Investig. Dermatol. 2007, 127, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.D.; Smythies, L.E.; Shen, R.; Greenwell-Wild, T.; Gliozzi, M.; Wahl, S.M. Intestinal macrophages and response to microbial encroachment. Mucosal Immunol. 2011, 4, 31–42. [Google Scholar] [CrossRef]
- Ayabe, T.; Satchell, D.P.; Wilson, C.L.; Parks, W.C.; Selsted, M.E.; Ouellette, A.J. Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat. Immunol. 2000, 1, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.J.; Ahn, S.W.; Hong, C.K.; Ro, B.I. Expressions of beta-defensins in human keratinocyte cell lines. J. Dermatol. Sci. 2001, 27, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Lewkowicz, P.; Lewkowicz, N.; Sasiak, A.; Tchorzewski, H. Lipopolysaccharide-activated CD4+CD25+ T regulatory cells inhibit neutrophil function and promote their apoptosis and death. J. Immunol. 2006, 177, 7155–7163. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Kobayashi, A.; Nishizawa, T.; Inagawa, H.; Morikawa, A.; Soma, G.; Mizuno, D. Homeostasis as regulated by activated macrophage. VI. Protective effect of LPSw (a lipopolysaccharide from wheat flour) against acute infection by Toxoplasma gondii in mice. Chem. Pharm. Bull 1992, 40, 1266–1267. [Google Scholar] [CrossRef] [PubMed]
- Fukasaka, M.; Asari, D.; Kiyotoh, E.; Okazaki, A.; Gomi, Y.; Tanimoto, T.; Takeuchi, O.; Akira, S.; Hori, M. A Lipopolysaccharide from Pantoea Agglomerans Is a Promising Adjuvant for Sublingual Vaccines to Induce Systemic and Mucosal Immune Responses in Mice via TLR4 Pathway. PLoS ONE 2015, 10, e0126849. [Google Scholar] [CrossRef] [PubMed]
- Braun-Fahrlander, C.; Riedler, J.; Herz, U.; Eder, W.; Waser, M.; Grize, L.; Maisch, S.; Carr, D.; Gerlach, F.; Bufe, A.; et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N. Engl. J Med. 2002, 347, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, S.; Oe, M.; Kamijyo, F.; Shimada, K.; Okuyama, Y.; Nishiyama, H.; Matsuoka, R.; Masuda, Y.; Kanemitsu, T.; Enomoto, T. Acetic Acid Bacteria (Gluconacetobacter hansenii GK-1) Relieves Nasal Discomforts—A Randomized Double-blinded Placebo-controlled Study. Jpn. Pharmacol. Ther. 2019, 47, 461–467. [Google Scholar]
- Kohchi, C.; Inagawa, H.; Nishizawa, T.; Yamaguchi, T.; Nagai, S.; Soma, G. Applications of lipopolysaccharide derived from Pantoea agglomerans (IP-PA1) for health care based on macrophage network theory. J. Biosci. Bioeng. 2006, 102, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Phipps, K.R.; Sulaiman, C.; Simon, R.; Holalagoudar, S.; Kohchi, C.; Nakata, Y. Subchronic (90-day) toxicity assessment of Somacy-FP100, a lipopolysaccharide-containing fermented wheat flour extract from Pantoea agglomerans. J. Appl. Toxicol. 2020, 40, 1342–1352. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011, 34, 637–650. [Google Scholar] [CrossRef] [PubMed]
- Caramalho, I.; Lopes-Carvalho, T.; Ostler, D.; Zelenay, S.; Haury, M.; Demengeot, J. Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J. Exp. Med. 2003, 197, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 627–638. [Google Scholar] [CrossRef]
- Nakata, K.; Taniguchi, Y.; Yoshioka, N.; Yoshida, A.; Inagawa, H.; Nakamoto, T.; Yoshimura, H.; Miyake, S.; Kohchi, C.; Kuroki, M.; et al. A mixture of Salacia oblonga extract and IP-PA1 reduces fasting plasma glucose (FPG) and low-density lipoprotein (LDL) cholesterol levels. Nutr. Res. Pract. 2011, 5, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Nakata, K.; Nakata, Y.; Inagawa, H.; Nakamoto, T.; Yoshimura, H.; Soma, G. Pantoea agglomerans lipopolysaccharide maintains bone density in premenopausal women: A randomized, double-blind, placebo-controlled trial. Food Sci. Nutr. 2014, 2, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Nakata, Y.; Kohchi, C.; Ogawa, K.; Nakamoto, T.; Yoshimura, H.; Soma, G.I. Effects of 3 months continuous intake of supplement containing Pantoea agglomerans LPS to maintain normal bloodstream in adults: Parallel double-blind randomized controlled study. Food Sci. Nutr. 2018, 6, 197–206. [Google Scholar] [CrossRef] [PubMed]
Placebo Food (/Tablet) | Test Food (/Tablet) | |
---|---|---|
Energy (kcal) | 1 | 1 |
Protein (g) | <0.1 | <0.1 |
Fat (g) | <0.1 | <0.1 |
Carbohydrates (g) | 0.2 | 0.2 |
Salt equivalent (g) | 0 | 0 |
Placebo Group (n = 15) Mean ± SD | LPS Group (n = 15) Mean ± SD | p-Value | |
---|---|---|---|
Male: Female (n) | 2:13 | 2:13 | |
Age (years) | 50.3 ± 9.3 | 47.8 ± 9.2 | 0.43 |
Smoking habitue (n) | 2 | 2 | |
Hay fever (n) | 8 | 5 |
Placebo Group (n = 15) Mean ± SE | LPS Group (n = 15) Mean ± SE | p-Value | |
---|---|---|---|
Number of people with symptoms (n) | 7 | 8 | |
Overall Score | 12.40 ± 6.49 | 20.20 ± 11.64 | 0.74 |
Runny nose | 0.93 ± 0.64 | 0.67 ± 0.37 | 0.51 |
Plugged nose | 1.40 ± 0.97 | 1.40 ± 1.33 | 1.00 |
Sneezing | 0.53 ± 0.41 | 2.13 ± 1.99 | 0.68 |
Sore throat | 0.47 ± 0.40 | 1.53 ± 0.86 | 0.31 |
Cough | 0.33 ± 0.27 | 7.80 ± 6.03 | 0.27 |
Hoarseness | 0.13 ± 0.09 | 2.33 ± 1.53 | 0.50 |
Head congestion | 4.73 ± 2.40 | 3.80 ± 2.37 | 0.68 |
Chest congestion | 0.93 ± 0.93 | 0.07 ± 0.07 | 0.96 |
Feeling tired | 2.93 ± 2.93 | 0.47 ± 0.29 | 0.34 |
(A) | |||
Placebo Group (n = 15) Mean ± SE | LPS Group (n = 15) Mean ± SE | p-Value | |
Number of people with symptoms (n) | 7 | 5 | |
Overall Score | 54.67 ± 22.55 | 9.27 ± 5.24 | 0.20 |
Nasal symptom score | 37.87 ± 18.29 | 6.07 ± 4.36 | 0.25 |
Runny nose | 15.13 ± 7.81 | 2.87 ± 2.18 | 0.52 |
Plugged nose | 13.00 ± 9.39 | 1.73 ± 1.42 | 0.20 |
Sneezing | 9.73 ± 4.61 | 1.47 ± 0.83 | 0.40 |
Eye symptom score (itchy eyes) | 16.8 ± 7.17 | 3.20 ± 2.20 | 0.13 |
(B) | |||
Placebo Group (n = 7) Mean ± SE | LPS Group (n = 5) Mean ± SE | p-Value | |
Overall Score | 117.14 ± 36.38 | 27.80 ± 12.63 | 0.04 |
Nasal symptom score | 81.14 ± 32.97 | 18.20 ± 12.00 | 0.12 |
Runny nose | 32.43 ± 14.54 | 8.60 ± 6.14 | 0.56 |
Plugged nose | 27.86 ± 19.29 | 5.20 ± 4.07 | 0.31 |
Sneezing | 20.86 ± 8.23 | 4.40 ± 2.01 | 0.21 |
Eye symptom score (itchy eyes) | 36.00 ± 11.91 | 9.60 ± 5.95 | 0.04 |
Change from Baseline | |||
---|---|---|---|
Placebo Group (n = 15) Mean ± SE | LPS Group (n = 15) Mean ± SE | p-Value | |
Phagocytosis (%) | −8.4 ± 2.7 | −8.5 ± 2.7 | 0.88 |
Change from Baseline | |||
---|---|---|---|
Placebo Group (n = 15) Mean ± SE | LPS Group (n = 15) Mean ± SE | p-Value | |
White blood cell | 40 ± 279 | 113 ± 247 | 0.74 |
Neutrophil | −30 ± 239 | 174 ± 253 | 0.37 |
Monocyte | 8 ± 12 | −12 ± 12 | 0.25 |
Lymphocyte | 48 ± 75 | −59 ± 108 | 0.55 |
T-cell | 37 ± 53 | −4 ± 88 | 0.65 |
CD4 T-cell | 48 ± 39 | 45 ± 52 | 1.00 |
CD8 T-cell | −12 ± 18 | −37 ± 30 | 0.66 |
CD8+CD28+ T-cell | −3 ± 14 | 9 ± 16 | 0.76 |
B cell | 19 ± 12 | −26 ± 18 | 0.06 |
NK cell | −14 ± 20 | −34 ± 13 | 0.59 |
Evaluation Item | Placebo Group (n = 15) LPS Group (n = 15) | Before Intake Mean ± SE | After 8 Weeks of Intake Mean ± SE | p-Value (before vs. after Ingestion) |
---|---|---|---|---|
White blood cell (×104/uL) | Placebo group | 4587 ± 263 | 4627 ± 288 | 0.98 |
LPS group | 4707 ± 453 | 4820 ± 379 | 0.68 | |
Red blood cell (×104/uL) | Placebo group | 441 ± 10 | 432 ± 11 | 0.34 |
LPS group | 450 ± 13 | 442 ± 13 | 0.80 | |
Hemoglobin (g/dL) | Placebo group | 13.0 ± 0.4 | 12.7 ± 0.4 | 0.21 |
LPS group | 13.3 ± 0.5 | 13.0 ± 0.5 | 0.65 | |
Hematocrit (%) | Placebo group | 40.2 ± 1 | 38.9 ± 0.9 | 0.18 |
LPS group | 40.9 ± 1.1 | 40.0 ± 1.1 | 0.51 | |
Platelets (×104/uL) | Placebo group | 26.0 ± 1.1 | 25.8 ± 1.1 | 0.92 |
LPS group | 25.5 ± 1.2 | 24.2 ± 1.1 | 0.42 | |
AST (GOT) (U/L) | Placebo group | 20.4 ± 1.4 | 18.6 ± 0.6 | 0.44 |
LPS group | 20.6 ± 1.1 | 19.1 ± 0.9 | 0.37 | |
ALT (GPT) (U/L) | Placebo group | 18.8 ± 2.5 | 16.3 ± 1.7 | 0.45 |
LPS group | 20.1 ± 2.4 | 17.1 ± 1.5 | 0.41 | |
Creatinine (mg/dL) | Placebo group | 0.633 ± 0.038 | 0.631 ± 0.038 | 0.85 |
LPS group | 0.612 ± 0.032 | 0.609 ± 0.031 | 0.98 | |
CRP (mg/dL) | Placebo group | 0.053 ± 0.009 | 0.047 ± 0.01 | 0.46 |
LPS group | 0.047 ± 0.008 | 0.066 ± 0.017 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kohchi, C.; Uehiro, M.; Yamashita, M.; Inagawa, H.; Soma, G.-I. Foods Containing Pantoea agglomerans LPS Reduce Eye-Nose Allergies—A Double-Blind, Placebo-Controlled, Randomized, Parallel-Group Comparative Pilot Study. Int. J. Transl. Med. 2023, 3, 299-309. https://doi.org/10.3390/ijtm3030021
Kohchi C, Uehiro M, Yamashita M, Inagawa H, Soma G-I. Foods Containing Pantoea agglomerans LPS Reduce Eye-Nose Allergies—A Double-Blind, Placebo-Controlled, Randomized, Parallel-Group Comparative Pilot Study. International Journal of Translational Medicine. 2023; 3(3):299-309. https://doi.org/10.3390/ijtm3030021
Chicago/Turabian StyleKohchi, Chie, Miyuki Uehiro, Masashi Yamashita, Hiroyuki Inagawa, and Gen-Ichiro Soma. 2023. "Foods Containing Pantoea agglomerans LPS Reduce Eye-Nose Allergies—A Double-Blind, Placebo-Controlled, Randomized, Parallel-Group Comparative Pilot Study" International Journal of Translational Medicine 3, no. 3: 299-309. https://doi.org/10.3390/ijtm3030021
APA StyleKohchi, C., Uehiro, M., Yamashita, M., Inagawa, H., & Soma, G.-I. (2023). Foods Containing Pantoea agglomerans LPS Reduce Eye-Nose Allergies—A Double-Blind, Placebo-Controlled, Randomized, Parallel-Group Comparative Pilot Study. International Journal of Translational Medicine, 3(3), 299-309. https://doi.org/10.3390/ijtm3030021