Exploring the Role of Polystyrene Microplastics in Cu Binding in Sea Surface Waters: An Experimental Perspective for Future Research
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up and Sampling
2.2. Analyses
2.2.1. Copper-Complexing Capacity (LT)
2.2.2. Dissolved Copper (Cu-D)
2.3. SML Enrichment Factors (EF)
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wurl, O.; Miller, L.; Rottgers, R.; Vagle, S. The distribution and fate of surface-active substances in the sea-surface microlayer and water column. Mar. Chem. 2009, 115, 1–9. [Google Scholar] [CrossRef]
- Liss, P.S.; Duce, R.A. The Sea Surface and the Global Change; Cambridge University Press: Cambridge, UK, 1997; p. 509. [Google Scholar] [CrossRef]
- Wurl, O.; Obbard, J.P.A. Review of pollutants in the sea-surface microlayer (SML): A unique habitat for marine organisms. Mar. Pollut. Bull. 2004, 48, 1016–1030. [Google Scholar] [CrossRef]
- Wurl, O.; Karuppiah, S.; Obbard, J.P. The role of the sea-surface microlayer in the air–sea gas exchange of organochlorine compounds. Sci. Total Environ. 2006, 369, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Wurl, O.; Holmes, M. The gelatinous nature of the sea-surface microlayer. Mar. Chem. 2008, 110, 89–97. [Google Scholar] [CrossRef]
- Agusti, S.; Regaudie-de-Gioux, A.; Arrieta, J.M.; Duarte, C.M. Consequences of UV-enhanced community respiration for plankton metabolic balance. Limnol. Oceanogr. 2014, 59, 223–232. [Google Scholar] [CrossRef]
- Obernosterer, I.; Catala, P.; Lami, R.; Caparros, J.; Ras, J.; Bricaud, A.; Dupu, C.; van Wambeke, F.; Lebaron, P. Biochemical characteristics and bacterial community structure of the sea surface mircrolayer in the South Pacific Ocean. Biogeosciences 2008, 5, 693–705. [Google Scholar] [CrossRef]
- Mustaffa, N.I.H.; Ribas-Ribas, M.; Wurl, O. High-resolution variability of the enrichment of fluorescence dissolved organic matter in the sea surface microlayer of an upwelling region. Elem. Sci. Anthr. 2017, 5, 52. [Google Scholar] [CrossRef]
- Cunliffe, M.; Engel, A.; Frka, S.; Gasparovic, B.; Guitart, C.; Murell, C.; Salter, M.; Stolle, C.; Upstill-Goddard, R.; Wurl, O. Sea surface microlayers: A unified physicochemical and biological perspective of the air–ocean interface. Prog. Oceanogr. 2013, 109, 104–116. [Google Scholar] [CrossRef]
- Tzempelikou, E.; Zeri, C.; Pitta, E.; Assimakopoulou, G.; Pavlidou, A.; Rousselaki, E. Temporal dynamics of transparent exopolymer particles in surface waters and sea surface microlayer in the coastal Eastern Mediterranean Sea. Reg. Stud. Mar. Sci. 2025, 85, 104163. [Google Scholar] [CrossRef]
- Dreshchinskii, A.; Engel, A. Seasonal variations of the sea surface microlayer at the Boknis Eck times series station (Baltic Sea). J. Plankton Res. 2017, 39, 943–961. [Google Scholar] [CrossRef]
- Passow, U. Formation of transparent exopolymer particles, TEP, from dissolved precursor material. Mar. Ecol. Prog. Ser. 2000, 192, 1–11. [Google Scholar] [CrossRef]
- Passow, U. Transparent exopolymer particles (TEP) in aquatic environments. Prog. Oceanogr. 2002, 55, 287–333. [Google Scholar] [CrossRef]
- Thornton, D.C.O.; Brooks, S.D.; Chen, J. Protein and Carbohydrate Exopolymer Particles in the Sea Surface Microlayer (SML). Front. Mar. Sci. 2016, 3, 135. [Google Scholar] [CrossRef]
- Thornton, D.C.O. Coomassie Stainable Particles (CSP): Protein Containing Exopolymer Particles in the Ocean. Front. Mar. Sci. 2018, 5, 206. [Google Scholar] [CrossRef]
- Duce, R.A.; Quinn, J.G.; Wade, T.L. Enrichment of Heavy Metals and Organic Compounds in the Surface Microlayer of Narragansett Bay, Rhode Island. Science 1972, 176, 161–163. [Google Scholar] [CrossRef]
- Plavšić, M.; Gašparović, B.; Ćosović, B. Copper complexation and surfactant activity of organic matter in coastal seawater and surface microlayer samples from North Norwegian Fjords and NW Mediterranean region. Fresenius Environ. Bull. 2007, 16, 372–378. [Google Scholar]
- Karavoltsos, S.; Kalambokis, E.; Sakellari, A.; Plavšić, M.; Dotsika, E.; Karalis, C.; Leondiadis, L.; Dassenakis, M.; Scoullos, M. Organic matter characterization and copper complexing capacity in thesea surface microlayer of coastal areas of the Eastern Mediterranean. Mar. Chem. 2015, 173, 234–243. [Google Scholar] [CrossRef]
- Karavoltsos, S.; Sakellari, A.; Dassenakis, M.; Bakeas, E.; Scoullos, M. Trace metals in the marine surface microlayer of coastal areas in the Aegean Sea, Eastern Mediterranean. Estuar. Coastal Shelf Sci. 2021, 259, 107462. [Google Scholar] [CrossRef]
- Karavoltsos, S.; Sakellari, A.; Plavšić, M.; Bekiaris, G.; Tagkouli, D.; Triantafyllidis, A.; Giannakourou, A.; Zervoudaki, S.; Gkikopoulos, I.; Kalogeropoulos, N. Metal complexation, FT-IR characterization, and plankton abundance in the marine surface microlayer of coastal areas in the Eastern Mediterranean. Front. Mar. Sci. 2022, 9, 932446. [Google Scholar] [CrossRef]
- Tovar-Sánchez, A.; González-Ortegón, E.; Duarte, C.M. Trace metal partitioning in the top meter of the ocean. Sci. Total Environ. 2019, 652, 907–914. [Google Scholar] [CrossRef]
- Tovar-Sánchez, A.; Rodríguez-Romero, A.; Engel, A.; Zäncker, B.; Fu, F.; Marañón, E.; Pérez-Lorenzo, M.; Bressac, M.; Wagener, T.; Desboeuf, K.; et al. Characterising the surface microlayer in the Mediterranean Sea:trace metals concentration and microbial plankton abundance. Biogeosciences 2020, 17, 2349–2369. [Google Scholar] [CrossRef]
- Wu, C.; Tanaka, K.; Tani, Y.; Bi, X.; Liu, J.; Yu, Q. Effect of particle size on the colonization of biofilms and the potential of biofilm-covered microplastics as metal carriers. Sci. Total Environ. 2022, 821, 153265. [Google Scholar] [CrossRef]
- Moffett, J.W.; Brand, L.E. Production of strong, extracellular Cu chelators by marine cyanobacteria in response to Cu stress. Limnol. Oceanogr. 1996, 41, 388–395. [Google Scholar] [CrossRef]
- Ruacho, A.; Richon, C.; Whitby, H.; Bundy, R.M. Sources, sinks, and cycling of dissolved organic copper binding ligands in the ocean. Commun Earth Environ. 2022, 3, 263. [Google Scholar] [CrossRef]
- Bruland, K.W.; Donut, J.R.; Hutchins, D.A. Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnol. Oceanogr. 1991, 36, 1555–1577. [Google Scholar] [CrossRef]
- Plavšić, M.; Krznarić, D.; Branica, M. Determination of the apparent copper complexing capacity of seawater by DPASV. Mar. Chem. 1982, 11, 17–31. [Google Scholar] [CrossRef]
- Niyogi, S.; Wood, C.M. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ. Sci. Technol. 2004, 38, 6177–6192. [Google Scholar] [CrossRef]
- Song, Y.K.; Hong, S.H.; Jang, M.; Kang, J.H.; Kwon, O.Y.; Han, G.M.; Shim, W.J. Large accumulation of micro-sized synthetic polymer particles in the sea surface microlayer. Environ. Sci. Technol. 2014, 48, 9014–9021. [Google Scholar] [CrossRef]
- Chae, D.H.; Kim, I.S.; Kim, S.K.; Song, Y.K.; Shim, W.J. Abundance and Distribution Characteristics of Microplastics in Surface Seawaters of the Incheon/Kyeonggi Coastal Region. Arch. Environ. Contam. Toxicol. 2015, 69, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Anderson, Z.T.; Cundy, A.B.; Croudace, I.W.; Warwick, P.E.; Celis-Hernandez, O.; Stead, J.L. A rapid method for assessing the accumulation of microplastics in the sea surface microlayer (SML) of estuarine systems. Sci. Rep. 2018, 8, 9428. [Google Scholar] [CrossRef]
- Adamopoulou, A.; Zeri, C.; Garaventa, F.; Gambardella, C.; Ioakeimidis, C.; Pitta, E. Distribution patterns of floating microplastics in open and coastal waters of the eastern Mediterranean Sea (Ionian, Aegean, and levantine Seas). Front. Mar. Sci. 2021, 8, 699000. [Google Scholar] [CrossRef]
- Morici, E.; Cammilleri, G.; Scirè, S.; Bonomo, F.P.; Trancina, L.; Terracina, F.; Galluzzo, P.; Ferrantelli, V.; Monteverde, V.P.; Galluzo, F.G.; et al. Survey on the presence of floating microplastics, trace metals and metalloids in seawater from Southern Italy to the United States of America. Ecotoxicol. Environ. Saf. 2025, 290, 117507. [Google Scholar] [CrossRef] [PubMed]
- Zettler, E.R.; Mincer, T.J.; Amaral-Zettler, L.A. Life in the “Plastisphere”: Microbial Communities on Plastic Marine Debris. Environ. Sci. Technol. 2013, 7, 7137–7146. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gómez, J.C.; Garrigós, M.; Garrigós, J. Plastic as a Vector of Dispersion for Marine Species with Invasive Potential. A Review. Front. Ecol. Evol. 2021, 9, 629756. [Google Scholar] [CrossRef]
- Romera-Castillo, C.; Pinto, M.; Langer, T.M.; Álvarez-Salgado, X.A.; Herndl, G.J. Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nat. Commun. 2018, 9, 1430. [Google Scholar] [CrossRef]
- Galgani, L.; Engel, A.; Rossi, C.; Donati, A.; Loiselle, S.A. Polystyrene microplastics increase microbial release of marine chromophoric dissolved organic matter in microcosm experiments. Sci. Rep. 2018, 8, 14635. [Google Scholar] [CrossRef]
- Galgani, L.; Loiselle, S.A. Plastic pollution impacts on marine carbon biogeochemistry. Environ. Pollut. 2021, 268, 115598. [Google Scholar] [CrossRef]
- Galgani, L.; Tsapakis, M.; Pitta, P.; Tsiola, A.; Tzempelikou, E.; Kalantzi, I.; Esposito, C.; Loiselle, A.; Tsotskou, A.; Zivanovic, S.; et al. Microplastics increase the marine production of particulate forms of organic matter. Environ. Res. Lett. 2019, 14, 124085. [Google Scholar] [CrossRef]
- Galgani, L.; Tzempelikou, E.; Kalantzi, I.; Tsiola, A.; Tsapakis, M.; Pitta, P.; Esposito, C.; Tsotskou, A.; Magiopoulos, I.; Benavides, R.; et al. Marine plastics alter the organic matter composition of the air-sea boundary layer, with influences on CO2 exchange: A large-scale analysis method to explore future ocean scenarios. Sci. Total Environ. 2023, 857, 159624. [Google Scholar] [CrossRef]
- Galgani, L.; Goßmann, I.; Scholz-Böttcher, B.; Jiang, X.; Liu, Z.; Scheidemann, L.; Cathleen Schlundt, C.; Engel, A. Hitchhiking into the Deep: How Microplastic Particles are Exported through the Biological Carbon Pump in the North Atlantic Ocean. Environ. Sci. Technol. 2022, 56, 15638–15649. [Google Scholar] [CrossRef]
- Godoy, V.; Blazquez, G.; Calero, M.; Quesada, L.; Martín-Lara, M.A. The potential of microplastics as carriers of metals. Environ. Pollut. 2019, 255, 113363. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Xhu, X.; Xu, H.; Chen, F.; Ma, J.; Pan, K. Copper Adsorption to Microplastics and Natural Particles in Seawater: A Comparison of Kinetics, Isotherms, and Bioavailability. Environ. Sci. Technol. 2021, 55, 13923–13931. [Google Scholar] [CrossRef]
- Cong, Y.; Lou, Y.; Zhao, H.; Li, Z.; Zhang, M.; Jin, F.; Wang, Y.; Wang, J. Polystyrene microplastics alter bioaccumulation, and physiological and histopathological toxicities of cadmium in the polychaete Perinereisaibuhitensis. Front. Mar. Sci. Sec. Mar. Biotecnol. Bioprod. 2022, 9, 939530. [Google Scholar] [CrossRef]
- Squadrone, S.; Pederiva, S.; Bezzo, T.; Sartor, R.M.; Battuello, M.; Nurra, N.; Griglione, A.; Brizio, P.; Abete, M.C. Microplastics as vectors of metals contamination in Mediterranean Sea. Environ. Sci. Pollut. Res. 2022, 29, 29529–29534. [Google Scholar] [CrossRef]
- Wang, O.; Wangjin, X.; Zhang, Y.; Wang, N.; Wang, Y.; Meng, G.; Yihua Chen, Y. The toxicity of virgin and UV-aged PVC microplastics on the growth of freshwater algae Chlamydomonas reinhardtii. Sci. Total Environ. 2020, 749, 41603. [Google Scholar] [CrossRef]
- Gao, F.; Li, J.; Sun, C.; Zhang, L.; Jiang, F.; Cao, W.; Zheng, L. Study on the capability and characteristics of heavy metals enriched on microplastics in marine environment. Mar. Pollut. Bull. 2019, 144, 61–67. [Google Scholar] [CrossRef]
- Tang, S.; Lin, L.; Wang, X.; Yu, A.; Sun, X. Interfacial interactions between collected nylon microplastics and three divalent metal ions (Cu(II), Ni(II), Zn(II)) in aqueous solutions. J. Hazard Mater. 2021, 403, 123548. [Google Scholar] [CrossRef]
- Liu, S.; Huanga, J.; Zhang, W.; Shi, L.; Yi, K.; Yu, H.; Zhang, C.; Li, S.; Li, J. Microplastics as a vehicle of heavy metals in aquatic environments: A review of adsorption factors, mechanisms, and biological effects. J. Environ. Manag. 2022, 302, 113995. [Google Scholar] [CrossRef]
- Holmes, L.A.; Turner, A.; Thompson, R.C. Adsorption of trace metals to plastic resin pellets in the marine environment. Environ. Pollut. 2012, 160, 42–48. [Google Scholar] [CrossRef]
- Holmes, L.A.; Turner, A.; Thompson, R.C. Interactions between trace metals and plastic production pellets under estuarine conditions. Mar. Chem. 2014, 167, 25–32. [Google Scholar] [CrossRef]
- Ashton, K.; Holmes, L.; Turner, A. Association of metals with plastic production pellets in the marine environment. Mar. Pollut. Bull. 2010, 60, 2050–2055. [Google Scholar] [CrossRef]
- Brennecke, D.; Duarte, B.; Paiva, F.; Caçador, I.; Canning-Clode, J. Microplastics as vector for heavy metal contamination from the marine environment. Estuar. Coastal Shelf Sci. 2016, 178, 189–195. [Google Scholar] [CrossRef]
- Guan, J.; Qi, K.; Wang, J.; Wang, W.; Wang, Z.; Lu, N.; Qu, J. Microplastics as an emerging anthropogenic vector of trace metals in freshwater: Significance of biofilms and comparison with natural substrates. Water Res. 2020, 184, 116205. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Fu, D.; Zhao, J.; Wu, W.; Wang, Z.; Su, Y.; Peng, L. Microplastics aged in various environmental media exhibited strong sorption to heavy metals in seawater. Mar. Pollut. Bull. 2021, 169, 112480. [Google Scholar] [CrossRef]
- Chu, X.; Zhao, P.; Tian, Y.; An, R.; Jiang, M.; Zhao, W.; Guo, H. Interfacial interactions between colloidal polystyrene microplastics and Cu in aqueous solution and saturated porous media: Model fitting and mechanism analysis. J. Environ. Manag. 2024, 370, 122741. [Google Scholar] [CrossRef]
- Bhaumik, S.; Chakraborty, P. Interactions between microplastics (MPs) and trace/toxic metals in marine environments: Implications and insights—A comprehensive review. Environ. Sci. Pollut. Res. 2024, 31, 59681–59699. [Google Scholar] [CrossRef]
- Flemming, H.; Wingender, J.; Szewzyk, U.; Steinberg, P.D.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef]
- Seviour, T.; Derlon, N.; Dueholm, M.S.; Flemming, H.-C.; Girbal-Neuhauser, E.; Horn, H.; Kjelleberg, S.; van Loosdrecht, M.C.M.; Lotti, T.; Malpei, M.F.; et al. Extracellular polymeric substances of biofilms: Suffering from an identity crisis. Water Res. 2019, 151, 1–7. [Google Scholar] [CrossRef]
- Hamelin, S.; Amyot, M.; Barkay, T.; Wang, Y.; Planas, D. Methanogens: Principal Methylators of Mercury in Lake Periphyton. Environ. Sci. Technol. 2011, 45, 7693–7700. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Y.P.; Zhang, S.; Li, P.; Wang, P.; Wang, C. Sorption removal of phthalate esters and bisphenols to biofilms from urban river: From macroscopic to microcosmic investigation. Water Res. 2019, 150, 261–270. [Google Scholar] [CrossRef]
- Harvey, G.W.; Burzell, L.A. A simple microlayer method for small samples. Limnol. Oceanogr. 1972, 17, 156–157. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, L.; Wu, Z.; Li, J.; Ding, H. Physicochemical Studies of the Sea Surface Microlayer. I. Thickness of the Sea Surface Microlayer and Its Experimental Determination. J. Colloid Interface Sci. 1998, 204, 294–299. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Liu, L.S.; Liu, C.Y.; Cai, W.J. Studies on the sea surface microlayer—II. The layer of sudden change of physical and chemical properties. J. Colloid Interface Sci. 2003, 264, 148–159. [Google Scholar] [CrossRef]
- EPA. EPA Method 1669: Sampling Ambient Water for Trace Metals EPA Water Quality Critial Levels; EPA: Washington, DC, USA, 1996. [Google Scholar]
- Louis, Y.; Garnier, C.; Lenoble, V.; Mounier, S.; Cukrov, N.; Omanović, D.; Pižeta, I. Kinetic and equilibrium studies of copper-dissolved organic matter complexation in water column of the stratified Krka River estuary (Croatia). Mar. Chem. 2009, 114, 110–119. [Google Scholar] [CrossRef]
- Omanović, D.; Garnier, C.; Louis, Y.; Lenoble, V.; Mounier, S.; Pižeta, I. Significance of data treatment and experimental setup on the determination of copper complexing parameters by anodic stripping voltammetry. Anal. Chim. Acta. 2010, 664, 136–143. [Google Scholar] [CrossRef]
- Muller, F.L.L.; Kester, D.R. Voltammetric determination of the complexation parameters of zinc in marine and estuarine waters. Mar. Chem. 1991, 33, 71–90. [Google Scholar] [CrossRef]
- Ružić, I. Theoretical aspects of the direct titration of natural waters and its information yield for trace metal speciation. Anal. Chim. Acta. 1982, 140, 99–113. [Google Scholar] [CrossRef]
- Van den Berg, C.M.G. Determination of copper complexation with natural organic ligands in seawater by equilibration with MnO2: II. Experimental procedures and application to surface seawater. Mar. Chem. 1982, 11, 323–342. [Google Scholar] [CrossRef]
- Willie, S.N.; Iida, Y.; McLaren, J.W. Determination of Cu, Ni, Zn, Mn, Co, Pb, Cd and V in seawater using flow-injection ICP-MS. Atom. Spectrosc. 1998, 19, 67–72. [Google Scholar]
- Milne, A.; Landing, W.; Bizimis, M.; Morton, P. Determination of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb in seawater using high resolution magnetic sector inductively coupled mass spectrometry (HR-ICP-MS). Anal. Chim. Acta. 2010, 665, 200–207. [Google Scholar] [CrossRef]
- Hardy, J.T. The sea surface microlayer: Biology, chemistry and anthropogenic enrichment. Prog. Oceanogr. 1982, 11, 307–328. [Google Scholar] [CrossRef]
- Hunter, K.A. Chemistry of the sea-surface microlayer. In The Sea Surface and Global Change; Liss, P.S., Duce, R.A., Eds.; Cambridge University Press: Cambridge, UK, 1996; p. 287. [Google Scholar]
- Hunter, K.A.; Liss, P.S. Principles and problems of modeling cation enrichment at natural air–water interfaces. In Atmospheric Pollutants in Natural Waters; Eisenreich, S.J., Ed.; Ann Arbor Press: Ann Arbor, MI, USA, 1981; p. 99. [Google Scholar]
- Wells, M.L.; Goldberd, E.D. Occurrence of small colloids in sea water. Nature 1991, 353, 342–344. [Google Scholar] [CrossRef]
- Benner, R.; Paluski, J.D.; McCarthy, M.; Hedges, J.I.; Hatcher, P.G. Bulk chemical characteristics of dissolved organic matter in the ocean. Science 1992, 255, 1561–1564. [Google Scholar] [CrossRef]
- Wells, M.L.; Kozelka, P.B.; Bruland, K.W. The complexation of ‘dissolved’ Cu, Zn, Cd and Pb by soluble or colloidal organic matter in Narragansett Bay, RI. Mar. Chem. 1998, 62, 203–217. [Google Scholar] [CrossRef]
- Mari, X.; Migon, C.; Nicolas, E. Reactivity of transparent exopolymeric particles: A key parameter of trace metal cycling in the lagoon of Nouméa, New Caledonia. Mar. Pollut. Bull. 2009, 58, 1874–1879. [Google Scholar] [CrossRef]
- Mari, X.; Rochelle-Newall, E.; Torréton, J.-P.; Pringault, O.; Jouon, A.; Migon, C. Water residence time: A regulatory factor of the DOM to POM transfer efficiency. Limnol. Oceanogr. Bull. 2007, 52, 808–819. [Google Scholar] [CrossRef]
- Narwal, N.; Kakakhel, M.A.; Katyal, D.; Yadav, S.; Rose, P.K.; Rene, E.R.; Rakib, R.J.; Khoo, K.S.; Kataria, N. Interactions between microplastic and heavy metals in the aquatic environment: Implications for toxicity and mitigation strategies. Water Air Soil Pollut. 2024, 235, 567. [Google Scholar] [CrossRef]
- Cheng, X.; Xu, W.; Wang, N.; Mu, Y.; Zhu, J.; Luo, J. Adsorption of Cu2+ and mechanism by natural biofilm. Water Sci. Technol. 2018, 78, 721–731. [Google Scholar] [CrossRef]
- Mincer, T.J.; Zettler, E.R.; Amaral-Zettler, L.A. Biofilms on Plastic Debris and Their Influence on Marine Nutrient Cycling, Productivity, and Hazardous Chemical Mobility. In Hazardous Chemicals Associated with Plastics in the Marine Environment; Takada, H., Karapanagioti, H.K., Eds.; The Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2016; Volume 78. [Google Scholar] [CrossRef]
- Richon, C.; Tagliabue, A. Insights into the major processes driving the global distribution of copper in the ocean from a global model. Glob. Biogeochem. Cycles 2019, 33, 1594–1610. [Google Scholar] [CrossRef] [PubMed]
- Kong, L. Copper Requirement and Acquisition by Marine Microalgae. Microorganisms 2022, 10, 1853. [Google Scholar] [CrossRef]
Parameter | Treatments a | Time b | Treatments × Time | ||||
---|---|---|---|---|---|---|---|
ANOVA F | p c | ANOVA F | p | ANOVA F | p | ||
Cu-D | SML | F(1, 28) = 30.12 | <0.001 | F(6, 28) = 7374 | <0.001 | F(6,28) = 673.95 | <0.001 |
Cu-D | ULW | F(1, 28) = 1824 | <0.001 | F(6, 28) = 5602 | <0.001 | F(6, 28) = 201.18 | <0.001 |
EF Cu-D | F(2, 28) = 207.50 | <0.001 | F(6, 28) = 630.20 | <0.001 | F(6, 28) = 117.70 | <0.001 | |
LT | SML | F(1, 28) = 17.47 | 0.001 | F(6, 28) = 20.02 | <0.001 | F(6, 28) = 25.27 | <0.001 |
LT | ULW | F(1, 28) = 50.97 | 0.001 | F(6, 28) = 12.96 | 0.007 | F(6, 28) = 12.10 | 0.008 |
EF LT | F(2, 28) = 64.00 | <0.001 | F(6, 28) = 48.25 | <0.001 | F(6, 28) = 42.25 | <0.001 | |
TEP d | SML | F(1, 28) = 4.20 | 0.049 | F(6, 28) = 3.75 | 0.007 | F(6, 28) = 1.45 | 0.231 |
TEP | ULW | F(1, 28) = 21.60 | <0.001 | F(6, 28) = 13.48 | <0.001 | F(6, 28) = 6.56 | <0.001 |
EF TEP | F(1, 28) = 2.60 | 0.118 | F(6, 28) = 6.32 | <0.001 | F(6, 28) = 3.60 | 0.009 |
Day | logK′ | |||
---|---|---|---|---|
SML | ULW | |||
Control | MP | Control | MP | |
0 | 8.4 ± 0.1 | 8.2 ± 0.1 | 6.7 ± 0.1 | 6.9 ± 0.1 |
1 | 6.8 ± 0.1 | 7.6 ± 0.1 | 6.8 ± 0.1 | 6.8 ± 0.1 |
3 | 8.6 ± 0.2 | 8.3 ± 0.2 | 6.6 ± 0.1 | 7.0 ± 0.1 |
5 | 8.1 ± 0.2 | 9.0 ± 0.2 | 7.0 ± 0.1 | 7.0 ± 0.01 |
7 | 7.8 ± 0.1 | 8.2 ± 0.2 | 7.3 ± 0.2 | 6.8 ± 0.1 |
9 | 7.2 ± 0.3 | 8.0 ± 0.2 | 7.5 ± 0.1 | 7.0 ± 0.04 |
10 | 8.0 ± 0.4 | 7.6 ± 0.1 | 7.0 ± 0.1 | 7.3 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzempelikou, E.; Galgani, L.; Zeri, C.; Karavoltsos, S.; Iliakis, S.; Kalantzi, I.; Sakellari, A.; Tsapakis, M. Exploring the Role of Polystyrene Microplastics in Cu Binding in Sea Surface Waters: An Experimental Perspective for Future Research. Microplastics 2025, 4, 66. https://doi.org/10.3390/microplastics4040066
Tzempelikou E, Galgani L, Zeri C, Karavoltsos S, Iliakis S, Kalantzi I, Sakellari A, Tsapakis M. Exploring the Role of Polystyrene Microplastics in Cu Binding in Sea Surface Waters: An Experimental Perspective for Future Research. Microplastics. 2025; 4(4):66. https://doi.org/10.3390/microplastics4040066
Chicago/Turabian StyleTzempelikou, Eleni, Luisa Galgani, Christina Zeri, Sotirios Karavoltsos, Stylianos Iliakis, Ioanna Kalantzi, Aikaterini Sakellari, and Manolis Tsapakis. 2025. "Exploring the Role of Polystyrene Microplastics in Cu Binding in Sea Surface Waters: An Experimental Perspective for Future Research" Microplastics 4, no. 4: 66. https://doi.org/10.3390/microplastics4040066
APA StyleTzempelikou, E., Galgani, L., Zeri, C., Karavoltsos, S., Iliakis, S., Kalantzi, I., Sakellari, A., & Tsapakis, M. (2025). Exploring the Role of Polystyrene Microplastics in Cu Binding in Sea Surface Waters: An Experimental Perspective for Future Research. Microplastics, 4(4), 66. https://doi.org/10.3390/microplastics4040066