Cross-Sectional Distribution of Microplastics in the Rhine River, Germany—A Mass-Based Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. MP Sampling
2.2.1. Depth-Distributed Sampling with 300 µm Filter Nets
2.2.2. Near-Surface Sampling with a Filter Cascade
2.3. Sample Collection
2.4. Sample Processing and Analysis
2.5. Analysis of MP Concentration (10 µm–25 mm)
2.6. Analysis of Depth-Distribution of MPs (300 µm–25 mm)
2.7. Analysis of Lateral and Discharge-Dependent Variability (10 µm–25 mm)
3. Results and Discussion
3.1. MP Concentration Ranges
3.2. Vertical Gradients
3.3. Lateral and Discharge-Dependent Variability
3.4. Limitations
3.5. Implications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MP | microplastic |
PE | Polyethylene |
PP | Polypropylene |
PS | Polystyrene |
PMMA | Polymethylmethacrylate |
PA | Polyamide |
PU | Polyurethane |
PVC | Polyvinyl chloride |
PET | Polyethylene terepthalate |
NQ | Low discharge |
MQ | Mean-flow |
HQ | Flood discharge |
Pyr-GC-MS | Pyrolysis gas chromatography coupled with mass spectrometry |
References
- Wang, Z.; Zhang, Y.; Kang, S.; Yang, L.; Shi, H.; Tripathee, L.; Gao, T. Research progresses of microplastic pollution in freshwater systems. Sci. Total Environ. 2021, 795, 148888. [Google Scholar] [CrossRef] [PubMed]
- Petersen, F.; Hubbart, J.A. The occurrence and transport of microplastics: The state of the science. Sci. Total Environ. 2021, 758, 143936. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, P.; Verma, A.; Jha, P.K.; Singh, P.; Gupta, P.K.; Chandra, R.; Prasad, P.V.V. Effect of Physical Characteristics and Hydrodynamic Conditions on Transport and Deposition of Microplastics in Riverine Ecosystem. Water 2021, 13, 2710. [Google Scholar] [CrossRef]
- Wagner, M.; Scherer, C.; Alvarez-Munoz, D.; Brennholt, N.; Bourrain, X.; Buchinger, S.; Fries, E.; Grosbois, C.; Klasmeier, J.; Marti, T.; et al. Microplastics in freshwater ecosystems: What we know and what we need to know. Environ. Sci. Eur. 2014, 26, 12. [Google Scholar] [CrossRef]
- Hamm, T.; Lorenz, C.; Piehl, S. Microplastics in Aquatic Systems—Monitoring Methods and Biological Consequences; Springer: Cham, Switzerland, 2018; pp. 179–195. [Google Scholar]
- Frei, S.; Piehl, S.; Gilfedder, B.S.; Loder, M.G.J.; Krutzke, J.; Wilhelm, L.; Laforsch, C. Occurence of microplastics in the hyporheic zone of rivers. Sci. Rep. 2019, 9, 15256. [Google Scholar] [CrossRef]
- Rodrigues, S.M.; Almeida, C.M.R.; Silva, D.; Cunha, J.; Antunes, C.; Freitas, V.; Ramos, S. Microplastic contamination in an urban estuary: Abundance and distribution of microplastics and fish larvae in the Douro estuary. Sci. Total Environ. 2019, 659, 1071–1081. [Google Scholar] [CrossRef]
- Yan, M.; Wang, L.; Dai, Y.; Sun, H.; Liu, C. Behavior of Microplastics in Inland Waters: Aggregation, Settlement, and Transport. Bull. Environ. Contam. Toxicol. 2021, 107, 700–709. [Google Scholar] [CrossRef]
- Talbot, R.; Chang, H. Microplastics in freshwater: A global review of factors affecting spatial and temporal variations. Environ. Pollut. 2022, 292, 118393. [Google Scholar] [CrossRef]
- Waldschläger, K.; Brückner, M.Z.M.; Carney Almroth, B.; Hackney, C.R.; Adyel, T.M.; Alimi, O.S.; Belontz, S.L.; Cowger, W.; Doyle, D.; Gray, A.; et al. Learning from natural sediments to tackle microplastics challenges: A multidisciplinary perspective. Earth-Sci. Rev. 2022, 228. [Google Scholar] [CrossRef]
- Bai, M.; Lin, Y.; Hurley, R.R.; Zhu, L.; Li, D. Controlling Factors of Microplastic Riverine Flux and Implications for Reliable Monitoring Strategy. Environ. Sci. Technol. 2022, 56, 48–61. [Google Scholar] [CrossRef]
- de Carvalho, A.R.; Riem-Galliano, L.; Ter Halle, A.; Cucherousset, J. Interactive effect of urbanization and flood in modulating microplastic pollution in rivers. Environ. Pollut. 2022, 309, 119760. [Google Scholar] [CrossRef]
- Pessenlehner, S.; Gmeiner, P.; Habersack, H.; Liedermann, M. Understanding the spatio-temporal behaviour of riverine plastic transport and its significance for flux determination: Insights from direct measurements in the Austrian Danube River. Front. Earth Sci. 2024, 12, 1426158. [Google Scholar] [CrossRef]
- Eo, S.; Hong, S.H.; Song, Y.K.; Han, G.M.; Shim, W.J. Spatiotemporal distribution and annual load of microplastics in the Nakdong River, South Korea. Water Res. 2019, 160, 228–237. [Google Scholar] [CrossRef]
- Cowger, W.; Gray, A.B.; Guilinger, J.J.; Fong, B.; Waldschlager, K. Concentration Depth Profiles of Microplastic Particles in River Flow and Implications for Surface Sampling. Environ. Sci. Technol. 2021, 55, 6032–6041. [Google Scholar] [CrossRef]
- Kiss, T.; Gönczy, S.; Nagy, T.; Mesaroš, M.; Balla, A. Deposition and Mobilization of Microplastics in a Low-Energy Fluvial Environment from a Geomorphological Perspective. Appl. Sci. 2022, 12, 4367. [Google Scholar] [CrossRef]
- Range, D.; Scherer, C.; Stock, F.; Ternes, T.A.; Hoffmann, T.O. Hydro-geomorphic perspectives on microplastic distribution in freshwater river systems: A critical review. Water Res. 2023, 245, 120567. [Google Scholar] [CrossRef]
- Slabon, A.; Terweh, S.; Hoffmann, T.O. Vertical and Lateral Variability of Suspended Sediment Transport in the Rhine River. Hydrol. Process. 2025, 39, e70070. [Google Scholar] [CrossRef]
- Slabon, A.; Hoffmann, T. Vertical and lateral variability of suspended sediment in crosssections at the river Rhine. In Proceedings of the EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022. [Google Scholar]
- Liedermann, M.; Gmeiner, P.; Pessenlehner, S.; Haimann, M.; Hohenblum, P.; Habersack, H. A Methodology for Measuring Microplastic Transport in Large or Medium Rivers. Water 2018, 10, 414. [Google Scholar] [CrossRef]
- Lenaker, P.L.; Baldwin, A.K.; Corsi, S.R.; Mason, S.A.; Reneau, P.C.; Scott, J.W. Vertical Distribution of Microplastics in the Water Column and Surficial Sediment from the Milwaukee River Basin to Lake Michigan. Environ. Sci. Technol. 2019, 53, 12227–12237. [Google Scholar] [CrossRef]
- Pasquier, G.; Doyen, P.; Dehaut, A.; Veillet, G.; Duflos, G.; Amara, R. Vertical distribution of microplastics in a river water column using an innovative sampling method. Environ. Monit. Assess. 2023, 195, 1302. [Google Scholar] [CrossRef]
- Procop, I.; Calmuc, M.; Pessenlehner, S.; Trifu, C.; Ceoromila, A.C.; Calmuc, V.A.; Fetecău, C.; Iticescu, C.; Musat, V.; Liedermann, M. The first spatio-temporal study of the microplastics and meso–macroplastics transport in the Romanian Danube. Environ. Sci. Eur. 2024, 36, 154. [Google Scholar] [CrossRef]
- Miao, L.; Gao, Y.; Adyel, T.M.; Huo, Z.; Liu, Z.; Wu, J.; Hou, J. Effects of biofilm colonization on the sinking of microplastics in three freshwater environments. J. Hazard. Mater. 2021, 413, 125370. [Google Scholar] [CrossRef]
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef]
- Haberstroh, C.J.; Arias, M.E.; Yin, Z.; Wang, M.C. Effects of hydrodynamics on the cross-sectional distribution and transport of plastic in an urban coastal river. Water Environ. Res. 2021, 93, 186–200. [Google Scholar] [CrossRef]
- Gitto, A.B.; Venditti, J.G.; Kostaschuk, R.; Church, M. Representative point-integrated suspended sediment sampling in rivers. Water Resour. Res. 2017, 53, 2956–2971. [Google Scholar] [CrossRef]
- Liu, Y.; You, J.; Li, Y.; Zhang, J.; He, Y.; Breider, F.; Tao, S.; Liu, W. Insights into the horizontal and vertical profiles of microplastics in a river emptying into the sea affected by intensive anthropogenic activities in Northern China. Sci. Total Environ. 2021, 779, 146589. [Google Scholar] [CrossRef]
- Rodrigues, M.O.; Abrantes, N.; Goncalves, F.J.M.; Nogueira, H.; Marques, J.C.; Goncalves, A.M.M. Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antua River, Portugal). Sci. Total Environ. 2018, 633, 1549–1559. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Mohamed Nor, N.H.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef]
- Campanale, C.; Savino, I.; Pojar, I.; Massarelli, C.; Uricchio, V.F. A Practical Overview of Methodologies for Sampling and Analysis of Microplastics in Riverine Environments. Sustainability 2020, 12, 6755. [Google Scholar] [CrossRef]
- Lu, H.-C.; Ziajahromi, S.; Neale, P.A.; Leusch, F.D.L. A systematic review of freshwater microplastics in water and sediments: Recommendations for harmonisation to enhance future study comparisons. Sci. Total Environ. 2021, 781, 146693. [Google Scholar] [CrossRef]
- Lebreton, L.C.M.; van der Zwet, J.; Damsteeg, J.W.; Slat, B.; Andrady, A.; Reisser, J. River plastic emissions to the world’s oceans. Nat. Commun. 2017, 8, 15611. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, T.; Nihei, Y.; Kudou, K.; Hinata, H. Assessment of the sources and inflow processes of microplastics in the river environments of Japan. Environ. Pollut. 2019, 244, 958–965. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Bussi, G.; Hughes, J.M.R.; Castro-Castellon, A.T.; Norling, M.D.; Jeffers, E.S.; Rampley, C.P.N.; Read, D.S.; Horton, A.A. Modelling Microplastics in the River Thames: Sources, Sinks and Policy Implications. Water 2021, 13, 861. [Google Scholar] [CrossRef]
- Schell, T.; Hurley, R.; Nizzetto, L.; Rico, A.; Vighi, M. Spatio-temporal distribution of microplastics in a Mediterranean river catchment: The importance of wastewater as an environmental pathway. J. Hazard. Mater. 2021, 420, 126481. [Google Scholar] [CrossRef]
- Simon, M.; van Alst, N.; Vollertsen, J. Quantification of microplastic mass and removal rates at wastewater treatment plants applying Focal Plane Array (FPA)-based Fourier Transform Infrared (FT-IR) imaging. Water Res. 2018, 142, 1–9. [Google Scholar] [CrossRef]
- Heß, M.; Diehl, P.; Mayer, J.; Rahm, H.; Reifenhäuser, W.; Stark, J.; Schwaiger, J.J.B.-ü.U.i.B.-W. Bayern, Hessen, Nordrhein-Westfalen und Rheinland-Pfalz. Teil. Mikroplastik in Binnengewässern Süd-und Westdeutschlands. Project Rep. 2018, 1, 84. Available online: https://www.lanuk.nrw.de/fileadmin/lanuvpubl/6_sonderreihen/L%c3%a4nderbericht_Mikroplastik_in_Binnengew%c3%a4ssern.pdf (accessed on 4 May 2025).
- Mani, T.; Hauk, A.; Walter, U.; Burkhardt-Holm, P. Microplastics profile along the Rhine River. Sci. Rep. 2015, 5, 17988. [Google Scholar] [CrossRef]
- Mani, T.; Blarer, P.; Storck, F.R.; Pittroff, M.; Wernicke, T.; Burkhardt-Holm, P. Repeated detection of polystyrene microbeads in the Lower Rhine River. Environ. Pollut. 2019, 245, 634–641. [Google Scholar] [CrossRef]
- Mani, T.; Burkhardt-Holm, P. Seasonal microplastics variation in nival and pluvial stretches of the Rhine River - From the Swiss catchment towards the North Sea. Sci. Total Environ. 2020, 707, 135579. [Google Scholar] [CrossRef]
- Schrank, I.; Löder, M.G.J.; Imhof, H.K.; Moses, S.R.; Heß, M.; Schwaiger, J.; Laforsch, C. Riverine microplastic contamination in southwest Germany: A large-scale survey. Front. Earth Sci. 2022, 10. [Google Scholar] [CrossRef]
- Schwandt, D.; Hübner, G. Informationsplattform Undine. Available online: https://undine.bafg.de/rhein/rheingebiet.html (accessed on 7 February 2022).
- Ministry of Environment, A. Conservation and Consumer Protection, State of North Rhine-Westphalia Flussgebiete NRW. Available online: https://www.flussgebiete.nrw.de/ (accessed on 15 January 2025).
- Hoffmann, T.O.; Baulig, Y.; Fischer, H.; Blöthe, J. Scale breaks of suspended sediment rating in large rivers in Germany induced by organic matter. Earth Surf. Dyn. 2020, 8, 661–678. [Google Scholar] [CrossRef]
- Campanale, C.; Stock, F.; Massarelli, C.; Kochleus, C.; Bagnuolo, G.; Reifferscheid, G.; Uricchio, V.F. Microplastics and their possible sources: The example of Ofanto river in southeast Italy. Environ. Pollut. 2020, 258, 113284. [Google Scholar] [CrossRef] [PubMed]
- Hernroth, L. Sampling and filtration efficiency of two commonly used plankton nets. A comparative study of the Nansen net and the Unesco WP 2 net. J. Plankton Res. 1987, 9, 719–728. [Google Scholar] [CrossRef]
- Smith, P.E.; Counts, R.C.; Clutter, R.I. Changes in Filtering Efficiency of Plankton Nets Due to Clogging Under Tow. ICES J. Mar. Sci. 1968, 32, 232–248. [Google Scholar] [CrossRef]
- Khatmullina, L.; Isachenko, I. Settling velocity of microplastic particles of regular shapes. Mar. Pollut. Bull. 2017, 114, 871–880. [Google Scholar] [CrossRef]
- Laermanns, H.; Reifferscheid, G.; Kruse, J.; Földi, C.; Dierkes, G.; Schaefer, D.; Scherer, C.; Bogner, C.; Stock, F. Microplastic in Water and Sediments at the Confluence of the Elbe and Mulde Rivers in Germany. Front. Environ. Sci. 2021, 9, 794895. [Google Scholar] [CrossRef]
- Bannick, C.G.; Szewzyk, R.; Ricking, M.; Schniegler, S.; Obermaier, N.; Barthel, A.K.; Altmann, K.; Eisentraut, P.; Braun, U. Development and testing of a fractionated filtration for sampling of microplastics in water. Water Res. 2019, 149, 650–658. [Google Scholar] [CrossRef]
- Arthur, C.; Baker, J.; Bamford, H. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris. In Proceedings of the NOAA Technical Memorandum NOS-OR&R-30, Tacoma, WA, USA, 9–11 September 2008. [Google Scholar]
- Xu, J.-L.; Thomas, K.V.; Luo, Z.; Gowen, A.A. FTIR and Raman imaging for microplastics analysis: State of the art, challenges and prospects. TrAC Trends Anal. Chem. 2019, 119, 115629. [Google Scholar] [CrossRef]
- Dierkes, G.; Lauschke, T.; Becher, S.; Schumacher, H.; Foldi, C.; Ternes, T. Quantification of microplastics in environmental samples via pressurized liquid extraction and pyrolysis-gas chromatography. Anal. Bioanal. Chem. 2019, 411, 6959–6968. [Google Scholar] [CrossRef]
- Bouchez, J.; Métivier, F.; Lupker, M.; Maurice, L.; Perez, M.; Gaillardet, J.; France-Lanord, C. Prediction of depth-integrated fluxes of suspended sediment in the Amazon River: Particle aggregation as a complicating factor. Hydrol. Process. 2010, 25, 778–794. [Google Scholar] [CrossRef]
- Rouse, H. Modern Conceptions of the Mechanics of Fluid Turbulence. Trans. Am. Soc. Civil. Eng. 1937, 102, 463–505. [Google Scholar] [CrossRef]
- Naden, P.S. The Fine-Sediment Cascade. In Sediment Cascades; Burt, T.P., Allison, R.J., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2010; pp. 271–305. [Google Scholar]
- Waldschläger, K.; Born, M.; Cowger, W.; Gray, A.; Schüttrumpf, H. Settling and rising velocities of environmentally weathered micro- and macroplastic particles. Environ. Res. 2020, 191, 110192. [Google Scholar] [CrossRef]
- Stokes, G.G. On the Effect of the Internal Friction of Fluids on the Motion of Pendulum. Pitt. Press. 1851, 9. [Google Scholar] [CrossRef]
- Mendrik, F.; Fernández, R.; Hackney, C.R.; Waller, C.; Parsons, D.R. Non-buoyant microplastic settling velocity varies with biofilm growth and ambient water salinity. Commun. Earth Environ. 2023, 4, 30. [Google Scholar] [CrossRef]
- Jalon-Rojas, I.; Romero-Ramirez, A.; Fauquembergue, K.; Rossignol, L.; Cachot, J.; Sous, D.; Morin, B. Effects of Biofilms and Particle Physical Properties on the Rising and Settling Velocities of Microplastic Fibers and Sheets. Environ. Sci. Technol. 2022, 56, 8114–8123. [Google Scholar] [CrossRef]
- Parrella, F.; Brizzolara, S.; Holzner, M.; Mitrano, D.M. Impact of heteroaggregation between microplastics and algae on particle vertical transport. Nat. Water 2024, 2, 541–552. [Google Scholar] [CrossRef]
- Wu, N.; Grieve, S.W.D.; Manning, A.J.; Spencer, K.L. Flocs as vectors for microplastics in the aquatic environment. Nature Water 2024, 2, 1082–1090. [Google Scholar] [CrossRef]
- Francalanci, S.; Paris, E.; Solari, L. On the prediction of settling velocity for plastic particles of different shapes. Environ. Pollut. 2021, 290, 118068. [Google Scholar] [CrossRef] [PubMed]
- Waldschläger, K.; Schüttrumpf, H. Effects of Particle Properties on the Settling and Rise Velocities of Microplastics in Freshwater under Laboratory Conditions. Environ. Sci. Technol. 2019, 53, 1958–1966. [Google Scholar] [CrossRef]
- Faure, F.; Demars, C.; Wieser, O.; Kunz, M.; de Alencastro, L.F. Plastic pollution in Swiss surface waters: Nature and concentrations, interaction with pollutants. Environ. Chem. 2015, 12, 582–591. [Google Scholar] [CrossRef]
- Hohenblum, P.; Frischenschlager, H.; Reisinger, H.; Konecny, R.; Uhl, M.; Mühlegger, S.; Habersack, H.; Liedermann, M.; Gmeiner, P.; Weidenhiller, B. Plastik in der Donau-Untersuchung zum Vorkommen von Kunststoffen in der Donau in Österreich; Report REP-0547; Umweltbundesamt: Wien, Austria, 2015; pp. 1–120. [Google Scholar]
- Mintenig, S.M.; Kooi, M.; Erich, M.W.; Primpke, S.; Redondo-Hasselerharm, P.E.; Dekker, S.C.; Koelmans, A.A.; van Wezel, A.P. A systems approach to understand microplastic occurrence and variability in Dutch riverine surface waters. Water Res. 2020, 176, 115723. [Google Scholar] [CrossRef] [PubMed]
- Tamminga, M.; Hengstmann, E.; Deuke, A.K.; Fischer, E.K. Microplastic concentrations, characteristics, and fluxes in water bodies of the Tollense catchment, Germany, with regard to different sampling systems. Environ. Sci. Pollut. Res. Int. 2022, 29, 11345–11358. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.; Lowemark, L.; Kunz, A. Microplastic pollution of the Tamsui River and its tributaries in northern Taiwan: Spatial heterogeneity and correlation with precipitation. Environ. Pollut. 2020, 260, 113935. [Google Scholar] [CrossRef]
- Wagner, S.; Klockner, P.; Stier, B.; Romer, M.; Seiwert, B.; Reemtsma, T.; Schmidt, C. Relationship between Discharge and River Plastic Concentrations in a Rural and an Urban Catchment. Environ. Sci. Technol. 2019, 53, 10082–10091. [Google Scholar] [CrossRef] [PubMed]
- Range, D.; Kamp, J.; Dierkes, G.; Hoffmann, T.O.; Ternes, T. A critical view on determination of annual microplastic loads in the Rhine River. Water Res. 2025. Under Review. [Google Scholar]
- Li, L.; Li, M.; Deng, H.; Cai, L.; Cai, H.; Yan, B.; Hu, J.; Shi, H. A straightforward method for measuring the range of apparent density of microplastics. Sci. Total Environ. 2018, 639, 367–373. [Google Scholar] [CrossRef]
Source | Sampling | Units | Cross-Sectional Aspects | Key Results |
---|---|---|---|---|
Heß et al. [38] | March–September 2015, nine surface sampling sites with durations from 10–30 min. | Items per m3 water | Longitudinal profile from Basel to the German–Dutch border. | Min.: 2.9 i/m3, max. 22.3 i/m3, no increasing pattern noticeable along the river course, no influence of metropolitan areas on MPs concentration noticeable. |
Mani et al. [39] | June–July 2014, surface sampling from a vessel for 15 min (mean of 150 m−3 sampling volume). eleven sampling sites. | Items per m3 water, Items per km2 water | Longitudinal profile from Basel to Rotterdam (820 km). Sampling on various positions within the cross profile at each site (left, middle, right). | Mean: 4960 i/1000 m3, max.: 21,839 i/1000 m3. Ascending trend of MPs pollution along the river course with highest MPs concentrations in the Ruhr area, drop of concentration near the Delta region at Zuilichem. Heterogeneous MPs concentration across the river, influence of point sources obvious at some locations. |
Mani et al. [40] | Sampling from 2014–2017, steady surface sampling from a vessel for 10–15 min (mean of 87 m3 sampling volume) at nine sites. | Items per m3 water | Longitudinal profile from Rhine km 677–944 (Cologne to Herwijnen, NL). | Min.: 0.03 i/m3, max.: 9.2 i/m3 (spherules only), increasing PS-DVB spherule concentration along the river section in the Ruhr area, possibly stemming from point-sources near Dormagen. |
Mani and Burkhardt-Holm [41] | April 2016–February 2017, 10 min (25.5–200. 9 m3 sampling volumes) surface sampling at six sites. Four campaigns (3 month-intervals) with 15 samples each. | Items per m3 water | Longitudinal profile from Basel to Rees (Rhine km 165–837). Seasonal sampling to capture discharge patterns of nival and pluvial discharge regimes within the investigation area. | Min.: 0.04 i/m3, max.: 9.97 i/m3. Significantly increasing MPs concentrations downstream from Swiss to German locations. Positive correlation between MPs concentration and catchment size and mean discharge. Proportion of primary MPs increases downstream. No seasonal MPs concentration variations detected. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Range, D.; Kamp, J.; Dierkes, G.; Ternes, T.; Hoffmann, T. Cross-Sectional Distribution of Microplastics in the Rhine River, Germany—A Mass-Based Approach. Microplastics 2025, 4, 27. https://doi.org/10.3390/microplastics4020027
Range D, Kamp J, Dierkes G, Ternes T, Hoffmann T. Cross-Sectional Distribution of Microplastics in the Rhine River, Germany—A Mass-Based Approach. Microplastics. 2025; 4(2):27. https://doi.org/10.3390/microplastics4020027
Chicago/Turabian StyleRange, David, Jan Kamp, Georg Dierkes, Thomas Ternes, and Thomas Hoffmann. 2025. "Cross-Sectional Distribution of Microplastics in the Rhine River, Germany—A Mass-Based Approach" Microplastics 4, no. 2: 27. https://doi.org/10.3390/microplastics4020027
APA StyleRange, D., Kamp, J., Dierkes, G., Ternes, T., & Hoffmann, T. (2025). Cross-Sectional Distribution of Microplastics in the Rhine River, Germany—A Mass-Based Approach. Microplastics, 4(2), 27. https://doi.org/10.3390/microplastics4020027