Microplastic Contamination in Field-Side Composting in Geneva, Switzerland (CH)
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Concentration of Microplastic Particles
3.2. Nature of Microplastic Particles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrady, A.L. (Ed.) Plastics and the Environment; Wiley-Interscience: Hoboken, NJ, USA, 2003; ISBN 978-0-471-09520-0. [Google Scholar]
- Plastics Europe AISBL. Plastics—The Fast Facts 2023•Plastics Europe [Internet]. Plastics Europe. 2023. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/ (accessed on 12 March 2024).
- de Souza Machado, A.A.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 2018, 24, 1405–1416. [Google Scholar] [CrossRef] [PubMed]
- Lusher, A.; Hollman, P.C.H.; Mendoza-Hill, J. Microplastics in Fisheries and Aquaculture: Status of Knowledge on Their Occurrence and Implications for Aquatic Organisms and Food Safety; FAO Fisheries and Aquaculture Technical Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; ISBN 978-92-5-109882-0. [Google Scholar]
- Rochman, C.M.; Brookson, C.; Bikker, J.; Djuric, N.; Earn, A.; Bucci, K.; Athey, S.; Huntington, A.; McIlwraith, H.; Munno, K.; et al. Rethinking microplastics as a diverse contaminant suite. Environ. Toxicol. Chem. 2019, 38, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, J.; Yan, P.; Hao, X.; Xu, B.; Wang, W.; Aurangzeib, M. Non-biodegradable microplastics in soils: A brief review and challenge. J. Hazard. Mater. 2021, 409, 124525. [Google Scholar] [CrossRef] [PubMed]
- Baho, D.L.; Bundschuh, M.; Futter, M.N. Microplastics in terrestrial ecosystems: Moving beyond the state of the art to minimize the risk of ecological surprise. Glob. Change Biol. 2021, 27, 3969–3986. [Google Scholar] [CrossRef] [PubMed]
- Hanif, M.N.; Aijaz, N.; Azam, K.; Akhtar, M.; Laftah, W.A.; Babur, M.; Abbood, N.K.; Benitez, I.B. Impact of microplastics on soil (physical and chemical) properties, soil biological properties/soil biota, and response of plants to it: A review. Int. J. Environ. Sci. Technol. 2024, 21, 1–42. [Google Scholar] [CrossRef]
- Kim, S.W.; Waldman, W.R.; Kim, T.-Y.; Rillig, M.C. Effects of Different Microplastics on Nematodes in the Soil Environment: Tracking the Extractable Additives Using an Ecotoxicological Approach. Environ. Sci. Technol. 2020, 54, 13868–13878. [Google Scholar] [CrossRef]
- Rochman, C.M.; Kurobe, T.; Flores, I.; Teh, S.J. Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment. Sci. Total Environ. 2014, 493, 656–661. [Google Scholar] [CrossRef]
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef]
- Krueger, M.C.; Harms, H.; Schlosser, D. Prospects for microbiological solutions to environmental pollution with plastics. Appl. Microbiol. Biotechnol. 2015, 99, 8857–8874. [Google Scholar] [CrossRef]
- Qi, R.; Jones, D.L.; Li, Z.; Liu, Q.; Yan, C. Behavior of microplastics and plastic film residues in the soil environment: A critical review. Sci. Total Environ. 2020, 703, 134722. [Google Scholar] [CrossRef]
- Boots, B.; Russell, C.W.; Green, D.S. Effects of Microplastics in Soil Ecosystems: Above and Below Ground. Environ. Sci. Technol. 2019, 53, 11496–11506. [Google Scholar] [CrossRef]
- Guo, Z.; Li, P.; Yang, X.; Wang, Z.; Lu, B.; Chen, W.; Wu, Y.; Li, G.; Zhao, Z.; Liu, G.; et al. Soil texture is an important factor determining how microplastics affect soil hydraulic characteristics. Environ. Int. 2022, 165, 107293. [Google Scholar] [CrossRef]
- Huerta Lwanga, E.; Gertsen, H.; Gooren, H.; Peters, P.; Salánki, T.; van der Ploeg, M.; Besseling, E.; Koelmans, A.A.; Geissen, V. Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ. Sci. Technol. 2016, 50, 2685–2691. [Google Scholar] [CrossRef]
- Rillig, M.C.; Ziersch, L.; Hempel, S. Microplastic transport in soil by earthworms. Sci. Rep. 2017, 7, 1362. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, X.; Chen, L.; Chao, J.; Teng, J.; Wang, Q. Microplastics in soils: A review of possible sources, analytical methods and ecological impacts. J. Chem. Technol. Biotechnol. 2020, 95, 2052–2068. [Google Scholar] [CrossRef]
- Rodriguez-Seijo, A.; Lourenço, J.; Rocha-Santos, T.A.P.; da Costa, J.; Duarte, A.C.; Vala, H.; Pereira, R. Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environ. Pollut. 2017, 220, 495–503. [Google Scholar] [CrossRef]
- Joos, L.; De Tender, C. Soil under stress: The importance of soil life and how it is influenced by (micro)plastic pollution. Comput. Struct. Biotechnol. J. 2022, 20, 1554–1566. [Google Scholar] [CrossRef]
- Iqbal, S.; Xu, J.; Allen, S.D.; Khan, S.; Nadir, S.; Arif, M.S.; Yasmeen, T. Unraveling consequences of soil micro- and nano-plastic pollution on soil-plant system: Implications for nitrogen (N) cycling and soil microbial activity. Chemosphere 2020, 260, 127578. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Y.; Chen, X.; He, Y.; Bolan, N.; Rinklebe, J.; Lam, S.S.; Peng, W.; Sonne, C. A discussion of microplastics in soil and risks for ecosystems and food chains. Chemosphere 2023, 313, 137637. [Google Scholar] [CrossRef]
- Kristanti, R.A.; Hadibarata, T.; Wulandari, N.F.; Sibero, M.T.; Darmayati, Y.; Hatmanti, A. Overview of microplastics in the environment: Type, source, potential effects and removal strategies. Bioprocess. Biosyst. Eng. 2023, 46, 429–441. [Google Scholar] [CrossRef]
- Revel, M.; Châtel, A.; Mouneyrac, C. Micro(nano)plastics: A threat to human health? Curr. Opin. Environ. Sci. Health 2018, 1, 17–23. [Google Scholar] [CrossRef]
- Guo, J.-J.; Huang, X.-P.; Xiang, L.; Wang, Y.-Z.; Li, Y.-W.; Li, H.; Cai, Q.-Y.; Mo, C.-H.; Wong, M.-H. Source, migration and toxicology of microplastics in soil. Environ. Int. 2020, 137, 105263. [Google Scholar] [CrossRef]
- Hernandez, L.M.; Xu, E.G.; Larsson, H.C.E.; Tahara, R.; Maisuria, V.B.; Tufenkji, N. Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environ. Sci. Technol. 2019, 53, 12300–12310. [Google Scholar] [CrossRef]
- Liebezeit, G.; Liebezeit, E. Non-pollen particulates in honey and sugar. Food Addit. Contam. Part A 2013, 30, 2136–2140. [Google Scholar] [CrossRef]
- Liebezeit, G.; Liebezeit, E. Synthetic particles as contaminants in German beers. Food Addit. Contam. Part A 2014, 31, 1574–1578. [Google Scholar] [CrossRef]
- Senathirajah, K.; Attwood, S.; Bhagwat, G.; Carbery, M.; Wilson, S.; Palanisami, T. Estimation of the mass of microplastics ingested—A pivotal first step towards human health risk assessment. J. Hazard. Mater. 2021, 404, 124004. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM) Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. 2016, 14, e04501. [CrossRef]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef] [PubMed]
- Lithner, D.; Larsson, Å.; Dave, G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total Environ. 2011, 409, 3309–3324. [Google Scholar] [CrossRef] [PubMed]
- Carbery, M.; MacFarlane, G.R.; O’Connor, W.; Afrose, S.; Taylor, H.; Palanisami, T. Baseline analysis of metal(loid)s on microplastics collected from the Australian shoreline using citizen science. Mar. Pollut. Bull. 2020, 152, 110914. [Google Scholar] [CrossRef] [PubMed]
- Fred-Ahmadu, O.H.; Bhagwat, G.; Oluyoye, I.; Benson, N.U.; Ayejuyo, O.O.; Palanisami, T. Interaction of chemical contaminants with microplastics: Principles and perspectives. Sci. Total Environ. 2020, 706, 135978. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Ma, J.; Ji, R.; Pan, K.; Miao, A.-J. Microplastics in aquatic environments: Occurrence, accumulation, and biological effects. Sci. Total Environ. 2020, 703, 134699. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, O.M.L.; Basheer, A.A.; Khattab, R.A.; Ali, I. Health and environmental effects of persistent organic pollutants. J. Mol. Liq. 2018, 263, 442–453. [Google Scholar] [CrossRef]
- Mishra, S.; Rath, C.; Das, A.P. Marine microfiber pollution: A review on present status and future challenges. Mar. Pollut. Bull. 2019, 140, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Pal, D.; Maiti, S.K. Evaluation of Potential Human Health Risks from Toxic Metals via Consumption of Cultured Fish Species Labeo rohita: A Case Study from an Urban Aquaculture Pond. Expo. Health 2019, 11, 33–46. [Google Scholar] [CrossRef]
- Ribeiro, F.; O’Brien, J.W.; Galloway, T.; Thomas, K.V. Accumulation and fate of nano- and micro-plastics and associated contaminants in organisms. TrAC Trends Anal. Chem. 2019, 111, 139–147. [Google Scholar] [CrossRef]
- Volschenk, C.M.; Gerber, R.; Mkhonto, M.T.; Ikenaka, Y.; Yohannes, Y.B.; Nakayama, S.; Ishizuka, M.; van Vuren, J.H.J.; Wepener, V.; Smit, N.J. Bioaccumulation of persistent organic pollutants and their trophic transfer through the food web: Human health risks to the rural communities reliant on fish from South Africa’s largest floodplain. Sci. Total Environ. 2019, 685, 1116–1126. [Google Scholar] [CrossRef] [PubMed]
- Araújo, P.H.H.; Sayer, C.; Giudici, R.; Poço, J.G.R. Techniques for reducing residual monomer content in polymers: A review: Techniques for Reducing Residual Monomer Content. Polym. Eng. Sci. 2002, 42, 1442–1468. [Google Scholar] [CrossRef]
- Matlack, A.S. Introduction to Green Chemistry; Marcel Dekker Inc.: New York, NY, USA, 2001. [Google Scholar]
- Wang, J.; Luo, Y.; Teng, Y.; Ma, W.; Christie, P.; Li, Z. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film. Environ. Pollut. 2013, 180, 265–273. [Google Scholar] [CrossRef]
- Karbalaei, S.; Hanachi, P.; Walker, T.R.; Cole, M. Occurrence, sources, human health impacts and mitigation of microplastic pollution. Environ. Sci. Pollut. Res. 2018, 25, 36046–36063. [Google Scholar] [CrossRef]
- Büks, F.; Kaupenjohann, M. Global concentrations of microplastics in soils—A review. Soil 2020, 6, 649–662. [Google Scholar] [CrossRef]
- Fuller, S.; Gautam, A. A Procedure for Measuring Microplastics using Pressurized Fluid Extraction. Environ. Sci. Technol. 2016, 50, 5774–5780. [Google Scholar] [CrossRef] [PubMed]
- Nizzetto, L.; Futter, M.; Langaas, S. Are Agricultural Soils Dumps for Microplastics of Urban Origin? Environ. Sci. Technol. 2016, 50, 10777–10779. [Google Scholar] [CrossRef]
- Bläsing, M.; Amelung, W. Plastics in soil: Analytical methods and possible sources. Sci. Total Environ. 2018, 612, 422–435. [Google Scholar] [CrossRef]
- Nizzetto, L.; Langaas, S.; Futter, M. Pollution: Do microplastics spill on to farm soils? Nature 2016, 537, 488. [Google Scholar] [CrossRef]
- Okoffo, E.D.; O’Brien, S.; Ribeiro, F.; Burrows, S.D.; Toapanta, T.; Rauert, C.; O’Brien, J.W.; Tscharke, B.J.; Wang, X.; Thomas, K.V. Plastic particles in soil: State of the knowledge on sources, occurrence and distribution, analytical methods and ecological impacts. Environ. Sci. Process. Impacts 2021, 23, 240–274. [Google Scholar] [CrossRef] [PubMed]
- de Souza Machado, A.A.; Lau, C.W.; Till, J.; Kloas, W.; Lehmann, A.; Becker, R.; Rillig, M.C. Impacts of Microplastics on the Soil Biophysical Environment. Environ. Sci. Technol. 2018, 52, 9656–9665. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Ding, R.; Kang, S.; Hao, X.; Du, T.; Tong, L.; Li, S. Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland. Agric. Water Manag. 2017, 179, 122–131. [Google Scholar] [CrossRef]
- Kumar, M.; Xiong, X.; He, M.; Tsang, D.C.W.; Gupta, J.; Khan, E.; Harrad, S.; Hou, D.; Ok, Y.S.; Bolan, N.S. Microplastics as pollutants in agricultural soils. Environ. Pollut. 2020, 265, 114980. [Google Scholar] [CrossRef]
- Ramos, L.; Berenstein, G.; Hughes, E.A.; Zalts, A.; Montserrat, J.M. Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina. Sci. Total Environ. 2015, 523, 74–81. [Google Scholar] [CrossRef]
- Tarara, J.M. Microclimate Modification with Plastic Mulch. HortScience 2000, 35, 169–180. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Lin, S.; Turner, J.P.; Ke, P.C. Physical Adsorption of Charged Plastic Nanoparticles Affects Algal Photosynthesis. J. Phys. Chem. C 2010, 114, 16556–16561. [Google Scholar] [CrossRef]
- Bläsing, M.; Amelung, W.; Schwark, L.; Lehndorff, E. Inland navigation: PAH inventories in soil and vegetation after EU fuel regulation 2009/30/EC. Sci. Total Environ. 2017, 584–585, 19–28. [Google Scholar] [CrossRef]
- Cerdan, O.; Govers, G.; Le Bissonnais, Y.; Van Oost, K.; Poesen, J.; Saby, N.; Gobin, A.; Vacca, A.; Quinton, J.; Auerswald, K.; et al. Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology 2010, 122, 167–177. [Google Scholar] [CrossRef]
- Kim, L.-H.; Kayhanian, M.; Stenstrom, M.K. Event mean concentration and loading of litter from highways during storms. Sci. Total Environ. 2004, 330, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Kim, L.-H.; Kang, J.; Kayhanian, M.; Gil, K.-I.; Stenstrom, M.K.; Zoh, K.-D. Characteristics of litter waste in highway storm runoff. Water Sci. Technol. 2006, 53, 225–234. [Google Scholar] [CrossRef]
- Setälä, O.; Fleming-Lehtinen, V.; Lehtiniemi, M. Ingestion and transfer of microplastics in the planktonic food web. Environ. Pollut. 2014, 185, 77–83. [Google Scholar] [CrossRef]
- Albertsson, A.-C.; Andersson, S.O.; Karlsson, S. The mechanism of biodegradation of polyethylene. Polym. Degrad. Stab. 1987, 18, 73–87. [Google Scholar] [CrossRef]
- Ali, M.I.; Ahmed, S.; Robson, G.; Javed, I.; Ali, N.; Atiq, N.; Hameed, A. Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates. J. Basic Microbiol. 2014, 54, 18–27. [Google Scholar] [CrossRef]
- Derraik, J.G.B. The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bull. 2002, 44, 842–852. [Google Scholar] [CrossRef]
- Kijchavengkul, T.; Auras, R. Compostability of polymers. Polym. Int. 2008, 57, 793–804. [Google Scholar] [CrossRef]
- Ng, E.-L.; Huerta Lwanga, E.; Eldridge, S.M.; Johnston, P.; Hu, H.-W.; Geissen, V.; Chen, D. An overview of microplastic and nanoplastic pollution in agroecosystems. Sci. Total Environ. 2018, 627, 1377–1388. [Google Scholar] [CrossRef]
- Otake, Y.; Kobayashi, T.; Asabe, H.; Murakami, N.; Ono, K. Biodegradation of low-density polyethylene, polystyrene, polyvinyl chloride, and urea formaldehyde resin buried under soil for over 32 years. J. Appl. Polym. Sci. 1995, 56, 1789–1796. [Google Scholar] [CrossRef]
- Ryan, P.G.; Moloney, C.L. Marine litter keeps increasing. Nature 1993, 361, 23. [Google Scholar] [CrossRef]
- Santana, V.T.; Gonçalves, S.P.C.; Agnelli, J.A.M.; Martins-Franchetti, S.M. Biodegradation of a polylactic acid/polyvinyl chloride blend in soil. J. Appl. Polym. Sci. 2012, 125, 536–540. [Google Scholar] [CrossRef]
- McMullen, K.; Vargas, F.H.; Calle, P.; Alavarado-Cadena, O.; Pakhomov, E.A.; Alava, J.J. Modelling microplastic bioaccumulation and biomagnification potential in the Galápagos penguin ecosystem using Ecopath and Ecosim (EwE) with Ecotracer. PLoS ONE 2024, 19, e0296788. [Google Scholar] [CrossRef]
- Zhang, K.; Hamidian, A.H.; Tubić, A.; Zhang, Y.; Fang, J.K.H.; Wu, C.; Lam, P.K.S. Understanding plastic degradation and microplastic formation in the environment: A review. Environ. Pollut. 2021, 274, 116554. [Google Scholar] [CrossRef]
- Silva, A.B.; Bastos, A.S.; Justino, C.I.L.; da Costa, J.P.; Duarte, A.C.; Rocha-Santos, T.A.P. Microplastics in the environment: Challenges in analytical chemistry—A review. Anal. Chim. Acta 2018, 1017, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Borella, I. Risque Environnemental lié à L’utilisation de sacs Compostables dans le Canton de Genève: Évaluation de la Contamination des Microplastiques dans le Compost Associée à L’utilisation de sacs Compostables; Université de Genève: Genève, Switzerland, 2020. [Google Scholar]
- Savourey, T. Contrôle des Livraisons des Déchets Organiques sur le Site de Châtillon, Rapport Décembre 2017 Omniconseil Sàrl, Version 1.0; Geneva, Switzerland, 2017. [Google Scholar]
- EN 13432; Packaging—Requirements for Packaging Recoverable through Composting and Biodegradation—Test Scheme and Evaluation Criteria for the Final Acceptance of Packaging. European Committee for Standardization: Brussels, Belgium, 2000; Volume 25.
- Kupper, T.; Fuchs, J. Compost et Digestat en Suisse. Étude n°1: Micropolluants Organiques dans le Compost et le Digestat; Étude n°2: Influences des Composts et des Digestats sur L’environnement, la Fertilité des sols et la Santé des Plantes; Office Fédéral de L’environnement (OFEV): Berne, Switzerland, 2007; Volume 124.
- Acade sàrl. Site de Veyrier-Troinex Rapport Annuel 2018; Groupe des composteurs en bord de Champs; Acade: Petit Lancy, Switzerland, 2018; p. 17. [Google Scholar]
- ACADE Sàrl. Nikos Topilos @ Odgo Système de Compostage en Bord de Champs|Acade. Available online: https://www.acade-agro.ch/projets/gcbc (accessed on 6 June 2021).
- Colombini, G.; Rumpel, C.; Houot, S.; Biron, P.; Dignac, M.-F. A long-term field experiment confirms the necessity of improving biowaste sorting to decrease coarse microplastic inputs in compost amended soils. Environ. Pollut. 2022, 315, 120369. [Google Scholar] [CrossRef] [PubMed]
- Faessler, J. Gestion des Déchets verts Dans le Canton de Genève: Choix Technologiques, Aspects Énergétiques et Impacts Environnementaux; Université de Genève Faculté des Sciences: Genève, Switzerland, 2001. [Google Scholar]
- SIG. Valorisation des Déchets; SIG: Genève, Switzerland, 2016; p. 46. [Google Scholar]
- Porterfield, K.K.; Hobson, S.A.; Neher, D.A.; Niles, M.T.; Roy, E.D. Microplastics in composts, digestates, and food wastes: A review. J. Environ. Qual. 2023, 52, 225–240. [Google Scholar] [CrossRef] [PubMed]
- Gui, J.; Sun, Y.; Wang, J.; Chen, X.; Zhang, S.; Wu, D. Microplastics in composting of rural domestic waste: Abundance, characteristics, and release from the surface of macroplastics. Environ. Pollut. 2021, 274, 116553. [Google Scholar] [CrossRef] [PubMed]
- Braun, M.; Mail, M.; Heyse, R.; Amelung, W. Plastic in compost: Prevalence and potential input into agricultural and horticultural soils. Sci. Total Environ. 2021, 760, 143335. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Lwanga, E.; Mendoza-Vega, J.; Ribeiro, O.; Gertsen, H.; Peters, P.; Geissen, V. Is the Polylactic Acid Fiber in Green Compost a Risk for Lumbricus terrestris and Triticum aestivum? Polymers 2021, 13, 703. [Google Scholar] [CrossRef] [PubMed]
- van Schothorst, B.; Beriot, N.; Huerta Lwanga, E.; Geissen, V. Sources of Light Density Microplastic Related to Two Agricultural Practices: The Use of Compost and Plastic Mulch. Environments 2021, 8, 36. [Google Scholar] [CrossRef]
- Sholokhova, A.; Ceponkus, J.; Sablinskas, V.; Denafas, G. Abundance and characteristics of microplastics in treated organic wastes of Kaunas and Alytus regional waste management centres, Lithuania. Environ. Sci. Pollut. Res. 2022, 29, 20665–20674. [Google Scholar] [CrossRef] [PubMed]
- Weithmann, N.; Möller, J.N.; Löder, M.G.J.; Piehl, S.; Laforsch, C.; Freitag, R. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. 2018, 4, eaap8060. [Google Scholar] [CrossRef] [PubMed]
- Schwinghammer, L.; Krause, S.; Schaum, C. Determination of large microplastics: Wet-sieving of dewatered digested sludge, co-substrates, and compost. Water Sci. Technol. 2020, 84, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Edo, C.; Fernández-Piñas, F.; Rosal, R. Microplastics identification and quantification in the composted Organic Fraction of Municipal Solid Waste. Sci. Total Environ. 2022, 813, 151902. [Google Scholar] [CrossRef] [PubMed]
- Meixner, K.; Kubiczek, M.; Fritz, I.; Meixner, K.; Kubiczek, M.; Fritz, I. Microplastic in soil–current status in Europe with special focus on method tests with Austrian samples. AIMSES 2020, 7, 174–191. [Google Scholar] [CrossRef]
- Tiwari, S.; Bag, D.S.; Dwivedi, M. Poly (ethylene-co-methacrylic acid) (PEMA) ionomers and their applications including self-healing and shape memory applications. J. Polym. Res. 2024, 31, 91. [Google Scholar] [CrossRef]
- Meena, S.K. Polymers- Types, Uses, Pollution and Control. Int. J. Multidiscip. Res. Sci. Eng. Technol. (IJMRSET) 2020, 3, 84–90. [Google Scholar]
- Schildknecht, C.E. Allyl Compounds and Their Polymers: Including Polyolefins, 2nd ed.; High polymers; Wiley: New York, NY, USA, 1973; Volume 28, ISBN 978-0-471-39380-1. [Google Scholar]
- DeMerlis, C.C.; Schoneker, D.R. Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem. Toxicol. 2003, 41, 319–326. [Google Scholar] [CrossRef] [PubMed]
Feedstock | Abundance (Particles kg−1 Dry) | Size (mm) | Polymer Types | Location | References |
---|---|---|---|---|---|
Compost | |||||
Green waste | 12 ± 8 to 46 ± 8 | >0.3 b | n/a | Germany | [84] |
Green waste | 82,800 ± 17,400 a | 1–5 | PLA | The Netherlands | [85] |
Green waste | 1253 ± 561 | 0.03–2 | PE, PP | The Netherlands | [86] |
Green waste | 5733 ± 850 to 6433 ± 751 | 0.05–5 | Mostly PP, also PE, nitrile rubber, PES | Lithuania | [87] |
Green and household waste | 20–24 | >1 | Mostly styrene-based polymers (PS etc.) and PE, also PES, PP, PET, PVC | Germany | [88] |
Food waste | 3783 ± 351 to 4066 ± 658 | 0.05–5 | Mostly PE and PS, also PET, PP | Lithuania | [87] |
Household biowaste | 32 ± 20 b | >0.3 b | n/a | Germany | [84] |
Rural domestic waste | 2400 ± 358 | 0.05–5 | Mostly PES, PP and PE, also PVC, PS, PE, PP, PU | China | [83] |
Rural, domestic, and green waste | 195 ± 64 to 1315 ± 375 | >1.25–>5 | PE, PP, PET, PBT, PS, PVA, DAIP, PEMA, Nylon, Other | Switzerland | Present work |
OFMW digestate | 44,730 | >0.063–>5 | Mostly PE, PP, PS, and PVC | Switzerland | [73] |
OFMW digestate | 39–102 | 1–5 | Mostly PE and PVC, also PET, PS, PES, PUR, and other | Germany | [89] |
OFMW | 2800 ± 616 | 0.03–2 | PE, PP | The Netherlands | [86] |
OFMW | 10,000–30,000 | >0.025 | Mostly PE, also PS, PP, PES, PVC, and ACR | Spain | [90] |
Unknown | 5.2–42.8 (15.4) Mila | 0.005–1 | n/a | Austria | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berset, F.C.D.; Stoll, S. Microplastic Contamination in Field-Side Composting in Geneva, Switzerland (CH). Microplastics 2024, 3, 477-491. https://doi.org/10.3390/microplastics3030030
Berset FCD, Stoll S. Microplastic Contamination in Field-Side Composting in Geneva, Switzerland (CH). Microplastics. 2024; 3(3):477-491. https://doi.org/10.3390/microplastics3030030
Chicago/Turabian StyleBerset, Fanny C. D., and Serge Stoll. 2024. "Microplastic Contamination in Field-Side Composting in Geneva, Switzerland (CH)" Microplastics 3, no. 3: 477-491. https://doi.org/10.3390/microplastics3030030
APA StyleBerset, F. C. D., & Stoll, S. (2024). Microplastic Contamination in Field-Side Composting in Geneva, Switzerland (CH). Microplastics, 3(3), 477-491. https://doi.org/10.3390/microplastics3030030