Opening Space for Plastics—Why Spatial, Soil and Land Use Data Are Important to Understand Global Soil (Micro)Plastic Pollution
Abstract
:1. Introduction
- Analyze the spatial reference reported as well as the primary land uses and landscapes where MP studies have been conducted on different spatial levels.
- Identify current trends and potential gaps in the documentation of spatial reference, soil context information.
- Derive recommendations for improved spatial reference within future research and work towards a global database of MPs in soils.
2. Materials and Methods
2.1. Data Collection
2.2. Data Evaluation
3. Spatial Reference of Soil Related Microplastic Research
3.1. Global Evidence of Microplastics in Soils and Data Availabiltiy
3.2. Spatial Recovery and Study Area Extensions
3.3. Soil Sampling Information
3.4. Soil Context
4. Implications
5. Conclusions
- Further advancement of monitoring programs, with a clear recommendation to political stakeholders to establish national monitoring programs on MPs in soils. With the background of proven as well as assumed environmental risks posed by MPs to soils, further data collection and the designation of potential MP hotspots becomes essential.
- Expand documentation of sampling procedures, spatially representative and systematic approaches in combination with the provision of basic soil information (soil classification) made freely available with an easily accessible spatial reference provided through open geodata.
- Increased investigation of subsoils for the presence of MP as well as the consideration of pedogenic soil features during sampling and later analysis, especially with regard to MP dynamics (e.g., MP entry pathways, in situ relocations and leaching) in soils.
- A new focus on previously unexplored soil regions and soil types in conjunction with so far less considered land uses, in order to gain further insight into global distribution pathways of MPs in soils and to reveal so far unknown impacts on global important soilscapes.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Syberg, K.; Nielsen, M.B.; Oturai, N.B.; Clausen, L.P.W.; Ramos, T.M.; Hansen, S.F. Circular Economy and Reduction of Micro(Nano)Plastics Contamination. J. Hazard. Mater. Adv. 2022, 5, 100044. [Google Scholar] [CrossRef]
- Persson, L.; Carney Almroth, B.M.; Collins, C.D.; Cornell, S.; de Wit, C.A.; Diamond, M.L.; Fantke, P.; Hassellöv, M.; MacLeod, M.; Ryberg, M.W.; et al. Outside the Safe Operating Space of the Planetary Boundary for Novel Entities. Environ. Sci. Technol. 2022, 56, 1510–1521. [Google Scholar] [CrossRef]
- Andrady, A.L. The Plastic in Microplastics: A Review. Mar. Pollut. Bull. 2017, 119, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [Green Version]
- Zubris, K.A.V.; Richards, B.K. Synthetic Fibers as an Indicator of Land Application of Sludge. Environ. Pollut. 2005, 138, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Yang, X.; Chen, L.; Chao, J.; Teng, J.; Wang, Q. Microplastics in Soils: A Review of Possible Sources, Analytical Methods and Ecological Impacts. J. Chem. Technol. Biotechnol. 2020, 37, 1045. [Google Scholar] [CrossRef]
- Weber, C.J.; Weihrauch, C.; Opp, C.; Chifflard, P. Investigating Microplastic Dynamics in Soils: Orientation for Sampling Strategies and Sample Pre–Procession. Land Degrad. Dev. 2021, 32, 270–284. [Google Scholar] [CrossRef]
- Büks, F.; Kaupenjohann, M. Global Concentrations of Microplastics in Soils—A Review. SOIL 2020, 6, 649–662. [Google Scholar] [CrossRef]
- Clarivate Analytics Document Search—Web of Science Core Collection. Available online: https://www.webofscience.com/wos/woscc/basic-search (accessed on 10 June 2022).
- Brandes, E.; Henseler, M.; Kreins, P. Identifying Hot-Spots for Microplastic Contamination in Agricultural Soils—A Spatial Modelling Approach for Germany. Environ. Res. Lett. 2021, 16, 104041. [Google Scholar] [CrossRef]
- Weihrauch, C. Dynamics Need Space—A Geospatial Approach to Soil Phosphorus’ Reactions and Migration. Geoderma 2019, 354, 113775. [Google Scholar] [CrossRef]
- Willgoose, G. Principles of Soilscape and Landscape Evolution, 1st ed.; Cambridge University Press: Cambridge, UK, 2018; ISBN 978-1-139-02933-9. [Google Scholar]
- Shen, M.; Huang, W.; Chen, M.; Song, B.; Zeng, G.; Zhang, Y. (Micro)Plastic Crisis: Un-Ignorable Contribution to Global Greenhouse Gas Emissions and Climate Change. J. Clean. Prod. 2020, 254, 120138. [Google Scholar] [CrossRef]
- Oldenkamp, R.; Hoeks, S.; Čengić, M.; Barbarossa, V.; Burns, E.E.; Boxall, A.B.A.; Ragas, A.M.J. A High-Resolution Spatial Model to Predict Exposure to Pharmaceuticals in European Surface Waters: EPiE. Environ. Sci. Technol. 2018, 52, 12494–12503. [Google Scholar] [CrossRef] [PubMed]
- Fuller, S.; Gautam, A. A Procedure for Measuring Microplastics Using Pressurized Fluid Extraction. Environ. Sci. Technol. 2016, 50, 5774–5780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huerta Lwanga, E.; Mendoza Vega, J.; Ku Quej, V.; de los Angeles Chi, J.; Del Sanchez Cid, L.; Chi, C.; Escalona Segura, G.; Gertsen, H.; Salánki, T.; van der Ploeg, M.; et al. Field Evidence for Transfer of Plastic Debris along a Terrestrial Food Chain. Sci. Rep. 2017, 7, 14071. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Lu, S.; Song, Y.; Lei, L.; Hu, J.; Lv, W.; Zhou, W.; Cao, C.; Shi, H.; Yang, X.; et al. Microplastic and Mesoplastic Pollution in Farmland Soils in Suburbs of Shanghai, China. Environ. Pollut. 2018, 242, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Piehl, S.; Leibner, A.; Löder, M.G.J.; Dris, R.; Bogner, C.; Laforsch, C. Identification and Quantification of Macro- and Microplastics on an Agricultural Farmland. Sci. Rep. 2018, 8, 17950. [Google Scholar] [CrossRef] [Green Version]
- Scheurer, M.; Bigalke, M. Microplastics in Swiss Floodplain Soils. Environ. Sci. Technol. 2018, 52, 3591–3598. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.S.; Liu, Y.F. The Distribution of Microplastics in Soil Aggregate Fractions in Southwestern China. Sci. Total Environ. 2018, 642, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Corradini, F.; Meza, P.; Eguiluz, R.; Casado, F.; Huerta-Lwanga, E.; Geissen, V. Evidence of Microplastic Accumulation in Agricultural Soils from Sewage Sludge Disposal. Sci. Total Environ. 2019, 671, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhao, Y.; Qin, X.; Jia, W.; Chai, L.; Huang, M.; Huang, Y. Microplastics from Mulching Film Is a Distinct Habitat for Bacteria in Farmland Soil. Sci. Total Environ. 2019, 688, 470–478. [Google Scholar] [CrossRef]
- Afrin, S.; Uddin, M.K.; Rahman, M.M. Microplastics Contamination in the Soil from Urban Landfill Site, Dhaka, Bangladesh. Heliyon 2020, 6, e05572. [Google Scholar] [CrossRef]
- Chai, B.; Wei, Q.; She, Y.; Lu, G.; Dang, Z.; Yin, H. Soil Microplastic Pollution in an E-Waste Dismantling Zone of China. Waste Manag. 2020, 118, 291–301. [Google Scholar] [CrossRef]
- Choi, Y.R.; Kim, Y.-N.; Yoon, J.-H.; Dickinson, N.; Kim, K.-H. Plastic Contamination of Forest, Urban, and Agricultural Soils: A Case Study of Yeoju City in the Republic of Korea. J. Soils Sediments 2021, 21, 1962–1973. [Google Scholar] [CrossRef]
- Helcoski, R.; Yonkos, L.T.; Sanchez, A.; Baldwin, A.H. Wetland Soil Microplastics Are Negatively Related to Vegetation Cover and Stem Density. Environ. Pollut. 2020, 256, 113391. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Q.; Jia, W.; Yan, C.; Wang, J. Agricultural Plastic Mulching as a Source of Microplastics in the Terrestrial Environment. Environ. Pollut. 2020, 260, 114096. [Google Scholar] [CrossRef]
- Lechthaler, S.; Esser, V.; Schüttrumpf, H.; Stauch, G. Why Analysing Microplastics in Floodplains Matters: Application in a Sedimentary Context. Environ. Sci. Process. Impacts 2021, 23, 117–131. [Google Scholar] [CrossRef]
- Li, W.; Wufuer, R.; Duo, J.; Wang, S.; Luo, Y.; Zhang, D.; Pan, X. Microplastics in Agricultural Soils: Extraction and Characterization after Different Periods of Polythene Film Mulching in an Arid Region. Sci. Total Environ. 2020, 749, 141420. [Google Scholar] [CrossRef]
- van den Berg, P.; Huerta-Lwanga, E.; Corradini, F.; Geissen, V. Sewage Sludge Application as a Vehicle for Microplastics in Eastern Spanish Agricultural Soils. Environ. Pollut. 2020, 261, 114198. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, J.; Zhang, H.; Shi, H.; Fei, Y.; Huang, S.; Tong, Y.; Wen, D.; Luo, Y.; Barceló, D. Microplastics in Agricultural Soils on the Coastal Plain of Hangzhou Bay, East China: Multiple Sources Other than Plastic Mulching Film. J. Hazard. Mater. 2020, 388, 121814. [Google Scholar] [CrossRef]
- Boughattas, I.; Hattab, S.; Zitouni, N.; Mkhinini, M.; Missawi, O.; Bousserrhine, N.; Banni, M. Assessing the Presence of Microplastic Particles in Tunisian Agriculture Soils and Their Potential Toxicity Effects Using Eisenia Andrei as Bioindicator. Sci. Total Environ. 2021, 796, 148959. [Google Scholar] [CrossRef]
- Cao, L.; Wu, D.; Liu, P.; Hu, W.; Xu, L.; Sun, Y.; Wu, Q.; Tian, K.; Huang, B.; Yoon, S.J.; et al. Occurrence, Distribution and Affecting Factors of Microplastics in Agricultural Soils along the Lower Reaches of Yangtze River, China. Sci. Total Environ. 2021, 794, 148694. [Google Scholar] [CrossRef] [PubMed]
- Corradini, F.; Casado, F.; Leiva, V.; Huerta-Lwanga, E.; Geissen, V. Microplastics Occurrence and Frequency in Soils under Different Land Uses on a Regional Scale. Sci. Total Environ. 2021, 752, 141917. [Google Scholar] [CrossRef] [PubMed]
- Cyvin, J.B.; Ervik, H.; Kveberg, A.A.; Hellevik, C. Macroplastic in Soil and Peat. A Case Study from the Remote Islands of Mausund and Froan Landscape Conservation Area, Norway; Implications for Coastal Cleanups and Biodiversity. Sci. Total Environ. 2021, 787, 147547. [Google Scholar] [CrossRef]
- Feng, S.; Lu, H.; Liu, Y. The Occurrence of Microplastics in Farmland and Grassland Soils in the Qinghai-Tibet Plateau: Different Land Use and Mulching Time in Facility Agriculture. Environ. Pollut. 2021, 279, 116939. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Lu, B.; Guo, W.; Tang, X.; Wang, X.; Xue, Y.; Wang, L.; He, X. Distribution of Microplastics in Mulched Soil in Xinjiang, China. Int. J. Agric. Biol. Eng. 2021, 14, 196–204. [Google Scholar] [CrossRef]
- Ragoobur, D.; Huerta-Lwanga, E.; Somaroo, G.D. Microplastics in Agricultural Soils, Wastewater Effluents and Sewage Sludge in Mauritius. Sci. Total Environ. 2021, 798, 149326. [Google Scholar] [CrossRef]
- Sobhani, Z.; Luo, Y.; Gibson, C.T.; Tang, Y.; Naidu, R.; Megharaj, M.; Fang, C. Collecting Microplastics in Gardens: Case Study (i) of Soil. Front. Environ. Sci. 2021, 9. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Liu, S.; Li, H.; Chen, X.; Peng, C.; Zhang, P.; Liu, X. Distinct Microplastic Distributions in Soils of Different Land-Use Types: A Case Study of Chinese Farmlands. Environ. Pollut. 2021, 269, 116199. [Google Scholar] [CrossRef]
- Wen, D.; Chen, Y.; Tong, Y.; Wang, H.; Zhang, H.; Luo, Y. Quantification of Microplastics in Soils Using Accelerated Solvent Extraction: Comparison with a Visual Sorting Method. Bull. Environ. Contam. Toxicol. 2021, 107, 770–777. [Google Scholar] [CrossRef]
- Yang, J.; Li, L.; Li, R.; Xu, L.; Shen, Y.; Li, S.; Tu, C.; Wu, L.; Christie, P.; Luo, Y. Microplastics in an Agricultural Soil Following Repeated Application of Three Types of Sewage Sludge: A Field Study. Environ. Pollut. 2021, 289, 117943. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, J.; Liu, Y.; Chen, L.; Tao, S.; Liu, W. Distribution Characteristics of Microplastics in Agricultural Soils from the Largest Vegetable Production Base in China. Sci. Total Environ. 2021, 756, 143860. [Google Scholar] [CrossRef] [PubMed]
- Tagg, A.S.; Brandes, E.; Fischer, F.; Fischer, D.; Brandt, J.; Labrenz, M. Agricultural Application of Microplastic-Rich Sewage Sludge Leads to Further Uncontrolled Contamination. Sci. Total Environ. 2022, 806, 150611. [Google Scholar] [CrossRef] [PubMed]
- Grause, G.; Kuniyasu, Y.; Chien, M.-F.; Inoue, C. Separation of Microplastic from Soil by Centrifugation and Its Application to Agricultural Soil. Chemosphere 2022, 288, 132654. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Yang, L.; Xu, L.; Yang, J. Soil Microplastic Pollution under Different Land Uses in Tropics, Southwestern China. Chemosphere 2022, 289, 133176. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Deb, S.; Ghosh, S.; Mandal, S.; Quazi, S.A.; Kushwaha, A.; Hoque, A.; Choudhury, A. Impact of Anthropogenic Pollution on Soil Properties in and around a Town in Eastern India. Geoderma Reg. 2022, 28, e00462. [Google Scholar] [CrossRef]
- Scopetani, C.; Chelazzi, D.; Cincinelli, A.; Martellini, T.; Leiniö, V.; Pellinen, J. Hazardous Contaminants in Plastics Contained in Compost and Agricultural Soil. Chemosphere 2022, 293, 133645. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Kocher, B.; Altmann, K.; Braun, U. Determination of Tire Wear Markers in Soil Samples and Their Distribution in a Roadside Soil. Chemosphere 2022, 294, 133653. [Google Scholar] [CrossRef]
- Rodrigues, R.R. Downside up: Science Matters Equally to the Global South. Commun Earth Env. 2021, 2, 100. [Google Scholar] [CrossRef]
- Koutnik, V.S.; Leonard, J.; Alkidim, S.; DePrima, F.J.; Ravi, S.; Hoek, E.M.V.; Mohanty, S.K. Distribution of Microplastics in Soil and Freshwater Environments: Global Analysis and Framework for Transport Modeling. Environ. Pollut. 2021, 274, 116552. [Google Scholar] [CrossRef]
- Möller, J.N.; Löder, M.G.J.; Laforsch, C. Finding Microplastics in Soils: A Review of Analytical Methods. Environ. Sci. Technol. 2020, 54, 2078–2090. [Google Scholar] [CrossRef]
- Prata, J.C.; da Costa, J.P.; Duarte, A.C.; Rocha-Santos, T. Methods for Sampling and Detection of Microplastics in Water and Sediment: A Critical Review. TrAC Trends Anal. Chem. 2019, 110, 150–159. [Google Scholar] [CrossRef]
- Thomas, D.; Schütze, B.; Heinze, W.M.; Steinmetz, Z. Sample Preparation Techniques for the Analysis of Microplastics in Soil—A Review. Sustainability 2020, 12, 9074. [Google Scholar] [CrossRef]
- Yu, Y.; Flury, M. How to Take Representative Samples to Quantify Microplastic Particles in Soil? Sci. Total Environ. 2021, 784, 147166. [Google Scholar] [CrossRef]
- Tekman, M.; Gutow, L.; Macario, A.; Haas, A.; Walter, A.; Bergmann, M. LITTERBASE: Online Portal for Marine Litter. Available online: https://litterbase.awi.de/litter (accessed on 10 June 2022).
- Gabelica, M.; Bojčić, R.; Puljak, L. Many Researchers Were Not Compliant with Their Published Data Sharing Statement: Mixed-Methods Study. J. Clin. Epidemiol. 2022, 150, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Sajjad, M.; Huang, Q.; Khan, S.; Khan, M.A.; Liu, Y.; Wang, J.; Lian, F.; Wang, Q.; Guo, G. Microplastics in the Soil Environment: A Critical Review. Environ. Technol. Innov. 2022, 27, 102408. [Google Scholar] [CrossRef]
- Rehm, R.; Zeyer, T.; Schmidt, A.; Fiener, P. Soil erosion as transport pathway of microplastic from agriculture soils to aquatic ecosystems. Sci. Total Environ. 2021, 795, 148774. [Google Scholar] [CrossRef]
- Ren, Z.; Xiangyuang, G.; Xu, X.; Zhao, L.; Qiu, H.; Cao, X. Microplastics in the soil-groundwater environment: Aging, migration, and co-transport of contaminants—A critical review. J. Hazard. Mater. 2021, 419, 126455. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Land Use. Our World Data 2013. Available online: https://ourworldindata.org/land-use (accessed on 5 March 2022).
- Food and Agriculture Organization of the United Nations (FAO). Other Global Soil Maps and Databases|FAO SOILS PORTAL|Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/other-global-soil-maps-and-databases/en/ (accessed on 10 June 2022).
- Rillig, M.C.; Ziersch, L.; Hempel, S. Microplastic Transport in Soil by Earthworms. Sci Rep 2017, 7, 1362. [Google Scholar] [CrossRef] [Green Version]
- Kale, S.K.; Deshmuk, A.G.; Dudhare, M.S.; Patil, V.B. Microbial Degradation Of Plastic—A Review. IJPR 2020, 13, 952–961. [Google Scholar] [CrossRef]
- Zumstein, M.T.; Schintlmeister, A.; Nelson, T.F.; Baumgartner, R.; Woebken, D.; Wagner, M.; Kohler, H.-P.E.; McNeill, K.; Sander, M. Biodegradation of Synthetic Polymers in Soils: Tracking Carbon into CO 2 and Microbial Biomass. Sci. Adv. 2018, 4, eaas9024. [Google Scholar] [CrossRef] [PubMed]
- de Souza Machado, A.A.; Lau, C.W.; Till, J.; Kloas, W.; Lehmann, A.; Becker, R.; Rillig, M.C. Impacts of Microplastics on the Soil Biophysical Environment. Environ. Sci. Technol. 2018, 52, 9656–9665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Souza Machado, A.A.; Lau, C.W.; Kloas, W.; Bergmann, J.; Bachelier, J.B.; Faltin, E.; Becker, R.; Görlich, A.S.; Rillig, M.C. Microplastics Can Change Soil Properties and Affect Plant Performance. Environ. Sci. Technol. 2019, 53, 6044–6052. [Google Scholar] [CrossRef] [Green Version]
- Metz, T.; Koch, M.; Lenz, P. Extracting Microplastic Decay Rates from Field Data. Sci. Rep. 2022, 12, 1223. [Google Scholar] [CrossRef] [PubMed]
- Metz, T.; Koch, M.; Lenz, P. Quantification of Microplastics: Which Parameters Are Essential for a Reliable Inter-Study Comparison? Mar. Pollut. Bull. 2020, 157, 111330. [Google Scholar] [CrossRef] [PubMed]
Topic | ID | Requested Information | Question | Responses a | ||
---|---|---|---|---|---|---|
Yes-No | Categorized | Value | ||||
Basic data | 1-1 | Year | Year of publication | mandatory | ||
1-2 | Author(s) | First author and/or authors (et al.) | ||||
1-3 | Title | Publication title | ||||
1-4 | Journal | Journal name | ||||
1-5 | DOI | Full DOI link | ||||
Spatial reference and study area data | 2-1 | Country | Country where study was conducted | Country name | ||
2-2 | Location | Location name of study area | Location name | |||
2-3 | Single location b | Was the study conducted on a single location | y/n | |||
2-4 | Coordinates | Were coordinates of sampling locations documented | y/n | |||
2-5 | Coordinates format | In what format were coordinates specified | Coordinate example | |||
2-6 | Map b | Was a map with sampling points provided | y/n | |||
Sampling data | 3-1 | Number of samples | What was the absolute number of samples (including replicates) | Number | ||
3-2 | Sampling volume documentation | Was the sample volume documented | y/n | |||
3-3 | Exact sample mass or volume | What was the exact sample mass or volume (on average) | Mass or volume | |||
3-4 | Sampling depth documentation | Was the sampling depth documented | y/n | |||
3-5 | Maximal sampling depth | What was the maximal sampling depth | Depth in cm | |||
3-6 | Depth sampling according b | After which features was depth sampling conducted | horizon, depth, na | |||
3-7 | Lateral sampling documentation | Was the lateral sampling procedure documented | y/n | |||
3-8 | Lateral sampling scale b | How was the scale of lateral sampling | single, local, regional, superregional, na | |||
3-9 | Systematic sampling b | Was a systematic sampling (e.g., grid) conducted | y/n | |||
Soil context data | 4-1 | Land use documentation | Was the land use on sampling sites documented | y/n | ||
4-2 | Major land use | What was the major land use | Name | |||
4-3 | Soil type documentation | Was the soil type documented | y/n | |||
4-4 | Major soil type | What was the major soil type | Name | |||
4-5 | Other soil features | Were other soil features analyzed (e.g., texture) | y/n | |||
Data handling | 5-1 | Open data | Was the total research data freely available within repositories or SI | y/n | ||
5-2 | Sampling locations | Were the sampling locations made freely available | y/n |
No | Year | Study | Country | Location | Ref. a |
---|---|---|---|---|---|
1 | 2016 | Fuller and Gautam | Australia | Sydney | [15] |
2 | 2017 | Huerta Lwanga et al. | Mexico | Pucnachen, Campeche | [16] |
3 | 2018 | Liu et al. | China | Shanghai | [17] |
4 | Piehl et al. | Germany | Southwest Germany | [18] | |
5 | Scheurer and Bigalke | Switzerland | Nationwide | [19] | |
6 | Zhang and Liu | China | Chai river valley | [20] | |
7 | 2019 | Corradini et al. | Chile | Mellipilla county | [21] |
8 | Zhang et al. | China | Shihezi City | [22] | |
9 | 2020 | Afrin et al. | Bangladesh | Dhaka | [23] |
10 | Chai et al. | China | Guiyu town | [24] | |
11 | Choi et al. | Korea | Yeoju City | [25] | |
12 | Helcoski et al. | USA | Washington, DC | [26] | |
13 | Huang et al. | China | Shihezi | [27] | |
14 | Lechthaler et al. | Germany | Inde river | [28] | |
15 | Li et al. | China | Paotai Town | [29] | |
16 | van den Berg et al. | Spain | East Spain | [30] | |
17 | Zhou et al. | China | Coastal plain Hangzhou Bay | [31] | |
18 | 2021 | Boughattas at al. | Tunisia | not specified | [32] |
19 | Cao et al. | China | Yangtze River | [33] | |
20 | Corradini | Chile | Chile’s Región Metropolitana | [34] | |
21 | Cyvin et al. | Norway | Islands of Mausund and Froan | [35] | |
22 | Feng et al. | China | Tibet, Yunnan, Sichuan, and Qinghai | [36] | |
23 | Hu et al. | China | Happy Farm, Alar City | [37] | |
24 | Ragoobur et al. | Mauritius | Mauritius | [38] | |
25 | Sobhani et al. | Australia | Bellevue Heights | [39] | |
26 | Wang et al. | China | Hebei Province | [40] | |
27 | Wen et al. | China | Hangzhou | [41] | |
28 | Yang et al. | China | Suzhou | [42] | |
29 | Yu et al. | China | Shouguang City | [43] | |
30 | 2022 | Tagg et al. | Germany | Speyer | [44] |
31 | Grause et al. | Japan | Tome | [45] | |
32 | Xu et al. | China | Xishuangbanna | [46] | |
33 | Sarkar et al. | India | Cooch Behar | [47] | |
34 | Scopetani et al. | Finland | Orimattila and Kärkölä | [48] | |
35 | Müller et al. | Germany | Tübingen | [49] |
Questionnaire ID a | Requested Information | Response Data (%) | ||
---|---|---|---|---|
Yes | No | na | ||
2-3 | Single location | 26 | 69 | 6 |
2-4 | Coordinates | 23 | 74 | 3 |
2-6 | Map | 49 | 49 | 3 |
3-2 | Sampling volume documentation | 57 | 40 | 3 |
3-4 | Sampling depth documentation | 86 | 14 | 0 |
3-7 | Lateral sampling documentation | 66 | 34 | 0 |
3-9 | Systematic sampling | 23 | 77 | 0 |
4-1 | Land use documentation | 94 | 6 | 0 |
4-3 | Soil type documentation | 20 | 80 | 0 |
4-5 | Other soil features | 40 | 60 | 0 |
5-1 | Open data | 11 | 89 | 0 |
5-2 | Sampling locations | 17 | 83 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weber, C.J.; Bigalke, M. Opening Space for Plastics—Why Spatial, Soil and Land Use Data Are Important to Understand Global Soil (Micro)Plastic Pollution. Microplastics 2022, 1, 610-625. https://doi.org/10.3390/microplastics1040042
Weber CJ, Bigalke M. Opening Space for Plastics—Why Spatial, Soil and Land Use Data Are Important to Understand Global Soil (Micro)Plastic Pollution. Microplastics. 2022; 1(4):610-625. https://doi.org/10.3390/microplastics1040042
Chicago/Turabian StyleWeber, Collin J., and Moritz Bigalke. 2022. "Opening Space for Plastics—Why Spatial, Soil and Land Use Data Are Important to Understand Global Soil (Micro)Plastic Pollution" Microplastics 1, no. 4: 610-625. https://doi.org/10.3390/microplastics1040042
APA StyleWeber, C. J., & Bigalke, M. (2022). Opening Space for Plastics—Why Spatial, Soil and Land Use Data Are Important to Understand Global Soil (Micro)Plastic Pollution. Microplastics, 1(4), 610-625. https://doi.org/10.3390/microplastics1040042