Zootechnical and Municipal Solid Waste Digestates: Effects on Soil Nitrogen Mineralization and Kinetics
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Characterization
2.2. Digestate Characterization
2.3. Soil Incubation Procedure
2.4. Nitrogen Extraction from Soil and Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Nitrogen Mineralization Processes
3.2. Kinetics of Nitrogen Mineralization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OFMSW | Organic fraction municipal solid waste |
PS | Digested pig slurry as such |
PF | Digested pig slurry–solid fraction |
BM | Digested bovine manure |
DO | Digested OFMSW |
DD | Dried digested OFMSW |
DC | Digested and composted OFMSW |
AS | Ammonium sulfate |
MPN | Potentially mineralizable nitrogen |
References
- Circular Economy Package-European Commission. Proposal for a Regulation of the European Parliament and of the Council Laying Down Rules on the Making Available on the Market of CE Marked Fertilising Products and Amending Regulations (EC) n. 1069/2009 and (EC) n. 1107/2009. 2016. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52016PC0157 (accessed on 27 March 2024).
- Chojnacka, K.; Moustakas, K.; Witek-Krowiak, A. Bio-based fertilizers: A practical approach towards circular economy. Bioresour. Technol. 2020, 295, 122223. [Google Scholar] [CrossRef]
- Tur-Cardona, J.; Bonnichsen, O.; Speelman, S.; Verspecht, A.; Carpentier, L.; Debruyne, L.; Marchand, F.; Jacobsen, B.H.; Buysse, J. Farmers’ reasons to accept bio-based fertilizers: A choice experiment in seven different European countries. J. Clean. Prod. 2018, 197, 406–416. [Google Scholar] [CrossRef]
- Rossi, G.; Beni, C. Effects of medium-term amendment with diversely processed sewage sludge on soil humification—Mineralization processes and on Cu, Pb, Ni, and Zn bioavailability. Plants 2018, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Chew, K.W.; Chia, S.R.; Yen, H.W.; Nomanbhoy, S.; Ho, Y.C.; Show, P.L. Transformation of Biomass Waste into Sustainable Organic Fertilizers. Sustainability 2019, 11, 2266. [Google Scholar] [CrossRef]
- Urra, J.; Alkorta, I.; Garbisu, C. Potential benefits and risks for soil health derived from the use of organic amendments in agriculture. Agronomy 2019, 9, 542. [Google Scholar] [CrossRef]
- Lin, L.; Xu, F.; Ge, X.; Li, Y. Biological treatment of organic materials for energy and nutrients production—Anaerobic digestion and composting. Adv. Bioenergy 2019, 4, 121–181. [Google Scholar] [CrossRef]
- Lamb, J.J. Anaerobic Digestion–From Biomass to Biogas; ebook; SCIO Publishing: Banbury, UK, 2020; 462p, ISBN 978-82-692033-2-5. [Google Scholar]
- Koszel, M.; Lorencowicz, E. Agricultural use of biogas digestate as a replacement fertilizers. Agric. Sci. Procedia 2015, 7, 119–124. [Google Scholar] [CrossRef]
- Battista, F.; Frison, N.; Bolzonella, D. Energy and nutrients’ recovery in anaerobic digestion of agricultural biomass: An Italian perspective for future applications. Energies 2019, 12, 3287. [Google Scholar] [CrossRef]
- Kovačić, Ð.; Lončarić, Z.; Jović, J.; Samac, D.; Popović, B.; Tišma, M. Digestate Management and Processing Practices: A Review. Appl. Sci. 2022, 12, 9216. [Google Scholar] [CrossRef]
- Beni, C.; Servadio, P.; Marconi, S.; Neri, U.; Aromolo, R.; Diana, G. Anaerobic digestate administration: Effect on soil physical and mechanical behavior. Commun. Soil Sci. Plant Anal. 2012, 43, 821–834. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, C.; Champagne, P.; Mabee, W. Overview of current biological and thermo-chemical treatment technologies for sustainable sludge management. Waste Manag. Res. 2014, 32, 586–600. [Google Scholar] [CrossRef] [PubMed]
- Barłóg, P.; Hlisnikovský, L.; Kunzová, E. Effect of digestate on soil organic carbon and plant-available nutrient content compared to cattle slurry and mineral fertilization. Agronomy 2020, 10, 379. [Google Scholar] [CrossRef]
- Nascimento, A.L.; De Souza, A.J.; Oliveira, F.C.; Coscione, A.R.; Gomes Viana, D.; Borges Regitano, J. Chemical attributes of sewage sludges: Relationships to sources and treatments, and implications for sludge usage in agriculture. J. Clean Prod. 2020, 258, 120746. [Google Scholar] [CrossRef]
- European Union. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying Down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) n. 1069/2009 and (EC) n. 1107/2009 and replealing Regulation (EC) n. 2003/2003. Available online: https://eur-lex.europa.eu/eli/reg/2019/1009/oj/eng (accessed on 27 March 2024).
- Lazicki, P.; Geisseler, D.; Lloyd, M. Nitrogen mineralization from organic amendments is variable but predictable. J. Environ. Qual. 2020, 49, 483–495. [Google Scholar] [CrossRef]
- Stanford, G.; Smith, S.J. Nitrogen Mineralization Potentials of Soils. Soil Sci. Soc. Am. J. 1972, 36, 465–472. [Google Scholar] [CrossRef]
- Benedetti, A.; Alianiello, F.; Dell’Abate, M.T. A modified Stanford and Smith method for the study of the mineralization of nitrogen from organic materials. In Nitrogen Mineralization in Agricultural Soils; Neetson, J.J., Hassink, J., Eds.; AB-DLO Thema’s; Haren: Hertogenbosch, The Netherlands, 1994; pp. 127–132. [Google Scholar]
- Mariano, E.; Trivelin, P.C.O.; Leite, J.M.; Megda, M.X.V.; Otto, R.; Franco, H.C.J. Incubation methods for assessing mineralizable nitrogen in soils under sugarcane. Rev. Bras. Ciênc. Solo 2013, 37, 450–461. [Google Scholar] [CrossRef]
- Grigatti, M.; Di Girolamo, G.; Chincarini, R.; Ciavatta, C. Potential nitrogen mineralization, plant utilization efficiency and soil CO2 emissions following the addition of anaerobic digested slurries. Biomass Bioenerg. 2011, 35, 4619–4629. [Google Scholar] [CrossRef]
- Gil, M.V.; Carballo, M.T.; Calvo, L.F. Modelling N Mineralization from Bovine Manure and Sewage Sludge Composts. Bioresour. Technol. 2011, 102, 863–871. [Google Scholar] [CrossRef]
- Bensid, Z.; Sbih, M.; Chergui, D.; Ghaouti, K. Comparison of Empirical Models for Estimating the Mineralization Potential of Soil Nitrogen. J. Adv. Agric. 2016, 7, 1189–1202. [Google Scholar] [CrossRef]
- Wijanarko, A.; Purwanto, B.H. Comparison of two kinetics models for estimating N mineralization affected by different quality of organic matter in Typic Hapludults. J. Degrad. Min. Lands Manag. 2016, 3, 577–583. [Google Scholar] [CrossRef]
- da Silva, M.L.; Silva, E.M.; Frühauf, A.C.; Muniz, J.A.; Fernandes, T.J. Nonlinear modeling of carbon dynamics in soil treated with tannery sludge. Rev. Agrogeoambiental 2023, 15, e20231759. [Google Scholar] [CrossRef]
- Nardi, P.; Neri, U.; Di Matteo, G.; Trinchera, A.; Napoli, R.; Farina, R.; Subbarao, G.V.; Benedetti, A. Nitrogen Release from Slow-Release Fertilizers in Soils with Different Microbial Activities. Pedosphere 2018, 8, 332–340. [Google Scholar] [CrossRef]
- Molina, J.A.E.; Clapp, C.E.; Larson, W.E. Potentially Mineralizable Nitrogen in Soil: The Simple Exponential Model Does Not Apply for the First 12 Weeks of Incubation. Soil Sci. Soc. Am. J. 1980, 44, 442–443. [Google Scholar] [CrossRef]
- Inubushi, K.; Wada, H.; Takai, Y. Easily Decomposable Organic Matter in Paddy Soil: VI. Kinetics of Nitrogen Mineralization in Submerged Soils. Soil Sci. Plant Nutr. 1985, 31, 563–572. [Google Scholar] [CrossRef]
- Camargo, F.A.d.O.; Gianello, C.; Tedesco, M.J.; Riboldi, J.; Meurer, E.J.; Bissani, C.A. Empirical models to predict soil nitrogen mineralization. Ciênc. Rural 2002, 32, 393–399. [Google Scholar] [CrossRef]
- Geisseler, D.; Smith, R.; Cahn, M.; Muramoto, J. Nitrogen mineralization from organic fertilizers and composts: Literature survey and model fitting. J. Environ. Qual. 2021, 50, 1325–1338. [Google Scholar] [CrossRef]
- MIPAF—Ministero Politiche Agricole e Forestali (Italy). Metodi Ufficiali di Analisi Chimica del Suolo. Decreto Ministeriale del 13/09/1999; Gazzetta Ufficiale della Repubblica Italiana, n. 248, 21/10/1999, Supplemento Ordinario n. 185. Available online: https://www.gazzettaufficiale.it/eli/gu/1999/10/21/248/so/185/sg/pdf (accessed on 31 October 2024). (In Italian).
- Decreto Legislativo 29 Aprile 2010 n. 75. Riordino e Revisione Della Disciplina in Materia di Fertilizzanti. Gazzetta Ufficiale della Repubblica Italiana Serie Generale n. 121, 26/05/2010. Available online: https://www.gazzettaufficiale.it/eli/gu/2010/05/26/121/so/106/sg/pdf (accessed on 31 October 2024). (In Italian).
- Decreto 10 Luglio Decree 10 July 2013. Aggiornamento Degli Allegati Del Decreto Legislativo 29 Aprile 2010, n. 75, Concernente il Riordino e la Revisione Della Disciplina in Materia di Fertilizzanti. (13A07510) (GU Serie Generale n.218 del 17-09-2013). Gazzetta Ufficiale Della Repubblica Italiana General Series n. 218 of 17/09/2013. Available online: https://www.gazzettaufficiale.it/eli/id/2013/09/17/13A07510/sg (accessed on 31 October 2024). (In Italian).
- Wall, L.; Gehrke, C.W.; Neuner, J.E.; Lathey, R.D.; Rexnord, P.R. Cereal protein nitrogen: Evolution and comparison of four different methods. J. Assoc. Off. Anal. Chem. 1975, 58, 811–817. [Google Scholar]
- Kamshake, L.J.; Hannah, S.A.; Comen, J.M. Automated analysis for nitrate by hydrazine reduction. Water Resour. 1967, 1, 205–216. [Google Scholar]
- JASP Team. JASP, Version 0.19.1; Computer software; JASP: Amsterdam, The Netherlands, 2024.
- Silva, E.M.; Jane, S.A.; Fernandes, F.A.; da Silva Édipo, M.; Muniz, J.A.; Fernandes, T.J. Stanford & Smith nonlinear model in the description of CO2 evolved from soil treated with swine manure: Maximum entropy prior. Acta Sci. Techonol. 2022, 45, 56360. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 19 January 2024).
- Liu, X.J.A.; van Groenigen, K.J.; Dijkstra, P.; Hungate, B.A. Increased plant uptake of native soil nitrogen following fertilizer addition—Not a priming effect? Appl. Soil Ecol. 2017, 114, 105–110. [Google Scholar] [CrossRef]
- Marzi, M.; Shahbazi, K.; Kharazi, N.; Rezaei, M. The Influence of Organic Amendment Source on Carbon and Nitrogen Mineralization in Different Soils. J. Soil Sci. Plant Nutr. 2020, 20, 177–191. [Google Scholar] [CrossRef]
- Rossi, G.; Neri, U.; Felici, B.; Benedetti, A. Effect of different zootechnical digestates on fertilization and nitrogen leaching. Agrochimica 2020, 64, 239–251. [Google Scholar] [CrossRef]
- Rossi, G.; Beni, C.; Benedetti, A.; Felici, B.; Neri, U. Effect of Mineral or OFMSW Digestate Fertilization on Ryegrass and Nitrogen Leaching. Agronomy 2023, 13, 1316. [Google Scholar] [CrossRef]
- Ji, J.; Zhang, Y.; Zhang, Y.; Yu, N.; Zou, H.; Li, Y.; Liu, S.; Tong, Y. Soil nitrogen mineralisation dynamics under long-term different irrigation methods in greenhouses. Acta Agric. Scand. 2014, 63, 117–126. [Google Scholar] [CrossRef]
Parameter | PS | PF | BM | DO | DD | DC |
---|---|---|---|---|---|---|
Moisture % | 95.5 | 71.9 | 92.9 | 72.7 | 16.3 | 36.8 |
pH | 8.3 | 8.6 | 7.8 | 8.5 | 8.4 | 8.0 |
Total solids % | 97.4 | 76.4 | 94.9 | 82.4 | 47.9 | 67.3 |
Volatile solids % | 2.6 | 23.6 | 5.1 | 17.6 | 52.1 | 32.7 |
N tot. % | 8.2 | 2.2 | 5.6 | 4.3 | 3.9 | 2.2 |
Organic N % | 2.2 | 1.2 | 2.4 | 3.0 | 3.1 | 2.1 |
Inorganic N % | 6.0 | 1.0 | 3.2 | 1.3 | 0.8 | 0.1 |
Organic C % | 24.7 | 41.8 | 37.5 | 33.8 | 23.3 | 48.6 |
C/N ratio | 3 | 19 | 7 | 8 | 6 | 22 |
P (P2O5) % | 3.1 | 1.9 | 1.1 | 3.6 | 3.4 | 0.7 |
K2O % | 7.0 | 1.0 | 6.2 | 0.7 | 0.8 | 1.3 |
Cu mg kg−1 | 101 | 29 | 67 | 93 | 102 | 56 |
Zn mg kg−1 | 812 | 206 | 326 | 310 | 344 | 182 |
Pb mg kg−1 | <LOQ | <LOQ | <LOQ | 2 | 0.5 | 3 |
Cr mg kg−1 | <LOQ | <LOQ | <LOQ | 12 | 9 | 5 |
Cd mg kg−1 | <LOQ | <LOQ | <LOQ | 0.4 | 0.1 | 0.1 |
Ni mg kg−1 | <LOQ | <LOQ | <LOQ | 8 | 5 | 7 |
Hg mg kg−1 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
NH4+-N | ||||||||
---|---|---|---|---|---|---|---|---|
Week | 1 | 2 | 4 | 8 | 12 | |||
AS | 81.93 | c | 6.60 | 2.20 | a | 3.60 | 40.00 | d |
PS | 50.33 | bc | 6.40 | 8.00 | a | 0.53 | 5.27 | ab |
PF | 16.27 | ab | 4.00 | 15.67 | a | 2.93 | 3.27 | a |
BM | 32.33 | ab | 7.13 | 9.53 | a | 1.80 | 7.00 | ab |
DO | 2.67 | a | 9.73 | 34.93 | b | 3.93 | 10.27 | ab |
DD | 2.20 | a | 2.87 | 0.00 | a | 2.07 | 13.73 | bc |
DC | 25.33 | ab | 3.87 | 0.00 | a | 3.40 | 22.13 | c |
ANOVA F test | *** | ns | *** | ns | *** |
NO3−-N | ||||||||
---|---|---|---|---|---|---|---|---|
Week | 1 | 2 | 4 | 8 | 12 | |||
AS | 42.93 | a | 75.33 | c | 68.67 | b | 39.67 | 10.53 |
PS | 35.73 | a | 56.20 | b | 28.87 | ab | 33.07 | 18.20 |
PF | 46.87 | ab | 9.87 | a | 0.00 | a | 32.93 | 21.87 |
BM | 37.73 | a | 56.40 | b | 18.73 | a | 49.07 | 10.47 |
DO | 94.53 | c | 9.87 | a | 19.00 | a | 52.87 | 20.33 |
DD | 75.60 | bc | 0.00 | a | 13.40 | a | 50.73 | 24.53 |
DC | 91.27 | bc | 0.00 | a | 15.47 | a | 39.20 | 16.33 |
ANOVA F test | *** | *** | ** | ns | ns |
Substrates | Parameters | Estimate | SE | 95% CI | RMSE | R2(Adj.) | ||
---|---|---|---|---|---|---|---|---|
Lower Limit | Upper Limit | |||||||
AS | N0 | 354.17 | a | 19.55 | 312.74 | 395.61 | 40.83 | 0.907 |
k | 0.41 | a | 0.07 | 0.27 | 0.56 | |||
t1/2 | 1.69 | a | 0.28 | 1.08 | 2.28 | |||
PS | N0 | 233.00 | bc | 16.82 | 197.34 | 268.66 | 37.27 | 0.837 |
k | 0.46 | a | 0.10 | 0.24 | 0.68 | |||
t1/2 | 1.51 | a | 0.35 | 0.78 | 2.25 | |||
PF | N0 | 143.82 | d | 10.00 | 122.62 | 165.03 | 19.01 | 0.868 |
k | 0.36 | a | 0.07 | 0.21 | 0.51 | |||
t1/2 | 1.93 | a | 0.39 | 1.11 | 2.77 | |||
BM | N0 | 226.49 | bc | 13.02 | 198.90 | 254.01 | 25.60 | 0.910 |
k | 0.38 | a | 0.06 | 0.24 | 0.51 | |||
t1/2 | 1.82 | a | 0.31 | 1.18 | 2.51 | |||
DO | N0 | 253.32 | b | 8.83 | 234.61 | 272.03 | 15.45 | 0.970 |
k | 0.32 | a | 0.03 | 0.26 | 0.39 | |||
t1/2 | 2.17 | a | 0.21 | 1.70 | 2.59 | |||
DD | N0 | 178.01 | cd | 14.98 | 146.27 | 209.76 | 21.99 | 0.868 |
k | 0.27 | a | 0.06 | 0.15 | 0.39 | |||
t1/2 | 2.55 | a | 0.56 | 1.39 | 3.76 | |||
DC | N0 | 188.06 | bcd | 14.04 | 158.31 | 217.82 | 34.50 | 0.777 |
k | 0.58 | a | 0.15 | 0.26 | 0.90 | |||
t1/2 | 1.20 | a | 0.31 | 0.54 | 1.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, G.; Beni, C.; Socciarelli, S.; Neri, U. Zootechnical and Municipal Solid Waste Digestates: Effects on Soil Nitrogen Mineralization and Kinetics. Biomass 2025, 5, 5. https://doi.org/10.3390/biomass5010005
Rossi G, Beni C, Socciarelli S, Neri U. Zootechnical and Municipal Solid Waste Digestates: Effects on Soil Nitrogen Mineralization and Kinetics. Biomass. 2025; 5(1):5. https://doi.org/10.3390/biomass5010005
Chicago/Turabian StyleRossi, Gabriella, Claudio Beni, Silvia Socciarelli, and Ulderico Neri. 2025. "Zootechnical and Municipal Solid Waste Digestates: Effects on Soil Nitrogen Mineralization and Kinetics" Biomass 5, no. 1: 5. https://doi.org/10.3390/biomass5010005
APA StyleRossi, G., Beni, C., Socciarelli, S., & Neri, U. (2025). Zootechnical and Municipal Solid Waste Digestates: Effects on Soil Nitrogen Mineralization and Kinetics. Biomass, 5(1), 5. https://doi.org/10.3390/biomass5010005