Optimized Polyhydroxybutyrate Production by Neobacillus niacini GS1 Utilizing Corn Flour, Wheat Bran, and Peptone: A Sustainable Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Isolation of Bacteria
2.2. Screening of PHB-Producing Bacterial Strain
2.3. Molecular Identification of PHB-Producing Bacteria by 16S rRNA Gene Analysis
2.4. Production of PHB
2.5. Extraction and Purification of PHB
2.6. Dry Cell Weight (DCW) Analysis
2.7. Quantitative Analysis of PHB
dry cell weight (DCW) (g/L)
2.8. Characterization of PHB by FTIR, UV-Vis Spectroscopy and 1H-NMR
2.9. Effect of Culture Conditions on Cell Growth
2.10. Optimization of PHB Production by Response Surface Methodology
3. Results and Discussion
3.1. Isolation and Screening of PHB-Producing Bacteria
3.2. Identification of High-PHB-Producing Bacterial Isolate
3.3. Characterization of PHB
3.3.1. Spectrophotometric and FTIR Analysis
3.3.2. NMR Analysis
3.4. Optimization of PHB Production
3.4.1. Effect of Inoculum Age on PHB Production
3.4.2. Effect of Inoculum Size (V/V) on PHB Production
3.4.3. Effect of Incubation Time on PHB Production
3.4.4. Effect of Agitation Rate on PHB Production
3.4.5. Effect of Incubation Temperature on PHB Production
3.4.6. Effect of pH of Media on PHB Production
3.4.7. Effect of Different Carbon Sources on PHB Production
3.4.8. Effect of Different Nitrogen Sources on PHB Production
3.4.9. PHB Production Optimization by RSM
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Getachew, A.; Woldesenbet, F. Production of Biodegradable Plastic by Polyhydroxybutyrate (PHB) Accumulating Bacteria Using Low Cost Agricultural Waste Material. BMC Res. Notes 2016, 9, 509. [Google Scholar] [CrossRef]
- Kumari, D.; Jaipuriar, D.S.; Kanchana, P.; Varma, S.M.; Gurja, S. Biodegradable plastic (phb) from bacteria collected from gopalpur beach, bhubaneswar. Int. J. Curr. Pharm. Sci. 2020, 12, 41–44. [Google Scholar] [CrossRef]
- Acharjee, S.A.; Bharali, P.; Gogoi, B.; Sorhie, V.; Walling, B. Alemtoshi PHA-Based Bioplastic: A Potential Alternative to Address Microplastic Pollution. Water Air Soil. Pollut. 2023, 234, 21. [Google Scholar] [CrossRef] [PubMed]
- Reis, M.A.M.; Serafim, L.S.; Lemos, P.C.; Ramos, A.M.; Aguiar, F.R.; Van Loosdrecht, M.C.M. Production of Polyhydroxyalkanoates by Mixed Microbial Cultures. Bioprocess. Biosyst. Eng. 2003, 25, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Gurieff, N.; Lant, P. Comparative Life Cycle Assessment and Financial Analysis of Mixed Culture Polyhydroxyalkanoate Production. Bioresour. Technol. 2007, 98, 3393–3403. [Google Scholar] [CrossRef] [PubMed]
- Adnan, M.; Siddiqui, A.J.; Ashraf, S.A.; Snoussi, M.; Badraoui, R.; Ibrahim, A.M.M.; Alreshidi, M.; Sachidanandan, M.; Patel, M. Characterization and Process Optimization for Enhanced Production of Polyhydroxybutyrate (PHB)-Based Biodegradable Polymer from Bacillus flexus Isolated from Municipal Solid Waste Landfill Site. Polymers 2023, 15, 1407. [Google Scholar] [CrossRef]
- Mostafa, Y.S.; Alrumman, S.A.; Otaif, K.A.; Alamri, S.A.; Mostafa, M.S.; Sahlabji, T. Production and Characterization of Bioplastic by Polyhydroxybutyrate Accumulating Erythrobacter aquimaris Isolated from Mangrove Rhizosphere. Molecules 2020, 25, 179. [Google Scholar] [CrossRef]
- Alarfaj, A.A.; Arshad, M.; Sholkamy, E.N.; Munusamy, M.A. Extraction and Characterization of Polyhydroxybutyrates (PHB) from Bacillus thuringiensis KSADL127 Isolated from Mangrove Environments of Saudi Arabia. Braz. Arch. Biol. Technol. 2015, 58, 781–788. [Google Scholar] [CrossRef]
- Brenner, D.J.; Krieg, N.R.; Staley, J.T. Bergey’s Manual of Systematic Bacteriology: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 0-387-24145-0. [Google Scholar]
- Bruno, W.J.; Socci, N.D.; Halpern, A.L. Weighted Neighbor Joining: A Likelihood-Based Approach to Distance-Based Phylogeny Reconstruction. Mol. Biol. Evol. 2000, 17, 189–197. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- López-Abelairas, M.; García-Torreiro, M.; Lú-Chau, T.; Lema, J.M.; Steinbüchel, A. Comparison of Several Methods for the Separation of Poly(3-Hydroxybutyrate) from Cupriavidus necator H16 Cultures. Biochem. Eng. J. 2015, 93, 250–259. [Google Scholar] [CrossRef]
- Zafar, M.; Kumar, S.; Kumar, S.; Dhiman, A.K. Optimization of Polyhydroxybutyrate (PHB) Production by Azohydromonas lata MTCC 2311 by Using Genetic Algorithm Based on Artificial Neural Network and Response Surface Methodology. Biocatal. Agric. Biotechnol. 2012, 1, 70–79. [Google Scholar] [CrossRef]
- Bhuwal, A.K.; Singh, G.; Aggarwal, N.K.; Goyal, V.; Yadav, A. Isolation and Screening of Polyhydroxyalkanoates Producing Bacteria from Pulp, Paper, and Cardboard Industry Wastes. Int. J. Biomater. 2013, 2013, 752821. [Google Scholar] [CrossRef] [PubMed]
- Adnan, M.; Siddiqui, A.J.; Ashraf, S.A.; Snoussi, M.; Badraoui, R.; Alreshidi, M.; Elasbali, A.M.; Al-Soud, W.A.; Alharethi, S.H.; Sachidanandan, M.; et al. Polyhydroxybutyrate (PHB)-Based Biodegradable Polymer from Agromyces indicus: Enhanced Production, Characterization, and Optimization. Polymers 2022, 14, 3982. [Google Scholar] [CrossRef]
- Li, R.; Jiang, Y.; Wang, X.; Yang, J.; Gao, Y.; Zi, X.; Zhang, X.; Gao, H.; Hu, N. Psychrotrophic Pseudomonas mandelii CBS-1 Produces High Levels of Poly-β-Hydroxybutyrate. SpringerPlus 2013, 2, 335. [Google Scholar] [CrossRef]
- Tang, L.J. Study on Nitrogen Removal Characteristics of an Aerobic Denitrifying Bacterium Rhodococcus Strain T7. Environ. Ecol. Three Gorges 2008, 1, 24–27. [Google Scholar]
- Papaneophytou, C.P.; Kyriakidis, D.A. Optimization of Polyhydroxyalkanoates Production from Thermus thermophilus HB8 Using Response Surface Methodology. J. Polym. Environ. 2012, 20, 760–773. [Google Scholar] [CrossRef]
- Hamdy, S.M.; Danial, A.W.; Gad El-Rab, S.M.F.; Shoreit, A.A.M.; Hesham, A.E.-L. Production and Optimization of Bioplastic (Polyhydroxybutyrate) from Bacillus cereus Strain SH-02 Using Response Surface Methodology. BMC Microbiol. 2022, 22, 183. [Google Scholar] [CrossRef]
- Aryaraj, D.; Pramitha, V.S. Extraction and Characterization of Polyhydroxybutyrate (PHB) From Bacillus Flexus MHO57386.1 Isolated From Marine Sponge Oceanopia Arenosa (Rao, 1941). Mar. Sci. Technol. Bull. 2021, 10, 170–185. [Google Scholar] [CrossRef]
- Petti, C.A.; Polage, C.R.; Schreckenberger, P. The Role of 16S rRNA Gene Sequencing in Identification of Microorganisms Misidentified by Conventional Methods. J. Clin. Microbiol. 2005, 43, 6123–6125. [Google Scholar] [CrossRef]
- Bonthrone, K.M.; Clauss, J.; Horowitz, D.M.; Hunter, B.K.; Sanders, J.K.M. The Biological and Physical Chemistry of Polyhydroxyalkanoates as Seen by NMR Spectroscopy. FEMS Microbiol. Lett. 1992, 103, 269–277. [Google Scholar] [CrossRef]
- Silambarasan, S.; Logeswari, P.; Sivaramakrishnan, R.; Pugazhendhi, A.; Kamaraj, B.; Ruiz, A.; Ramadoss, G.; Cornejo, P. Polyhydroxybutyrate Production from Ultrasound-Aided Alkaline Pretreated Finger Millet Straw Using Bacillus megaterium Strain CAM12. Bioresour. Technol. 2021, 325, 124632. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, S.; El-Refai, H.; Allam, R.; Shafei, M.; Ahmed, H.; Zaki, R. Statistical Optimization for Polyhydroxybutyrate Production by Locally Isolated Bacillus safensis Using Sugarcane Molasses under Nutritional Stressed Conditions. Egypt. Pharmaceut J. 2023, 22, 192. [Google Scholar] [CrossRef]
- Saratale, R.G.; Cho, S.K.; Saratale, G.D.; Ghodake, G.S.; Bharagava, R.N.; Kim, D.S.; Nair, S.; Shin, H.S. Efficient Bioconversion of Sugarcane Bagasse into Polyhydroxybutyrate (PHB) by Lysinibacillus sp. and Its Characterization. Bioresour. Technol. 2021, 324, 124673. [Google Scholar] [CrossRef]
- Elgendy, N.; Aboshanab, K.; Yassien, M.; Aboulwafa, M.; Hassouna, N. Scaling up, Kinetic Modeling, and Economic Analysis of Poly (3-Hydroxybutyrate) Production by Bacillus cereus Isolate CCASU-P83. Arch. Pharm. Sci. Ain Shams Univ. 2021, 5, 158–170. [Google Scholar] [CrossRef]
- Jain, N.; Priyadarshini, L.; Sharma, K.; Iyappan, S.; Jaganathan, M.K.; Jai Ganesh, R. Enhancement of Polymeric Poly-(β)-Hydroxy Butyrate (PHB) Production from Alcaligenes faecalis through the Optimisation Process. Int. J. Res. Pharm. Sci. 2020, 11, 7436–7441. [Google Scholar] [CrossRef]
- Khattab, A.M.; Esmael, M.E.; Farrag, A.A.; Ibrahim, M.I.A. Structural Assessment of the Bioplastic (Poly-3-Hydroxybutyrate) Produced by Bacillus flexus Azu-A2 through Cheese Whey Valorization. Int. J. Biol. Macromol. 2021, 190, 319–332. [Google Scholar] [CrossRef]
- Hagagy, N.; Saddiq, A.A.; Tag, H.M.; Selim, S.; AbdElgawad, H.; Martínez-Espinosa, R.M. Characterization of Polyhydroxybutyrate, PHB, Synthesized by Newly Isolated Haloarchaea halolamina spp. Molecules 2022, 27, 7366. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar Sharma, M.; Kumar Sharma, M.; Kumar, G. Isolation of Local Strain of Bacillus sp. SM-11, Producing PHB Using Different Waste Raw as Substrate. Res. J. Pharm. Technol. 2022, 15, 2053–2058. [Google Scholar] [CrossRef]
- Cesário, M.T.; Raposo, R.S.; De Almeida, M.C.M.D.; Van Keulen, F.; Ferreira, B.S.; Da Fonseca, M.M.R. Enhanced Bioproduction of Poly-3-Hydroxybutyrate from Wheat Straw Lignocellulosic Hydrolysates. New Biotechnol. 2014, 31, 104–113. [Google Scholar] [CrossRef]
- Ramadas, N.V.; Singh, S.K.; Soccol, C.R.; Pandey, A. Polyhydroxybutyrate Production Using Agro-Industrial Residue as Substrate by Bacillus Sphaericus NCIM 5149. Braz. Arch. Biol. Technol. 2009, 52, 17–23. [Google Scholar] [CrossRef]
- Khamplod, T.; Wongsirichot, P.; Winterburn, J. Production of Polyhydroxyalkanoates from Hydrolysed Rapeseed Meal by Haloferax mediterranei. Bioresour. Technol. 2023, 386, 129541. [Google Scholar] [CrossRef]
Variable | Components | Levels of Variable Studied | ||||
---|---|---|---|---|---|---|
−α | −1 | 0 | +1 | +α | ||
X1 | Wheat bran (w/v, g/L) | 1.59 | 5 | 10 | 15 | 18.41 |
X2 | Corn flour (w/v, g/L) | 0.31 | 1.5 | 3.25 | 5 | 6.19 |
X3 | Peptone (w/v, g/L) | 0.63 | 2.5 | 5.25 | 8 | 9.87 |
Run No. | A: Wheat Bran (%, w/v) | B: Corn Flour (%, w/v) | Peptone (%, w/v) | PHB % (Unit/L) | |||
---|---|---|---|---|---|---|---|
Actual | Coded | Actual | Coded | Actual | Coded | ||
1 | 1.59 | −α | 3.25 | 0 | 5.25 | 0 | 49.27 |
2 | 5 | −1 | 1.5 | −1 | 8 | +1 | 46.78 |
3 | 10 | 0 | 3.25 | 0 | 0.63 | −α | 48.55 |
4 | 10 | 0 | 3.25 | 0 | 5.25 | 0 | 42.77 |
5 | 15 | +1 | 5 | +1 | 2.5 | −1 | 51.08 |
6 | 10 | 0 | 3.25 | 0 | 5.25 | 0 | 46.86 |
7 | 5 | −1 | 5 | +1 | 8 | +1 | 60.01 |
8 | 10 | 0 | 3.25 | 0 | 5.25 | 0 | 51.21 |
9 | 15 | +1 | 5 | +1 | 8 | +1 | 54.88 |
10 | 10 | 0 | 3.25 | 0 | 5.25 | 0 | 42.6 |
11 | 10 | 0 | 0.31 | −α | 5.25 | 0 | 46.95 |
12 | 5 | −1 | 5 | +1 | 2.5 | −1 | 51.1 |
13 | 15 | +1 | 1.5 | −1 | 8 | +1 | 45.38 |
14 | 10 | 0 | 3.25 | 0 | 9.87 | +α | 61.1 |
15 | 10 | 0 | 3.25 | 0 | 5.25 | 0 | 48.59 |
16 | 18.41 | +α | 3.25 | 0 | 5.25 | 0 | 47.07 |
17 | 5 | −1 | 1.5 | −1 | 2.5 | −1 | 48.93 |
18 | 10 | 0 | 3.25 | 0 | 5.25 | 0 | 46.1 |
19 | 15 | 1.5 | −1 | 2.5 | −1 | 48.42 | |
20 | 10 | 0 | 6.19 | +α | 5.25 | 0 | 48.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrimali, G.; Gangawane, A.; Rami, E.; Shah, H.; Thummar, K.; Sahoo, D.K.; Patel, A.; Schmidt, J.E. Optimized Polyhydroxybutyrate Production by Neobacillus niacini GS1 Utilizing Corn Flour, Wheat Bran, and Peptone: A Sustainable Approach. Biomass 2024, 4, 1164-1177. https://doi.org/10.3390/biomass4040064
Shrimali G, Gangawane A, Rami E, Shah H, Thummar K, Sahoo DK, Patel A, Schmidt JE. Optimized Polyhydroxybutyrate Production by Neobacillus niacini GS1 Utilizing Corn Flour, Wheat Bran, and Peptone: A Sustainable Approach. Biomass. 2024; 4(4):1164-1177. https://doi.org/10.3390/biomass4040064
Chicago/Turabian StyleShrimali, Gaurav, Ajit Gangawane, Esha Rami, Hardik Shah, Kashyap Thummar, Dipak Kumar Sahoo, Ashish Patel, and Jens Ejbye Schmidt. 2024. "Optimized Polyhydroxybutyrate Production by Neobacillus niacini GS1 Utilizing Corn Flour, Wheat Bran, and Peptone: A Sustainable Approach" Biomass 4, no. 4: 1164-1177. https://doi.org/10.3390/biomass4040064
APA StyleShrimali, G., Gangawane, A., Rami, E., Shah, H., Thummar, K., Sahoo, D. K., Patel, A., & Schmidt, J. E. (2024). Optimized Polyhydroxybutyrate Production by Neobacillus niacini GS1 Utilizing Corn Flour, Wheat Bran, and Peptone: A Sustainable Approach. Biomass, 4(4), 1164-1177. https://doi.org/10.3390/biomass4040064