A Combined Separation of Variables and Fractional Power Series Approach for Selected Boundary Value Problems
Abstract
:1. Introduction
2. Preliminaries
3. Case Studies
3.1. Case 1—1D Helmholtz Equation with Constant Term
3.2. Case 2—Steady-State Heat Conduction in a 2D Circular Plate Using Laplace’s Equation
4. Final Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Boyce, W.E.; DiPrima, R.C.; Meade, D.B. Elementary Differential Equations and Boundary Value Problems, 12th ed.; International Adaptation; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2022; ISBN 978-1-119-82051-2. [Google Scholar]
- Kreyszig, E.; Kreyszig, H.; Norminton, E.J. Advanced Engineering Mathematics, 10th ed.; John Wiley: Hoboken, NJ, USA, 2011; ISBN 978-0-470-45836-5. [Google Scholar]
- Kakac, S.; Yener, Y.; Naveira-Cotta, C.P. Heat Conduction, Fifth Edition; CRC Press: Boca Raton, FL, USA, 2018; ISBN 978-1-351-71418-1. [Google Scholar]
- Guo, X.; Yang, H.; He, Y. An Efficient Numerical Algorithm to Solve Steady State Heat Conduction Problems with Local Uncertainty. Eng. Anal. Bound. Elem. 2024, 163, 593–605. [Google Scholar] [CrossRef]
- Sundqvist, J. Analytical Heat Conduction Modelling for Shaped Laser Beams. J. Mech. Work. Technol. 2017, 247, 48–54. [Google Scholar] [CrossRef]
- Xu, H.J.; Xing, Z.B.; Wang, F.Q.; Cheng, Z.M. Review on Heat Conduction, Heat Convection, Thermal Radiation and Phase Change Heat Transfer of Nanofluids in Porous Media: Fundamentals and Applications. Chem. Eng. Sci. 2019, 195, 462–483. [Google Scholar] [CrossRef]
- David, S.A.; Linares, J.L.; Pallone, E.M.J.A. Fractional Order Calculus: Historical Apologia, Basic Concepts and Some Applications. Rev. Bras. Ensino Física 2011, 33, 4302. [Google Scholar] [CrossRef]
- Luchko, Y.; Kochubei, A. Handbook of Fractional Calculus with Applications. Volume 1: Basic Theory, 1st ed.; Tenreiro Machado, J.A., Ed.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2019; ISBN 978-3-11-057162-2. [Google Scholar]
- David, S.; Valentim, C.A., Jr. Fractional Euler-Lagrange Equations Applied to Oscillatory Systems. Mathematics 2015, 3, 258–272. [Google Scholar] [CrossRef]
- Valentim, C.A.; Rabi, J.A.; David, S.A. Fractional Mathematical Oncology: On the Potential of Non-Integer Order Calculus Applied to Interdisciplinary Models. Biosystems 2021, 204, 104377. [Google Scholar] [CrossRef]
- David, S.A.; Rabi, J.A. Can Fractional Calculus Be Applied to Relativity? Axiomathes 2020, 30, 165–176. [Google Scholar] [CrossRef]
- Podlubny, I. Numerical Solution of Fractional Differential Equations. In Mathematics in Science and Engineering; Technical University of Munich: Munich, Germany, 1999; Volume 198, pp. 223–242. ISBN 978-0-12-558840-9. [Google Scholar]
- Singh, H.; Srivastava, H.M.; Pandey, R.K. Special Functions in Fractional Calculus and Engineering; CRC Press: Boca Raton, FL, USA, 2023; ISBN 978-1-032-43602-9. [Google Scholar]
- Ortigueira, M.D.; Tenreiro Machado, J. Fractional Derivatives: The Perspective of System Theory. Mathematics 2019, 7, 150. [Google Scholar] [CrossRef]
- Valério, D.; Ortigueira, M.D.; Lopes, A.M. How Many Fractional Derivatives Are There? Mathematics 2022, 10, 737. [Google Scholar] [CrossRef]
- Podlubny, I. On Some Geometric Interpretations of Fractional-Order Operators. arXiv 2024, arXiv:2411.12494. [Google Scholar]
- Tarasov, V.E. Fractional Derivative As Fractional Power of Derivative. Int. J. Math. 2007, 18, 281–299. [Google Scholar] [CrossRef]
- Muthaiah, S.; Baleanu, D. Existence of Solutions for Nonlinear Fractional Differential Equations and Inclusions Depending on Lower-Order Fractional Derivatives. Axioms 2020, 9, 44. [Google Scholar] [CrossRef]
- Al-Refai, M.; Syam, M.I.; Baleanu, D. Analytical Treatments to Systems of Fractional Differential Equations with Modified Atangana–Baleanu Derivative. Fractals 2023, 31, 2340156. [Google Scholar] [CrossRef]
- Lotfi, E.M.; Zine, H.; Torres, D.F.M.; Yousfi, N. The Power Fractional Calculus: First Definitions and Properties with Applications to Power Fractional Differential Equations. Mathematics 2022, 10, 3594. [Google Scholar] [CrossRef]
- Shah, P.; Agashe, S. Review of Fractional PID Controller. Mechatronics 2016, 38, 29–41. [Google Scholar] [CrossRef]
- Viera-Martin, E.; Gómez-Aguilar, J.F.; Solís-Pérez, J.E.; Hernández-Pérez, J.A.; Escobar-Jiménez, R.F. Artificial Neural Networks: A Practical Review of Applications Involving Fractional Calculus. Eur. Phys. J. Spec. Top. 2022, 231, 2059–2095. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Baleanu, D.; Nieto, J.J.; Torres, D.F.M.; Zhou, Y. A Survey on Fuzzy Fractional Differential and Optimal Control Nonlocal Evolution Equations. J. Comput. Appl. Math. 2018, 339, 3–29. [Google Scholar] [CrossRef]
- Debbouche, N.; Ouannas, A.; Grassi, G.; Al-Hussein, A.-B.A.; Tahir, F.R.; Saad, K.M.; Jahanshahi, H.; Aly, A.A. Chaos in Cancer Tumor Growth Model with Commensurate and Incommensurate Fractional-Order Derivatives. Comput. Math. Methods Med. 2022, 2022, 1–13. [Google Scholar] [CrossRef]
- Debbouche, N.; Ouannas, A.; Batiha, I.M.; Grassi, G. Chaotic Dynamics in a Novel COVID-19 Pandemic Model Described by Commensurate and Incommensurate Fractional-Order Derivatives. Nonlinear Dyn. 2022, 109, 33–45. [Google Scholar] [CrossRef]
- Guilhon, I.; Admiral, T.D. Solução Numérica Da Equação de Laplace Através Do Método Da Relaxação. Rev. Bras. Ensino Fís. 2023, 45, e20220256. [Google Scholar] [CrossRef]
- Leite, E.J.F.; Montenegro, M. Nontrivial Solutions to Affine p -Laplace Equations via a Perturbation Strategy. Nonlinear Anal. Real World Appl. 2024, 80, 104154. [Google Scholar] [CrossRef]
- Upadhyay, P.; Upadhyay, S.K.; Shukla, K.K. Magnetic Resonance Images Denoising Using a Wavelet Solution to Laplace Equation Associated with a New Variational Model. Appl. Math. Comput. 2021, 400, 126083. [Google Scholar] [CrossRef]
- Ramšak, M. On Numerical Solution Stability of the Laplace Equation in Absence of the Dirichlet Boundary Condition: Benchmark Problem Proposal. Eng. Anal. Bound. Elem. 2022, 144, 475–481. [Google Scholar] [CrossRef]
- Kar, M.; Lin, Y.-H.; Zimmermann, P. Determining Coefficients for a Fractional P-Laplace Equation from Exterior Measurements. J. Differ. Equ. 2024, 406, 338–365. [Google Scholar] [CrossRef]
- Duan, Y.; Wei, Y. Properties of Fractional P-Laplace Equations with Sign-Changing Potential. Nonlinear Anal. 2024, 249, 113628. [Google Scholar] [CrossRef]
- Diethelm, K.; Ford, N.J.; Freed, A.D. A Predictor-Corrector Approach for the Numerical. Nonlinear Dyn. 2002, 29, 3–22. [Google Scholar] [CrossRef]
- David, S.A.; Valentim, C.A.; Debbouche, A. Fractional Modeling Applied to the Dynamics of the Action Potential in Cardiac Tissue. Fractal Fract. 2022, 6, 149. [Google Scholar] [CrossRef]
- Chi, X.; Yu, B.; Jiang, X. Parameter Estimation for the Time Fractional Heat Conduction Model Based on Experimental Heat Flux Data. Appl. Math. Lett. 2020, 102, 106094. [Google Scholar] [CrossRef]
- Gomes, A.V. Transformadas Integrais, Modelagem Fracionária e o Sistema de Lotka-Volterra. Master’s Thesis, Universidade do Estado de São Paulo, Botucatu, Brazil, 2014. [Google Scholar]
- Wyld, H.W. Mathematical Methods for Physics, 2nd ed.; Powell, G., Ed.; CRC Press: Boca Raton, FL, USA, 2020; ISBN 978-1-003-03746-0. [Google Scholar]
- Srivastava, S.; Kumar, V.; Gupta, V.K.; Kumar, R.; Rawat, V.K.; Nishad, A.K. Comparison of Fins in IC Engine Using CFD Analysis. In Proceedings of the 2nd International Conference on Smart Sustainable Materials and Technologies (ICSSMT 2023), Trichy, India, 30–31 August 2023; Sumesh, M., Tavares, J.M.R.S., Vettivel, S.C., Oliveira, M.O., Eds.; Advances in Science, Technology & Innovation. Springer Nature: Cham, Switzerland, 2024; pp. 19–30, ISBN 978-3-031-50023-7. [Google Scholar]
- Liu, Y.; Li, L.; Zhang, Y. Numerical Simulation of Non-Fourier Heat Conduction in Fins by Lattice Boltzmann Method. Appl. Therm. Eng. 2020, 166, 114670. [Google Scholar] [CrossRef]
- Pradhan, S.; Kumari, K.; Barua, A.; Panicker, R.V.; Singh, H.; Jeet, S. Numerical Simulation of Heat Transfer and Design Optimization of IC Engine Fins Geometry Using Finite Element Analysis. Int. J. Interact. Des. Manuf. 2024, 18, 479–491. [Google Scholar] [CrossRef]
- Meresse, D.; Harmand, S.; Siroux, M.; Watremez, M.; Dubar, L. Experimental Disc Heat Flux Identification on a Reduced Scale Braking System Using the Inverse Heat Conduction Method. Appl. Therm. Eng. 2012, 48, 202–210. [Google Scholar] [CrossRef]
- Carmona, S.; Rouizi, Y.; Quéméner, O.; Joly, F.; Neveu, A. Estimation of Heat Flux by Using Reduced Model and the Adjoint Method. Application to a Brake Disc Rotating. Int. J. Therm. Sci. 2018, 131, 94–104. [Google Scholar] [CrossRef]
- Yevtushenko, A.A.; Kuciej, M.; Och, E. Temperature in Thermally Nonlinear Pad–Disk Brake System. Int. Commun. Heat Mass Transf. 2014, 57, 274–281. [Google Scholar] [CrossRef]
- Ottoni, J.E. Introdução Ao Cálculo Fracionário Com Aplicações. RMAT 2018, 5, 50–77. [Google Scholar]
- Nane, E. Fractional Cauchy Problems on Bounded Domains: Survey of Recent Results. In Fractional Dynamics and Control; Baleanu, D., Machado, J.A.T., Luo, A.C.J., Eds.; Springer: New York, NY, USA, 2012; pp. 185–198. ISBN 978-1-4614-0456-9. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Felipe, G.A.; Valentim, C.A.; David, S.A. A Combined Separation of Variables and Fractional Power Series Approach for Selected Boundary Value Problems. Dynamics 2025, 5, 24. https://doi.org/10.3390/dynamics5030024
Felipe GA, Valentim CA, David SA. A Combined Separation of Variables and Fractional Power Series Approach for Selected Boundary Value Problems. Dynamics. 2025; 5(3):24. https://doi.org/10.3390/dynamics5030024
Chicago/Turabian StyleFelipe, Gabriel Antonio, Carlos Alberto Valentim, and Sergio Adriani David. 2025. "A Combined Separation of Variables and Fractional Power Series Approach for Selected Boundary Value Problems" Dynamics 5, no. 3: 24. https://doi.org/10.3390/dynamics5030024
APA StyleFelipe, G. A., Valentim, C. A., & David, S. A. (2025). A Combined Separation of Variables and Fractional Power Series Approach for Selected Boundary Value Problems. Dynamics, 5(3), 24. https://doi.org/10.3390/dynamics5030024