Waveguide Arrays: Interaction to Many Neighbors
Abstract
1. Introduction
2. Interaction with N Neighbors
3. Interaction with N Neighbors Using the Generating Function of the Generalized Bessel Functions of N Variables and N − 1 Parameters
4. From Discrete to Continuous Models
4.1. Natural Logarithm Function
4.2. Exponential Function
4.3. Polylogarithm Function
4.4. Quadratic Polynomial
4.5. Geometric Series
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heitler, W. The Quantum Theory of Radiation; Dover Books on Physics, Dover Publications: Garden City, NY, USA, 1984. [Google Scholar]
- Gyongyosi, L.; Imre, S. A Survey on quantum computing technology. Comp. Sci. Rev. 2019, 31, 51–71. [Google Scholar] [CrossRef]
- Fedida, S.; Serafini, A. Tree-level entanglement in quantum electrodynamics. Phys. Rev. D 2023, 107, 116007. [Google Scholar] [CrossRef]
- Vidal, G. Efficient Classical Simulation of Slightly Entangled Quantum Computations. Phys. Rev. Lett. 2003, 91, 147902. [Google Scholar] [CrossRef] [PubMed]
- Feynman, R.P. Simulating physics with computers. In Feynman and Computation; CRC Press: Boca Raton, FL, USA, 2018; pp. 133–153. [Google Scholar]
- Blatt, R.; Wineland, D. Entangled states of trapped atomic ions. Nature 2008, 453, 1008–1015. [Google Scholar] [CrossRef]
- Monroe, C.; Campbell, W.C.; Duan, L.M.; Gong, Z.X.; Gorshkov, A.V.; Hess, P.W.; Islam, R.; Kim, K.; Linke, N.M.; Pagano, G.; et al. Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys. 2021, 93, 025001. [Google Scholar] [CrossRef]
- Bloch, I.; Dalibard, J.; Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 2008, 80, 885–964. [Google Scholar] [CrossRef]
- Mivehvar, F.; Piazza, F.; Donner, T.; Ritsch, H. Cavity QED with quantum gases: New paradigms in many-body physics. Adv. Phys. 2021, 70, 1–153. [Google Scholar] [CrossRef]
- Bohrdt, A.; Homeier, L.; Reinmoser, C.; Demler, E.; Grusdt, F. Exploration of doped quantum magnets with ultracold atoms. Ann. Phys. 2021, 435, 168651. [Google Scholar] [CrossRef]
- Christodoulides, D.N.; Lederer, F.; Silberberg, Y. Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature 2003, 424, 817–823. [Google Scholar] [CrossRef]
- Barral, D.; Walschaers, M.; Bencheikh, K.; Parigi, V.; Levenson, J.A.; Treps, N.; Belabas, N. Quantum state engineering in arrays of nonlinear waveguides. Phys. Rev. A 2020, 102, 043706. [Google Scholar] [CrossRef]
- Urzúa, A.R.; Ramos-Prieto, I.; Moya-Cessa, H.M. Integrated optical wave analyzer using the discrete fractional Fourier transform. J. Opt. Soc. Am. B 2024, 41, 2358–2365. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Y.; Huang, Y.; Pu, M.; Wang, Y.; Ma, X.; Li, X.; Luo, X. Crosstalk reduction of integrated optical waveguides with nonuniform subwavelength silicon strips. Sci. Rep. 2020, 10, 4491. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, H.; Liu, H.; Zhang, Z.; Feng, X.; Chen, J.; Wu, H.; Deng, J.; Liang, W.; Lin, W. High-intensity spatial-mode steerable frequency up-converter toward on-chip integration. Opto-Electron. Sci. 2024, 3, 230036. [Google Scholar] [CrossRef]
- Ha, Y.; Wang, L.; Guo, Y.; Pu, M.; Zou, F.; Li, X.; Fan, Y.; Ma, X.; Luo, X. High-fidelity mode scaling via topological-optimized on-chip metalens for compact photonic interconnection. Light Adv. Manuf. 2023, 4, 1. [Google Scholar] [CrossRef]
- Huang, H.; Balčytis, A.; Dubey, A.; Boes, A.; Nguyen, T.G.; Ren, G.; Tan, M.; Mitchell, A. Spatio-temporal isolator in lithium niobate on insulator. Opto-Electron. Sci. 2023, 2, 220022. [Google Scholar] [CrossRef]
- Rai, A.; Das, S.; Agarwal, G. Quantum entanglement in coupled lossy waveguides. Opt. Express 2010, 18, 6241–6254. [Google Scholar] [CrossRef]
- Perez-Leija, A.; Szameit, A.; Ramos-Prieto, I.; Moya-Cessa, H.; Christodoulides, D.N. Generalized Schrödinger cat states and their classical emulation. Phys. Rev. A 2016, 93, 053815. [Google Scholar] [CrossRef]
- Perets, H.B.; Lahini, Y.; Pozzi, F.; Sorel, M.; Morandotti, R.; Silberberg, Y. Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 2008, 100, 170506. [Google Scholar] [CrossRef]
- Peruzzo, A.; Lobino, M.; Matthews, J.C.; Matsuda, N.; Politi, A.; Poulios, K.; Zhou, X.Q.; Lahini, Y.; Ismail, N.; Wörhoff, K.; et al. Quantum walks of correlated photons. Science 2010, 329, 1500–1503. [Google Scholar] [CrossRef]
- Biggerstaff, D.N.; Heilmann, R.; Zecevik, A.A.; Gräfe, M.; Broome, M.A.; Fedrizzi, A.; Nolte, S.; Szameit, A.; White, A.G.; Kassal, I. Enhancing coherent transport in a photonic network using controllable decoherence. Nat. Commun. 2016, 7, 11282. [Google Scholar] [CrossRef]
- Lahini, Y.; Avidan, A.; Pozzi, F.; Sorel, M.; Morandotti, R.; Christodoulides, F.D.N.; Silberberg, Y. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 2008, 100, 013906. [Google Scholar] [CrossRef] [PubMed]
- Peschel, U.; Pertsch, T.; Lederer, F. Optical Bloch oscillations in waveguide arrays. Opt. Lett. 1998, 23, 1701. [Google Scholar] [CrossRef] [PubMed]
- Efremidis, N.K.; Christodoulides, D.N. Discrete solitons in nonlinear zigzag optical waveguide arrays with tailored diffraction properties. Phys. Rev. E 2002, 65, 056607. [Google Scholar] [CrossRef] [PubMed]
- Szameit, A.; Pertsch, T.; Nolte, S.; Tünnermann, A.; Lederer, F. Long-range interaction in waveguide lattices. Phys. Rev. A 2008, 77, 043804. [Google Scholar] [CrossRef]
- Tapia-Valerdi, M.A.; Ramos-Prieto, I.; Soto-Eguibar, F.; Moya-Cessa, H.M. Waveguide arrays interaction to second neighbors: Exact solution. arXiv 2025, arXiv:2501.12550. [Google Scholar]
- Stockhofe, J.; Schmelcher, P. Bloch dynamics in lattices with long-range hopping. Phys. Rev. A 2015, 91, 023606. [Google Scholar] [CrossRef]
- Longhi, S.; Marangoni, M.; Lobino, M.; Ramponi, R.; Laporta, P.; Cianci, E.; Foglietti, V. Observation of Dynamic Localization in Periodically Curved Waveguide Arrays. Phys. Rev. Lett. 2006, 96, 243901. [Google Scholar] [CrossRef]
- Anuradha, T.; Patra, A.; Gupta, R.; Rai, A.; Sen(De), A. Production of genuine multimode entanglement in circular waveguides with long-range coupling. Phys. Rev. A 2024, 109, 032411. [Google Scholar] [CrossRef]
- Gordon, R. Harmonic oscillation in a spatially finite array waveguide. Opt. Lett. 2004, 29, 2752. [Google Scholar] [CrossRef]
- Wang, G.; Huang, J.P.; Yu, K.W. Nontrivial Bloch oscillations in waveguide arrays with second-order coupling. Opt. Lett. 2010, 35, 1908–1910. [Google Scholar] [CrossRef]
- Qi, F.; Feng, Z.; Wang, Y.; Xu, P.; Zhu, S.; Zheng, W. Photon-number correlations in waveguide lattices with second order coupling. J. Opt. 2014, 16, 125007. [Google Scholar] [CrossRef]
- Román-Ancheyta, R.; Ramos-Prieto, I.; Perez-Leija, A.; Busch, K.; León-Montiel, R.d.J. Dynamical Casimir effect in stochastic systems: Photon harvesting through noise. Phys. Rev. A 2017, 96, 032501. [Google Scholar] [CrossRef]
- Villegas-Martínez, B.; Moya-Cessa, H.; Soto-Eguibar, F. Modeling displaced squeezed number states in waveguide arrays. Phys. A Stat. Mech. Its Appl. 2022, 608, 128265. [Google Scholar] [CrossRef]
- Dreisow, F.; Wang, G.; Heinrich, M.; Keil, R.; Tünnermann, A.; Nolte, S.; Szameit, A. Observation of anharmonic Bloch oscillations. Opt. Lett. 2011, 36, 3963–3965. [Google Scholar] [CrossRef]
- Ramos-Prieto, I.; Uriostegui, K.; Récamier, J.; Soto-Eguibar, F.; Moya-Cessa, H.M. Kapitza–Dirac photonic lattices. Opt. Lett. 2021, 46, 4690–4693. [Google Scholar] [CrossRef]
- Yariv, A. Coupled-mode theory for guided-wave optics. IEEE J. Quantum Electron. 1973, 9, 919–933. [Google Scholar] [CrossRef]
- Marcuse, D. Coupled Mode Theory of Round Optical Fibers. Bell Syst. Tech. J. 1973, 52, 817–842. [Google Scholar] [CrossRef]
- London, F. Über die Jacobischen transformationen der quantenmechanik. Z. Phys. 1926, 37, 915–925. [Google Scholar] [CrossRef]
- Susskind, L.; Glogower, J. Quantum mechanical phase and time operator. Phys. Phys. Fiz. 1964, 1, 49–61. [Google Scholar] [CrossRef]
- Stoler, D. Operator methods in physical optics. J. Opt. Soc. Am. 1981, 71, 334. [Google Scholar] [CrossRef]
- Carruthers, P.; Nieto, M.M. Phase and Angle Variables in Quantum Mechanics. Rev. Mod. Phys. 1968, 40, 411–440. [Google Scholar] [CrossRef]
- Vogel, W. Quantum Optics, 3rd ed.; Includes Bibliographical References and Index; Wiley-VCH: Weinheim, Germany, 2006. [Google Scholar]
- Gerry, C.; Knight, P. Introductory Quantum Optics; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar] [CrossRef]
- Dattoli, G.; Giannessi, L.; Mezi, L.; Torre, A. Theory of generalized Bessel functions. Il Nuovo C. B (1971–1996) 1990, 105, 327–348. [Google Scholar] [CrossRef]
- Dattoli, G.; Torre, A.; Lorenzutta, S.; Maino, G.; Chiccoli, C. Theory of generalized Bessel functions.-II. Il Nuovo C. B (1971–1996) 1991, 106, 21–51. [Google Scholar] [CrossRef]
- Dattoli, G.; Chiccoli, C.; Lorenzutta, S.; Maino, G.; Richetta, M.; Torre, A. Generating functions of multivariable generalized Bessel functions and Jacobi-elliptic functions. J. Math. Phys. 1992, 33, 25–36. [Google Scholar] [CrossRef]
- Szameit, A.; Dreisow, F.; Pertsch, T.; Nolte, S.; Tünnermann, A. Control of directional evanescent coupling in fs laser written waveguides. Opt. Express 2007, 15, 1579–1587. [Google Scholar] [CrossRef]
- Szameit, A.; Blömer, D.; Burghoff, J.; Pertsch, T.; Nolte, S.; Tünnermann, A. Hexagonal waveguide arrays written with fs-laser pulses. Appl. Phys. B 2006, 82, 507–512. [Google Scholar] [CrossRef]
- Gradshteyn, I.; Ryzhik, I. Table of Integrals, Series, and Products; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tapia-Valerdi, M.A.; Ramos-Prieto, I.; Soto-Eguibar, F.; Moya-Cessa, H.M. Waveguide Arrays: Interaction to Many Neighbors. Dynamics 2025, 5, 25. https://doi.org/10.3390/dynamics5030025
Tapia-Valerdi MA, Ramos-Prieto I, Soto-Eguibar F, Moya-Cessa HM. Waveguide Arrays: Interaction to Many Neighbors. Dynamics. 2025; 5(3):25. https://doi.org/10.3390/dynamics5030025
Chicago/Turabian StyleTapia-Valerdi, Marco A., Irán Ramos-Prieto, Francisco Soto-Eguibar, and Héctor M. Moya-Cessa. 2025. "Waveguide Arrays: Interaction to Many Neighbors" Dynamics 5, no. 3: 25. https://doi.org/10.3390/dynamics5030025
APA StyleTapia-Valerdi, M. A., Ramos-Prieto, I., Soto-Eguibar, F., & Moya-Cessa, H. M. (2025). Waveguide Arrays: Interaction to Many Neighbors. Dynamics, 5(3), 25. https://doi.org/10.3390/dynamics5030025