Dynamic Response of Reinforced Concrete Columns Subjected to Air and Underwater Explosions
Abstract
:1. Introduction
1.1. Behavior of RC Columns Under Air Blast
1.2. Behavior of RC Columns Under UNDEX
1.3. Material Models for Concrete
1.4. Material Models for Reinforcing Steel
1.5. Focus of This Paper
2. Air Blast Studies
2.1. Numerical Model Development
2.2. Boundary Conditions and ALE for Air Blast Simulation
2.3. Validation of Numerical Model
3. Underwater Explosion (UNDEX) Studies
3.1. Numerical Model Development
3.2. Boundary Conditions
3.3. TNT Placement and ALE Coupling
3.4. Model Validation
4. Partially Submerged Explosion Studies
4.1. Validated Models for Parametric Study
4.2. Effects of Explosive Weight
4.3. Effects of Stand-Off Distance
4.4. Effects of Depth of Water
4.5. Comparison of Partially Submerged Explosions with UNDEX and Air Blast
4.6. Shockwave Propagation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, S.; Hao, H.; Zong, Z.; Li, J. A Study of RC Bridge Columns under Contact Explosion. Int. J. Impact Eng. 2017, 105, 133–146. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0734743X17306243 (accessed on 15 April 2021). [CrossRef]
- Bruneau, M.; Shuichi Fujikura, S.; Lopez-Garcia, D. Experimental Investigation of Blast Performance of Seismically Resistant Concrete-Filled Steel Tube Bridge Piers; Technical Report MCEER-07-0005; Multidisciplinary Center for Earthquake Engineering Research: Buffalo, NY, USA, 2007. Available online: https://nehrpsearch.nist.gov/static/files/NSF/PB2008105143.pdf (accessed on 21 January 2022).
- Li, M.; Zong, Z.; Hao, H.; Zhang, X.; Lin, J.; Liao, Y. Post-blast performance and residual capacity of CFDST columns subjected to contact explosions. J. Constr. Steel Res. 2020, 167, 105960. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0143974X19313306 (accessed on 21 May 2025). [CrossRef]
- Li, M.; Zong, Z.; Liu, L.; Lou, F. Experimental and numerical study on damage mechanism of CFDST bridge columns subjected to contact explosion. Eng. Struct. 2018, 159, 265–276. Available online: https://www.sciencedirect.com/science/article/abs/pii/S014102961733198X (accessed on 18 May 2025). [CrossRef]
- Do, T.; Pham, T.; Hao, H. Stress Wave Propagation and Structural Response of Precast Concrete Segmental Columns under Simulated Blast Loads. Int. J. Impact Eng. 2020, 143, 103595. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0734743X19305810 (accessed on 15 March 2022). [CrossRef]
- Yi, Z.; Agrawal, A.; Ettouney, M.; Alampalli, S. Blast load effects on highway bridges. I: Modeling and blast load effects. J. Bridge Eng. 2014, 19, 04013023. Available online: https://ascelibrary.com/doi/10.1061/%28ASCE%29BE.1943-5592.0000547 (accessed on 11 January 2023). [CrossRef]
- Zhuang, T.; Wang, M.; Wu, J.; Yang, C.; Zhang, T.; Gao, C. Experimental Investigation on Dynamic Response and Damage Models of Circular RC Columns Subjected to Underwater Explosions. Def. Technol. 2020, 16, 856–875. [Google Scholar] [CrossRef]
- Yang, G.; Wang, G.; Lu, W.; Zhao, X.; Yan, P.; Chen, M. Cross-Section Shape Effects on Anti-Knock Performance of RC Columns Subjected to Air and Underwater Explosions. Ocean Eng. 2019, 181, 252–266. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0029801818318961 (accessed on 11 May 2021). [CrossRef]
- Wang, Z.; Lu, Y.; Hao, H.; Chong, K. A full coupled numerical analysis approach for buried structures subjected to subsurface blast. Comput. Struct. 2005, 83, 339–356. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0045794904003839 (accessed on 29 March 2022). [CrossRef]
- Holmquist, T.J.; Johnson, G.R.; Cook, W.H. A Computational Constitutive Model for Concrete Subjected to Large Strains, High Strain Rates, and High Pressures. 14th Int. Symp. Ballist. 1993, 2, 591–600. Available online: https://www.tib.eu/en/search/id/BLCP%3ACN008959584/A-Computational-Constitutive-Model-for-Concrete (accessed on 19 September 2022).
- Li, J.; Wu, C.; Hao, H. Investigation of ultra-high performance concrete slab and normal strength concrete slab under contact explosion. Eng. Struct. 2015, 102, 395–408. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0141029615005313 (accessed on 24 February 2023). [CrossRef]
- Borrvall, T. The RHT concrete model in LS-DYNA. In Proceedings of the 8th European LS-DYNA Conference, Strasbourg, France, 23–24 May 2011; Available online: https://www.researchgate.net/publication/263467071_The_RHT_concrete_model_in_LS-DYNA (accessed on 2 April 2022).
- Song, S.; Xu, X.; Ren, W.; Liu, S.; Jiang, J. Determination and application of the RHT constitutive model parameters for ultra-high-performance concrete. Structures 2024, 69, 107488. Available online: https://www.sciencedirect.com/science/article/abs/pii/S2352012424016400 (accessed on 17 March 2025). [CrossRef]
- Wu, C.; Mahmoud, M.M.; Hou, C.C.; Topa, A. Study on the impact performance of RC fences strengthened with high strength strain-hardening cementitious composites. Structures 2022, 41, 349–364. Available online: https://www.sciencedirect.com/science/article/abs/pii/S2352012422004003 (accessed on 11 May 2023). [CrossRef]
- Sirigiri, V.; Gudiga, V.; Gattu, U.; Suneesh, G.; Buddaraju, K. A review on Johnson Cook material model. Mater. Today Proc. 2022, 62, 3450–3456. Available online: https://www.sciencedirect.com/science/article/abs/pii/S2214785322024191 (accessed on 18 May 2023). [CrossRef]
- Lin, Y.; Chen, X.; Liu, G. A modified Johnson–Cook model for tensile behaviors of typical high-strength alloy steel. Mater. Sci. Eng. 2010, 527, 6980–6986. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0921509310007999 (accessed on 27 June 2023). [CrossRef]
- Huang, Z.; Gao, L.; Wang, Y.; Wang, F. Determination of the Johnson-Cook Constitutive Model Parameters of Materials by Cluster Global Optimization Algorithm. J. Mater. Eng. Perform. 2016, 25, 4099–4107. [Google Scholar] [CrossRef]
- Kolling, S.; Haufe, A.; Feucht, M.; Du Bois, P.A. SAMP-1: A Semi-Analytical Model for the Simulation of Polymers; LS-DYNA Anwenderforum: Bamberg, Germany, 2005; Available online: https://www.dynamore.de/de/download/papers/forum05/samp-1-a-semi-analytical-model-for-the-simulation"\l":~:text=From%20a%20practical%20point%20of,focus%20of%20the%20present%20contribution (accessed on 20 July 2022).
- Raman, S.N.; Ngo, T.; Mendis, P.; Pham, T. Elastomeric Polymers for Retrofitting of Reinforced Concrete Structures against the Explosive Effects of Blast. Adv. Mater. Sci. Eng. 2012, 2012, 1–8. Available online: https://onlinelibrary.wiley.com/doi/full/10.1155/2012/754142 (accessed on 18 November 2022). [CrossRef]
- Malvar, L.J.; Crawford, J.E. Dynamic increase factors for steel reinforcing bars. In Proceedings of the 28th DDESB Seminar, Orlando, FL, USA, 18–20 August 1998; pp. 5–6. Available online: https://scholar.google.com/scholar_lookup?title=Dynamic%20increase%20factors%20for%20steel%20reinforcing%20bars&author=L.J.%20Malvar&publication_year=1998&pages=5-6 (accessed on 2 October 2022).
- Livermore Software Technology Corporation. LS-DYNA Keyword User’s Manual (Volume I & II), version 971; Livermore Software Technology Corporation: Livermore, CA, USA, 2007; Available online: https://ftp.lstc.com/anonymous/outgoing/jday/manuals/ls-dyna_971_manual_k_rev1.pdf (accessed on 16 January 2023).
- Tabatabaei, Z.; Volz, J. A Comparison between Three Different Blast Methods in LS-DYNA: LBE, MM-ALE, Coupling of LBE and MM-ALE. In Proceedings of the 12th International LS-DYNA Users Conference Blast/Impact (3), Detroit, MI, USA, 3–5 June 2012; Available online: https://www.dynalook.com/conferences/12th-international-ls-dyna-conference/blast-impact20-d.pdf (accessed on 23 March 2023).
- Nazem, M.; Carter, J.; Airey, D. Arbitrary Lagrangian–Eulerian method for dynamic analysis of geotechnical problems. Comput. Geotech. 2009, 36, 549–557. Available online: https://www.newcastle.edu.au/__data/assets/pdf_file/0015/22272/Arbitrary-Lagrangian-Eulerian-method-for-dynamic-analysis-of-geotechnical-problems.pdf (accessed on 29 August 2022). [CrossRef]
- Cai, Z.; Topa, A.; Djukic, L.P.; Herath, M.T.; Pearce, G.M. Evaluation of rigid body force in liquid sloshing problems of a partially filled tank: Traditional CFD/SPH/ALE comparative study. Ocean Eng. 2021, 236, 109556. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0029801821009458 (accessed on 23 January 2023). [CrossRef]
- Aerospace Working Group. LS-DYNA Aerospace Working Group Modeling Guidelines, version 21-1; Aerospace Working Group: El Segundo, CA, USA, 2021; Available online: https://www.predictiveengineering.com/sites/default/files/MGD_v21-1.pdf (accessed on 17 July 2022).
- Zhao, X.; Wang, G.; Lu, W.; Yan, P.; Chen, M.; Zhou, C. Damage features of RC slabs subjected to air and underwater contact explosions. Ocean Eng. 2018, 147, 531–545. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0029801817306741?via%3Dihub (accessed on 3 February 2022). [CrossRef]
- Xiao, Y.; Zhu, W.; Wu, W.; Guo, P.; Xia, L. Damage modes and mechanism of RC arch slab under contact explosion at different locations. Int. J. Impact Eng. 2022, 170, 104360. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0734743X22002032 (accessed on 19 April 2023). [CrossRef]
- FEMA. Chapter 4 Explosive Blast. In FEMA 426, Reference Manual to Mitigate Potential Terrorist Attacks Against Buildings; The Federal Emergency Management Agency: Washington, DC, USA, 1989. Available online: https://www.fema.gov/pdf/plan/prevent/rms/428/fema428_ch4.pdf (accessed on 13 May 2023).
- Cole, R.H. Underwater Explosions; Princeton University Press: Princeton, NJ, USA, 1948; Available online: https://pubs.aip.org/physicstoday/article-abstract/1/6/35/938876/Underwater-Explosions?redirectedFrom=fulltext (accessed on 13 June 2022).
- Sanders, J.; Urgessa, G.; Löhner, R. Literature Review on the Response of Concrete Structures Subjected to Underwater Explosions. CivilEng 2021, 2, 895–908. Available online: https://www.mdpi.com/2673-4109/2/4/48 (accessed on 15 March 2023). [CrossRef]
- Xu, M.; Wille, K. Calibration of K&C Concrete Model for UHPC in LS-DYNA. Adv. Mater. Res. 2014, 1081, 254–260. [Google Scholar] [CrossRef]
- Seetamsetti, A.S. Comparison of Finite Element Analysis of Impact on Water and Soil Using Lagrangian, ALE, and SPH Approaches and Airframe Impact Applications. Master’s Thesis, Wichita State University, Wichita, KS, USA, 2012. Available online: https://www.semanticscholar.org/paper/Comparison-of-finite-element-analysis-of-impact-on-Seetamsetti/57cb416fdf0cb1fd0ce1fdb349263c082c5d415d (accessed on 7 June 2025).
- Hosseinzadeh, S.; Topa, A.; Tabri, K. A Numerical Sensitivity Analysis of Fluid-Structure Interaction Simulations on Slamming Loads and Responses. In IOP Conference Series: Materials Science and Engineering, Proceedings of the 12th International Workshop on Ship and Marine Hydrodynamics (Iwsh-2023), Espoo, Finland, 28 Augst–1 September 2023; IOP Publishing: Bristol, UK, 2023; Volume 1288, p. 012017. Available online: https://iopscience.iop.org/article/10.1088/1757-899X/1288/1/012017/meta (accessed on 11 June 2023).
- Abyu, G. Finite Element Modeling of Reinforced Concrete Columns Subjected to Air and Underwater Explosions. MS Thesis, George Mason University, Fairfax, VA, USA, 2023. [Google Scholar]
- Sulfredge, C.; Morris, R.; Sanders, R. Calculating the Effect of Surface or Underwater Explosions on Submerged Equipment and Structures; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2005; Available online: https://www.researchgate.net/publication/266606168_Calculating_the_Effect_of_Surface_or_Underwater_Explosions_on_Submerged_Equipment_and_Structures (accessed on 19 June 2023).
- Jiang, L.; Ge, H.; Feng, C.L.; Chen, D.R. Numerical simulation of underwater explosion bubble with a refined interface treatment. Sci. China Phys. Mech. Astron. 2014, 57, 1–10. Available online: https://link.springer.com/article/10.1007/s11433-014-5616-9 (accessed on 8 June 2025). [CrossRef]
Material Type | Dimensions (mm) | Element Type | Mesh Size (mm) | No. of Elements |
---|---|---|---|---|
Column | H = 3700 mm; D = 400 mm | Lagrange Solid | Fine = 8 mm; Coarse = 20 mm | 884,640 |
Foundation | W = 1000 mm; L = 1000 mm; H = 500 mm | Lagrange Solid | 25 mm | |
Longitudinal Rebar | H = 4140 mm; D = 20 mm | Beam | Fine = 8 mm; Coarse = 20 mm | 3420 |
Stirrups | D = 337 mm; D = 8 mm | Beam | Fine = 8 mm; Coarse = 20 mm | 3072 |
Ground Surface | W = 2000 mm; L = 2000 mm; H = 500 mm | Lagrange Solid | 50 mm | 12,000 |
TNT | W = 85 mm; L = 90 mm; H = 80 mm | ALE Solid | 12 mm | 294 |
Air | W = 2000 mm; L = 2000 mm; H = 1400 mm | ALE Solid | 50 mm | 774,163 |
*MAT_HIGH_EXPLOSIVE_BURN (MAT_008) (Yuan et al. [1]) | |||||||||
---|---|---|---|---|---|---|---|---|---|
A (GPa) | B (GPa) | R1 | R2 | ω | V | E (MJm−3) | ρ (Kgm−3) | ν (ms−1) | P (GPa) |
3.74 × 102 | 3.747 | 4.15 | 0.9 | 0.35 | 1 | 6.00 × 103 | 1.63 × 103 | 6.93 × 103 | 2.10 × 101 |
Material Type | Dimensions (mm) | Element Type | Mesh Size (mm) | No of Elements |
---|---|---|---|---|
Column | H = 2700 mm; D = 100 mm | Lagrange Solid | Fine = 8 mm and 25 mm; Coarse = 62.5 mm | 22,320 |
Foundation | W = 300 mm; L = 300 mm; H = 100 mm | Lagrange Solid | Uniform = 25 mm | |
Longitudinal Rebar | H = 2840 mm; D = 6 mm | Beam | Uniform = 15 mm | 1456 |
Stirrups | D = 90 mm; D = 8 mm | 288 | ||
Water | D = 10,000 mm; H = 2350 mm | ALE Solid | Fine = 12.5 mm & 25 mm; Coarse = 100 mm | 1,112,532 |
Air | D = 10,000 mm; H = 750 mm | ALE Solid | Uniform = 100 mm | 244,164 |
c (m/s) | γ0 | a | S1 | S2 | S3 |
---|---|---|---|---|---|
1480 | 0.4934 | 1.397 | 2.56 | −1.986 | 0.2286 |
Parameter Description | Symbol | Value |
---|---|---|
Density (kg/m3) | ρ | 2.30 × 103 |
Poisson’s Ratio | ν | 2.00 × 10−1 |
Unconfined Compressive Strength (Pa) | fc | 5.20 × 107 |
Unit Conversion for fc | ucf | 1.45 × 10−4 |
Max Principal Tensile Stress Cutoff | 4.68 × 106 | |
Max Failure Surface Coefficients | a0, a1, a2 | 1.537 × 107, 4.463 × 10−1, 1.544 × 10−9 |
Yield Failure Surface Coefficients | a0y, a1y, a2y | 1.161 × 107, 6.250 × 10−1, 4.952 × 10−9 |
Damage Scaling Factors | b1, b2, b3 | 1.600 × 100, 1.350 × 100, 1.150 × 100 |
Load Curve for Strain-Rate Scaling | 1 | |
Tensile Strength (Max Principal stress) | 4.68 × 106 | |
Amount of Partial Associativity | w | 5.00 × 10−1 |
Residual Failure Surface Parameters | a0f, a1f, a2f | 0.000 × 100, 4.417 × 101, 2.275 × 10−9 |
% Lambda Stretching | 1.00 × 102 | |
Output Selector (epx1) | 2.00 × 100 | |
Softening Parameter (sdcp) | 1.00 × 100 | |
Length Unit Conversion Factor | 3.94 × 101 | |
Localization Width (3×Max Agg. Size) | 1.50 × 10−2 | |
Damage Function | ||
λi | ηi | |
0.00 × 100 | 0.00 × 100 | |
8.00 × 10−6 | 8.50 × 10−1 | |
2.40 × 10−5 | 9.70 × 10−1 | |
4.00 × 10−5 | 9.90 × 10−1 | |
5.60 × 10−5 | 1.00 × 100 | |
7.20 × 10−5 | 9.90 × 10−1 | |
8.80 × 10−5 | 9.70 × 10−1 | |
3.20 × 10−4 | 5.00 × 10−1 | |
5.20 × 10−4 | 1.00 × 10−1 | |
5.70 × 10−4 | 0.00 × 100 | |
1.00 × 100 | 0.00 × 100 | |
1.00 × 101 | 0.00 × 100 | |
1.00 × 102 | 0.00 × 100 |
Case No | Z (m) | R (m) | W (Kg) | Case No | Z (m) | R (m) | W (Kg) | Case No | Z (m) | R (m) | W (Kg) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2.25 | 0.50 | 0.40 | 21 | 2.25 | 0.50 | 0.80 | 41 | 2.25 | 0.50 | 1.20 |
2 | 1.75 | 0.50 | 0.40 | 22 | 1.75 | 0.50 | 0.80 | 42 | 1.75 | 0.50 | 1.20 |
3 | 1.25 | 0.50 | 0.40 | 23 | 1.25 | 0.50 | 0.80 | 43 | 1.25 | 0.50 | 1.20 |
4 | 0.75 | 0.50 | 0.40 | 24 | 0.75 | 0.50 | 0.80 | 44 | 0.75 | 0.50 | 1.20 |
5 | 0.25 | 0.50 | 0.40 | 25 | 0.25 | 0.50 | 0.80 | 45 | 0.25 | 0.50 | 1.20 |
6 | 2.25 | 1.00 | 0.40 | 26 | 2.25 | 1.00 | 0.80 | 46 | 2.25 | 1.00 | 1.20 |
7 | 1.75 | 1.00 | 0.40 | 27 | 1.75 | 1.00 | 0.80 | 47 | 1.75 | 1.00 | 1.20 |
8 | 1.25 | 1.00 | 0.40 | 28 | 1.25 | 1.00 | 0.80 | 48 | 1.25 | 1.00 | 1.20 |
9 | 0.75 | 1.00 | 0.40 | 29 | 0.75 | 1.00 | 0.80 | 49 | 0.75 | 1.00 | 1.20 |
10 | 0.25 | 1.00 | 0.40 | 30 | 0.25 | 1.00 | 0.80 | 50 | 0.25 | 1.00 | 1.20 |
11 | 2.25 | 1.50 | 0.40 | 31 | 2.25 | 1.50 | 0.80 | 51 | 2.25 | 1.50 | 1.20 |
12 | 1.75 | 1.50 | 0.40 | 32 | 1.75 | 1.50 | 0.80 | 52 | 1.75 | 1.50 | 1.20 |
13 | 1.25 | 1.50 | 0.40 | 33 | 1.25 | 1.50 | 0.80 | 53 | 1.25 | 1.50 | 1.20 |
14 | 0.75 | 1.50 | 0.40 | 34 | 0.75 | 1.50 | 0.80 | 54 | 0.75 | 1.50 | 1.20 |
15 | 0.25 | 1.50 | 0.40 | 35 | 0.25 | 1.50 | 0.80 | 55 | 0.25 | 1.50 | 1.20 |
16 | 2.25 | 0.00 | 0.40 | 36 | 2.25 | 0.00 | 0.80 | 56 | 2.25 | 0.00 | 1.20 |
17 | 1.75 | 0.00 | 0.40 | 37 | 1.75 | 0.00 | 0.80 | 57 | 1.75 | 0.00 | 1.20 |
18 | 1.25 | 0.00 | 0.40 | 38 | 1.25 | 0.00 | 0.80 | 58 | 1.25 | 0.00 | 1.20 |
19 | 0.75 | 0.00 | 0.40 | 39 | 0.75 | 0.00 | 0.80 | 59 | 0.75 | 0.00 | 1.20 |
20 | 0.25 | 0.00 | 0.40 | 40 | 0.25 | 0.00 | 0.80 | 60 | 0.25 | 0.00 | 1.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abyu, G.; Urgessa, G.; Topa, A. Dynamic Response of Reinforced Concrete Columns Subjected to Air and Underwater Explosions. Dynamics 2025, 5, 23. https://doi.org/10.3390/dynamics5030023
Abyu G, Urgessa G, Topa A. Dynamic Response of Reinforced Concrete Columns Subjected to Air and Underwater Explosions. Dynamics. 2025; 5(3):23. https://doi.org/10.3390/dynamics5030023
Chicago/Turabian StyleAbyu, Getu, Girum Urgessa, and Ameen Topa. 2025. "Dynamic Response of Reinforced Concrete Columns Subjected to Air and Underwater Explosions" Dynamics 5, no. 3: 23. https://doi.org/10.3390/dynamics5030023
APA StyleAbyu, G., Urgessa, G., & Topa, A. (2025). Dynamic Response of Reinforced Concrete Columns Subjected to Air and Underwater Explosions. Dynamics, 5(3), 23. https://doi.org/10.3390/dynamics5030023