A Combined Separation of Variables and Fractional Power Series Approach for Selected Boundary Value Problems
Abstract
1. Introduction
2. Preliminaries
3. Case Studies
3.1. Case 1—1D Helmholtz Equation with Constant Term
3.2. Case 2—Steady-State Heat Conduction in a 2D Circular Plate Using Laplace’s Equation
4. Final Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Boyce, W.E.; DiPrima, R.C.; Meade, D.B. Elementary Differential Equations and Boundary Value Problems, 12th ed.; International Adaptation; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2022; ISBN 978-1-119-82051-2. [Google Scholar]
- Kreyszig, E.; Kreyszig, H.; Norminton, E.J. Advanced Engineering Mathematics, 10th ed.; John Wiley: Hoboken, NJ, USA, 2011; ISBN 978-0-470-45836-5. [Google Scholar]
- Kakac, S.; Yener, Y.; Naveira-Cotta, C.P. Heat Conduction, Fifth Edition; CRC Press: Boca Raton, FL, USA, 2018; ISBN 978-1-351-71418-1. [Google Scholar]
- Guo, X.; Yang, H.; He, Y. An Efficient Numerical Algorithm to Solve Steady State Heat Conduction Problems with Local Uncertainty. Eng. Anal. Bound. Elem. 2024, 163, 593–605. [Google Scholar] [CrossRef]
- Sundqvist, J. Analytical Heat Conduction Modelling for Shaped Laser Beams. J. Mech. Work. Technol. 2017, 247, 48–54. [Google Scholar] [CrossRef]
- Xu, H.J.; Xing, Z.B.; Wang, F.Q.; Cheng, Z.M. Review on Heat Conduction, Heat Convection, Thermal Radiation and Phase Change Heat Transfer of Nanofluids in Porous Media: Fundamentals and Applications. Chem. Eng. Sci. 2019, 195, 462–483. [Google Scholar] [CrossRef]
- David, S.A.; Linares, J.L.; Pallone, E.M.J.A. Fractional Order Calculus: Historical Apologia, Basic Concepts and Some Applications. Rev. Bras. Ensino Física 2011, 33, 4302. [Google Scholar] [CrossRef]
- Luchko, Y.; Kochubei, A. Handbook of Fractional Calculus with Applications. Volume 1: Basic Theory, 1st ed.; Tenreiro Machado, J.A., Ed.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2019; ISBN 978-3-11-057162-2. [Google Scholar]
- David, S.; Valentim, C.A., Jr. Fractional Euler-Lagrange Equations Applied to Oscillatory Systems. Mathematics 2015, 3, 258–272. [Google Scholar] [CrossRef]
- Valentim, C.A.; Rabi, J.A.; David, S.A. Fractional Mathematical Oncology: On the Potential of Non-Integer Order Calculus Applied to Interdisciplinary Models. Biosystems 2021, 204, 104377. [Google Scholar] [CrossRef]
- David, S.A.; Rabi, J.A. Can Fractional Calculus Be Applied to Relativity? Axiomathes 2020, 30, 165–176. [Google Scholar] [CrossRef]
- Podlubny, I. Numerical Solution of Fractional Differential Equations. In Mathematics in Science and Engineering; Technical University of Munich: Munich, Germany, 1999; Volume 198, pp. 223–242. ISBN 978-0-12-558840-9. [Google Scholar]
- Singh, H.; Srivastava, H.M.; Pandey, R.K. Special Functions in Fractional Calculus and Engineering; CRC Press: Boca Raton, FL, USA, 2023; ISBN 978-1-032-43602-9. [Google Scholar]
- Ortigueira, M.D.; Tenreiro Machado, J. Fractional Derivatives: The Perspective of System Theory. Mathematics 2019, 7, 150. [Google Scholar] [CrossRef]
- Valério, D.; Ortigueira, M.D.; Lopes, A.M. How Many Fractional Derivatives Are There? Mathematics 2022, 10, 737. [Google Scholar] [CrossRef]
- Podlubny, I. On Some Geometric Interpretations of Fractional-Order Operators. arXiv 2024, arXiv:2411.12494. [Google Scholar]
- Tarasov, V.E. Fractional Derivative As Fractional Power of Derivative. Int. J. Math. 2007, 18, 281–299. [Google Scholar] [CrossRef]
- Muthaiah, S.; Baleanu, D. Existence of Solutions for Nonlinear Fractional Differential Equations and Inclusions Depending on Lower-Order Fractional Derivatives. Axioms 2020, 9, 44. [Google Scholar] [CrossRef]
- Al-Refai, M.; Syam, M.I.; Baleanu, D. Analytical Treatments to Systems of Fractional Differential Equations with Modified Atangana–Baleanu Derivative. Fractals 2023, 31, 2340156. [Google Scholar] [CrossRef]
- Lotfi, E.M.; Zine, H.; Torres, D.F.M.; Yousfi, N. The Power Fractional Calculus: First Definitions and Properties with Applications to Power Fractional Differential Equations. Mathematics 2022, 10, 3594. [Google Scholar] [CrossRef]
- Shah, P.; Agashe, S. Review of Fractional PID Controller. Mechatronics 2016, 38, 29–41. [Google Scholar] [CrossRef]
- Viera-Martin, E.; Gómez-Aguilar, J.F.; Solís-Pérez, J.E.; Hernández-Pérez, J.A.; Escobar-Jiménez, R.F. Artificial Neural Networks: A Practical Review of Applications Involving Fractional Calculus. Eur. Phys. J. Spec. Top. 2022, 231, 2059–2095. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Baleanu, D.; Nieto, J.J.; Torres, D.F.M.; Zhou, Y. A Survey on Fuzzy Fractional Differential and Optimal Control Nonlocal Evolution Equations. J. Comput. Appl. Math. 2018, 339, 3–29. [Google Scholar] [CrossRef]
- Debbouche, N.; Ouannas, A.; Grassi, G.; Al-Hussein, A.-B.A.; Tahir, F.R.; Saad, K.M.; Jahanshahi, H.; Aly, A.A. Chaos in Cancer Tumor Growth Model with Commensurate and Incommensurate Fractional-Order Derivatives. Comput. Math. Methods Med. 2022, 2022, 1–13. [Google Scholar] [CrossRef]
- Debbouche, N.; Ouannas, A.; Batiha, I.M.; Grassi, G. Chaotic Dynamics in a Novel COVID-19 Pandemic Model Described by Commensurate and Incommensurate Fractional-Order Derivatives. Nonlinear Dyn. 2022, 109, 33–45. [Google Scholar] [CrossRef]
- Guilhon, I.; Admiral, T.D. Solução Numérica Da Equação de Laplace Através Do Método Da Relaxação. Rev. Bras. Ensino Fís. 2023, 45, e20220256. [Google Scholar] [CrossRef]
- Leite, E.J.F.; Montenegro, M. Nontrivial Solutions to Affine p -Laplace Equations via a Perturbation Strategy. Nonlinear Anal. Real World Appl. 2024, 80, 104154. [Google Scholar] [CrossRef]
- Upadhyay, P.; Upadhyay, S.K.; Shukla, K.K. Magnetic Resonance Images Denoising Using a Wavelet Solution to Laplace Equation Associated with a New Variational Model. Appl. Math. Comput. 2021, 400, 126083. [Google Scholar] [CrossRef]
- Ramšak, M. On Numerical Solution Stability of the Laplace Equation in Absence of the Dirichlet Boundary Condition: Benchmark Problem Proposal. Eng. Anal. Bound. Elem. 2022, 144, 475–481. [Google Scholar] [CrossRef]
- Kar, M.; Lin, Y.-H.; Zimmermann, P. Determining Coefficients for a Fractional P-Laplace Equation from Exterior Measurements. J. Differ. Equ. 2024, 406, 338–365. [Google Scholar] [CrossRef]
- Duan, Y.; Wei, Y. Properties of Fractional P-Laplace Equations with Sign-Changing Potential. Nonlinear Anal. 2024, 249, 113628. [Google Scholar] [CrossRef]
- Diethelm, K.; Ford, N.J.; Freed, A.D. A Predictor-Corrector Approach for the Numerical. Nonlinear Dyn. 2002, 29, 3–22. [Google Scholar] [CrossRef]
- David, S.A.; Valentim, C.A.; Debbouche, A. Fractional Modeling Applied to the Dynamics of the Action Potential in Cardiac Tissue. Fractal Fract. 2022, 6, 149. [Google Scholar] [CrossRef]
- Chi, X.; Yu, B.; Jiang, X. Parameter Estimation for the Time Fractional Heat Conduction Model Based on Experimental Heat Flux Data. Appl. Math. Lett. 2020, 102, 106094. [Google Scholar] [CrossRef]
- Gomes, A.V. Transformadas Integrais, Modelagem Fracionária e o Sistema de Lotka-Volterra. Master’s Thesis, Universidade do Estado de São Paulo, Botucatu, Brazil, 2014. [Google Scholar]
- Wyld, H.W. Mathematical Methods for Physics, 2nd ed.; Powell, G., Ed.; CRC Press: Boca Raton, FL, USA, 2020; ISBN 978-1-003-03746-0. [Google Scholar]
- Srivastava, S.; Kumar, V.; Gupta, V.K.; Kumar, R.; Rawat, V.K.; Nishad, A.K. Comparison of Fins in IC Engine Using CFD Analysis. In Proceedings of the 2nd International Conference on Smart Sustainable Materials and Technologies (ICSSMT 2023), Trichy, India, 30–31 August 2023; Sumesh, M., Tavares, J.M.R.S., Vettivel, S.C., Oliveira, M.O., Eds.; Advances in Science, Technology & Innovation. Springer Nature: Cham, Switzerland, 2024; pp. 19–30, ISBN 978-3-031-50023-7. [Google Scholar]
- Liu, Y.; Li, L.; Zhang, Y. Numerical Simulation of Non-Fourier Heat Conduction in Fins by Lattice Boltzmann Method. Appl. Therm. Eng. 2020, 166, 114670. [Google Scholar] [CrossRef]
- Pradhan, S.; Kumari, K.; Barua, A.; Panicker, R.V.; Singh, H.; Jeet, S. Numerical Simulation of Heat Transfer and Design Optimization of IC Engine Fins Geometry Using Finite Element Analysis. Int. J. Interact. Des. Manuf. 2024, 18, 479–491. [Google Scholar] [CrossRef]
- Meresse, D.; Harmand, S.; Siroux, M.; Watremez, M.; Dubar, L. Experimental Disc Heat Flux Identification on a Reduced Scale Braking System Using the Inverse Heat Conduction Method. Appl. Therm. Eng. 2012, 48, 202–210. [Google Scholar] [CrossRef]
- Carmona, S.; Rouizi, Y.; Quéméner, O.; Joly, F.; Neveu, A. Estimation of Heat Flux by Using Reduced Model and the Adjoint Method. Application to a Brake Disc Rotating. Int. J. Therm. Sci. 2018, 131, 94–104. [Google Scholar] [CrossRef]
- Yevtushenko, A.A.; Kuciej, M.; Och, E. Temperature in Thermally Nonlinear Pad–Disk Brake System. Int. Commun. Heat Mass Transf. 2014, 57, 274–281. [Google Scholar] [CrossRef]
- Ottoni, J.E. Introdução Ao Cálculo Fracionário Com Aplicações. RMAT 2018, 5, 50–77. [Google Scholar]
- Nane, E. Fractional Cauchy Problems on Bounded Domains: Survey of Recent Results. In Fractional Dynamics and Control; Baleanu, D., Machado, J.A.T., Luo, A.C.J., Eds.; Springer: New York, NY, USA, 2012; pp. 185–198. ISBN 978-1-4614-0456-9. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Felipe, G.A.; Valentim, C.A.; David, S.A. A Combined Separation of Variables and Fractional Power Series Approach for Selected Boundary Value Problems. Dynamics 2025, 5, 24. https://doi.org/10.3390/dynamics5030024
Felipe GA, Valentim CA, David SA. A Combined Separation of Variables and Fractional Power Series Approach for Selected Boundary Value Problems. Dynamics. 2025; 5(3):24. https://doi.org/10.3390/dynamics5030024
Chicago/Turabian StyleFelipe, Gabriel Antonio, Carlos Alberto Valentim, and Sergio Adriani David. 2025. "A Combined Separation of Variables and Fractional Power Series Approach for Selected Boundary Value Problems" Dynamics 5, no. 3: 24. https://doi.org/10.3390/dynamics5030024
APA StyleFelipe, G. A., Valentim, C. A., & David, S. A. (2025). A Combined Separation of Variables and Fractional Power Series Approach for Selected Boundary Value Problems. Dynamics, 5(3), 24. https://doi.org/10.3390/dynamics5030024