Variational Principles for Coupled Boron Nitride Nanotubes Undergoing Vibrations, Including Piezoelastic and Surface Effects
Abstract
1. Introduction
2. Physical Problem
3. Variational Formulation
4. Hamilton’s Principle
5. Free Vibrations
6. Boundary Conditions
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lyshevski, S.E. Nano and Microelectromechanical Systems: Fundamentals of Nano and Microengineering, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Roudbari, M.A.; Jorshari, T.D.; Lü, C.; Ansari, R.; Kouzani, A.Z.; Amabili, M. A review of size-dependent continuum mechanics models for micro- and nano-structures. Thin-Walled Struct. 2022, 170, 108562. [Google Scholar] [CrossRef]
- Rafii-Tabar, H.; Ghavanloo, E.; Fazelzadeh, S.A. Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures. Phys. Rep. 2016, 638, 1–97. [Google Scholar] [CrossRef]
- Thai, H.-T.; Vo, T.P.; Nguyen, T.-K.; Kim, S.-E. A review of continuum mechanics models for size-dependent analysis of beams and plates. Compos. Struct. 2017, 177, 196–219. [Google Scholar] [CrossRef]
- Kong, S. A Review on the size-dependent models of micro-beam and micro-plate based on the modified couple stress theory. Arch. Comput. Methods Eng. 2022, 29, 1–31. [Google Scholar] [CrossRef]
- Jorshari, T.D.; Roudbari, M.A. A review on the mechanical behavior of size-dependent beams and plates using the nonlocal strain-gradient Model. J. Basic Appl. Sci. 2021, 17, 184–193. [Google Scholar] [CrossRef]
- Chandel, V.S.; Wang, G.; Talha, M. Advances in modelling and analysis of nano structures: A review. Nanotechnol. Rev. 2020, 9, 230–258. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, K.; Cai, Q.; Wang, N.; Wu, L.; He, Q.; Wang, H.; Zhang, Y.; Xie, Y.; Yao, Y.; et al. Advances in synthesis and applications of boron nitride nanotubes: A review. Chem. Eng. J. 2022, 431, 134118. [Google Scholar] [CrossRef]
- James, R.D. Objective structures. J. Mech. Phys. Solids 2006, 54, 2354–2390. [Google Scholar] [CrossRef]
- Sfyris, D.; Sfyris, G.; Galiotis, C. Constitutive modeling of some 2D crystals: Graphene, hexagonal BN, MoS 2, WSe 2 and NbSe 2. Int. J. Solids Struct. 2015, 66, 98–110. [Google Scholar] [CrossRef]
- Sfyris, D.; Sfyris, G.I.; Bustamante, R. Nonlinear electro-magneto-mechanical constitutive modelling of monolayer graphene. Proc. R. Soc. A Math. Phys. Eng. Sci. 2016, 472, 20150750. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, G. A micromorphic model for monolayer hexagonal boron nitride with determined constitutive constants by phonon dispersions. Phys. B Condens. Matter 2014, 451, 48–52. [Google Scholar] [CrossRef]
- Sfyris, D.; Sfyris, G. Constitutive modeling of three-dimensional monoatomic linear elastic multilattices. Math. Mech. Solids 2023, 28, 973–988. [Google Scholar] [CrossRef]
- Wang, J.; Ma, F.; Liang, W.; Sun, M. Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures. Mater. Today Phys. 2017, 2, 6–34. [Google Scholar] [CrossRef]
- Wang, J.; Ma, F.; Sun, M. Graphene, hexagonal boron nitride, and their heterostructures: Properties and applications. RSC Adv. 2017, 7, 16801–16822. [Google Scholar] [CrossRef]
- Turhan, E.A.; Pazarçeviren, A.E.; Evis, Z.; Tezcaner, A. Properties and applications of boron nitride nanotubes. Nanotechnology 2022, 33, 242001. [Google Scholar] [CrossRef] [PubMed]
- Suryavanshi, A.P.; Yu, M.-F.; Wen, J.; Tang, C.; Bando, Y. Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett. 2004, 84, 2527–2529. [Google Scholar] [CrossRef]
- Arenal, R.; Wang, M.-S.; Xu, Z.; Loiseau, A.; Golberg, D. Young modulus, mechanical and electrical properties of isolated individual and bundled single-walled boron nitride nanotubes. Nanotechnology 2011, 22, 265704. [Google Scholar] [CrossRef]
- Salavati, M.; Ghasemi, H.; Rabczuk, T. Electromechanical properties of Boron Nitride Nanotube: Atomistic bond potential and equivalent mechanical energy approach. Comput. Mater. Sci. 2018, 149, 460–465. [Google Scholar] [CrossRef]
- Tamilkovan, A.L.; Arumugam, P.A. Current review on boron nitride nanotubes and their applications. Adv. Nat. Sci. Nanosci. Nanotechnol. 2024, 15, 013002. [Google Scholar] [CrossRef]
- Seo, J.-W.; Pophali, A.; An, S.; Liang, C.S.L.; Li, S.; Liu, H.; Kim, J.; An, K.; Kim, J.; Kim, T. Fundamental structural study of hexagonal boron nitride (h-BN) and boron nitride nanotube (BNNT) at low and high temperatures. J. Mol. Struct. 2025, 1319, 139545. [Google Scholar] [CrossRef]
- Kang, J.H.; Sauti, G.; Park, C.; Yamakov, V.I.; Wise, K.E.; Lowther, S.E.; Fay, C.C.; Thibeault, S.A.; Bryant, R.G. Multifunctional electroactive nanocomposites based on piezoelectric boron nitride nanotubes. ACS Nano 2015, 9, 11942–11950. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Meguid, S.A. Effect of number of layers upon piezoelectric behaviour of multi-walled boron nitride nanotubes. J. Phys. D Appl. Phys. 2015, 48, 495301. [Google Scholar] [CrossRef]
- Panchal, M.B.; Upadhyay, S.H. Single walled boron nitride nanotube-based biosensor: An atomistic finite element modelling approach. IET Nanobiotechnology 2014, 8, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Roudbari, M.A.; Ansari, R. Single-walled boron nitride nanotube as nano-sensor. Contin. Mech. Thermodyn. 2020, 32, 729–748. [Google Scholar] [CrossRef]
- Panchal, M.B.; Upadhyay, S.H.; Harsha, S.P. Mass detection using single walled boron nitride nanotube as a nanomechanical resonator. Nano 2012, 7, 1250029. [Google Scholar] [CrossRef]
- Panchal, M.B.; Upadhyay, S.H.; Harsha, S.P. Vibration Analysis of Single Walled Boron Nitride Nanotube Based Nanoresonators. J. Nanotechnol. Eng. Med. 2012, 3, 031004. [Google Scholar] [CrossRef]
- Zhang, D.; Yapici, N.; Oakley, R.; Yap, Y.K. The rise of boron nitride nanotubes for applications in energy harvesting, nanoelectronics, quantum materials, and biomedicine. J. Mater. Res. 2022, 37, 4605–4619. [Google Scholar] [CrossRef]
- Jakubinek, M.B.; Kim, K.S.; Kim, M.J.; Martí, A.A.; Pasquali, M. Recent advances and perspective on boron nitride nanotubes: From synthesis to applications. J. Mater. Res. 2022, 37, 4403–4418. [Google Scholar] [CrossRef]
- Adel, M.; Keyhanvar, P.; Zahmatkeshan, M.; Bayandori, M.; Teimourian, S.; Hooshyar, S.; Keyhanvar, N. Boron nitride nanotubes: Unlocking a new frontier in biomedicine. BioNanoScience 2025, 15, 1–26. [Google Scholar] [CrossRef]
- Ihsanullah, I. Boron nitride-based materials for water purification: Progress and outlook. Chemosphere 2021, 263, 127970. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, R.; Wang, L.; Songfeng, E. Boron nitride nanotubes and nanosheets: Their basic properties, synthesis, and some of applications. Diam. Relat. Mater. 2023, 136, 109978. [Google Scholar] [CrossRef]
- Gurtin, M.E.; Murdoch, A.I. A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 1975, 57, 291–323. [Google Scholar] [CrossRef]
- Gurtin, M.E.; Murdoch, A.I. Surface stress in solids. Int. J. Solids Struct. 1978, 4, 431–440. [Google Scholar] [CrossRef]
- Murdoch, A.I. Some fundamental aspects of surface modelling. J. Elast. 2005, 80, 33–52. [Google Scholar] [CrossRef]
- Shanab, R.A.; Attia, M.A. On bending, buckling and free vibration analysis of 2D-FG tapered Timoshenko nanobeams based on modified couple stress and surface energy theories. Waves Random Complex. Media 2021, 33, 590–636. [Google Scholar] [CrossRef]
- Li, L.; Lin, R.; Ng, T.Y. Contribution of nonlocality to surface elasticity. Int. J. Eng. Sci. 2020, 152, 103311. [Google Scholar] [CrossRef]
- Xu, B.; Kiani, K. Nonlinear nonlocal-surface energy-based vibrations of a bidirectionally excited nanobeam at its supports. Phys. Scr. 2021, 96, 2. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Hosseini, S.H.S. Effect of residual surface stress on parametrically excited nonlinear dynamics and instability of double-walled nanobeams: An analytical study. Eng. Comput. 2021, 37, 1219–1230. [Google Scholar] [CrossRef]
- Kachapi, S.H.H.; Dardel, M.; Daniali, H.M.; Fathi, A. Effects of surface energy on vibration characteristics of double-walled piezo-viscoelastic cylindrical nanoshell. Proc. Inst. Mech. Eng. Part. C J. Mech. Eng. Sci. 2019, 233, 5264–5279. [Google Scholar] [CrossRef]
- Zeighampour, H.; Beni, Y.T. Vibration analysis of boron nitride nanotubes by considering electric field and surface effect. Adv. Nano Res. 2021, 11, 607–620. [Google Scholar] [CrossRef]
- Yamakov, V.; Park, C.; Kang, J.H.; Chen, X.; Ke, C.; Fay, C. Piezoelectric and elastic properties of multiwall boron-nitride nanotubes and their fibers: A molecular dynamics study. Comput. Mater. Sci. 2017, 135, 29–42. [Google Scholar] [CrossRef]
- Yamakov, V.; Park, C.; Kang, J.H.; Wise, K.E.; Fay, C. Piezoelectric molecular dynamics model for boron nitride nanotubes. Comput. Mater. Sci. 2014, 95, 362–370. [Google Scholar] [CrossRef]
- Tolladay, M.; Ivanov, D.; Allan, N.L.; Scarpa, F. Piezoelectric effects in boron nitride nanotubes predicted by the atomistic finite element method and molecular mechanics. Nanotechnology 2017, 28, 355705. [Google Scholar] [CrossRef] [PubMed]
- Kundalwal, S.; Choyal, V. Enhancing the piezoelectric properties of boron nitride nanotubes through defect engineering. Phys. E Low-Dimens. Syst. Nanostructures 2021, 125, 114304. [Google Scholar] [CrossRef]
- Arani, A.G.; Roudbari, M. Nonlocal piezoelastic surface effect on the vibration of visco-Pasternak coupled boron nitride nanotube system under a moving nanoparticle. Thin Solid Film. 2013, 542, 232–241. [Google Scholar] [CrossRef]
- Mohammadimehr, M.; Mohandes, M.; Moradi, M. Size dependent effect on the buckling and vibration analysis of double-bonded nanocomposite piezoelectric plate reinforced by boron nitride nanotube based on modified couple stress theory. J. Vib. Control. 2016, 22, 1790–1807. [Google Scholar] [CrossRef]
- Mohammadimehr, M.; Atifeh, S.J.; Navi, B.R. Stress and free vibration analysis of piezoelectric hollow circular FG-SWBNNTs reinforced nanocomposite plate based on modified couple stress theory subjected to thermo-mechanical loadings. J. Vib. Control. 2018, 24, 3471–3486. [Google Scholar] [CrossRef]
- Adel, M.; Keyhanvar, P.; Zahmatkeshan, M.; Tavangari, Z.; Keyhanvar, N. A comparative simulation study of piezoelectric properties in zigzag and armchair boron nitride nanotubes: By discovering a pioneering protocol. J. Math. Chem. 2024, 62, 2943–2958. [Google Scholar] [CrossRef]
- Arani, A.G.; Roudbari, M.; Amir, S. Nonlocal vibration of SWBNNT embedded in bundle of CNTs under a moving nanoparticle. Phys. B Condens. Matter 2012, 407, 3646–3653. [Google Scholar] [CrossRef]
- Ghadiri, M.; Ebrahimi, F.; Salari, E.; Hosseini, S.A.H.; Shaghaghi, G.R. Electro-thermomechanical vibration analysis of em-bedded SWBNNTs based on nonlocal third-order beam theory. Int. J. Multiscale Comp. Eng. 2015, 13, 443–461. [Google Scholar] [CrossRef]
- Arani, A.G.; Atabakhshian, V.; Loghman, A.; Shajari, A.; Amir, S. Nonlinear vibration of embedded SWBNNTs based on nonlocal Timoshenko beam theory using DQ method. Phys. B Condens. Matter 2012, 407, 2549–2555. [Google Scholar] [CrossRef]
- Arani, A.G.; Roudbari, M. Surface stress, initial stress and Knudsen-dependent flow velocity effects on the electro-thermo nonlocal wave propagation of SWBNNTs. Phys. B Condens. Matter 2014, 452, 159–165. [Google Scholar] [CrossRef]
- Yawei, D.; Yang, Z.; Jianwei, Y. Exact solutions of bending deflection for single-walled BNNTs based on the classical Euler-Bernoulli beam theory. Nanotechnol. Rev. 2020, 9, 961–970. [Google Scholar] [CrossRef]
- Zhao, D.; Fang, K.; Lian, Z. Mechanical and vibrational behaviors of bilayer hexagonal boron nitride in different stacking modes. Sci. Rep. 2024, 14, 10619. [Google Scholar] [CrossRef] [PubMed]
- Vassilev, V.M.; Valchev, G.S. Dynamics and stability of double-walled carbon nanotube cantilevers conveying fluid in an elastic medium. Dynamics 2024, 4, 222–232. [Google Scholar] [CrossRef]
- Ahmadi, H.R.; Rahimi, Z.; Sumelka, W. Enhancing sensitivity of double-walled carbon nanotubes with longitudinal magnetic field. Appl. Sci. 2024, 14, 3010. [Google Scholar] [CrossRef]
- Arani, A.G.; Kolahchi, R.; Vossough, H. Nonlocal wave propagation in an embedded DWBNNT conveying fluid via strain gradient theory. Phys. B Condens. Matter 2012, 407, 4281–4286. [Google Scholar] [CrossRef]
- Abdollahian, M.; Arani, A.G.; Barzoki, A.M.; Kolahchi, R.; Loghman, A. Non-local wave propagation in embedded armchair TWBNNTs conveying viscous fluid using DQM. Phys. B Condens. Matter 2013, 418, 1–15. [Google Scholar] [CrossRef]
- Arani, A.G.; Kolahchi, R.; Maraghi, Z.K. Nonlinear vibration and instability of embedded double-walled boron nitride nanotubes based on nonlocal cylindrical shell theory. Appl. Math. Model. 2013, 37, 7685–7707. [Google Scholar] [CrossRef]
- Arani, A.G.; Amir, S. Electro-thermal vibration of visco-elastically coupled BNNT systems conveying fluid embedded on elastic foundation via strain gradient theory. Phys. B Condens. Matter 2013, 419, 1–6. [Google Scholar] [CrossRef]
- Ghorbanpour-Arani, A.H.; Rastgoo, A.; Bidgoli, A.H.; Kolahchi, R.; Arani, A.G. Wave propagation of coupled double-DWBNNTs conveying fluid-systems using different nonlocal surface piezoelasticity theories. Mech. Adv. Mater. Struct. 2016, 24, 1159–1179. [Google Scholar] [CrossRef]
- Arani, A.G.; Sabzeali, M.; Zarei, H.B. Nonlinear vibration of double-walled boron nitride and carbon nanopeapods under multi-physical fields with consideration of surface stress effects. Eur. Phys. J. Plus 2017, 132, 538. [Google Scholar] [CrossRef]
- Eringen, A.C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 1983, 54, 4703–4710. [Google Scholar] [CrossRef]
- Eringen, A.; Wegner, J. Nonlocal Continuum Field Theories. Appl. Mech. Rev. 2003, 56, B20–B22. [Google Scholar] [CrossRef]
- Steigmann, D.J.; Ogden, R.W. Elastic surface–substrate interactions. Proc. R. Soc. A 1999, 455, 437–474. [Google Scholar] [CrossRef]
- Ye, W. Steigmann-Ogden interface effect on the effective elastic properties of nanoparticle-reinforced composites: From nanocomposites to nanoparticles. Int. J. Solids Struct. 2023, 280, 112408. [Google Scholar] [CrossRef]
- Dai, M.; Schiavone, P. Discussion of the linearized version of the Steigmann-Ogden surface model in plane deformation and its application to inclusion problems. Int. J. Eng. Sci. 2023, 192, 112408. [Google Scholar] [CrossRef]
- Adali, S. Variational principles for multi-walled carbon nanotubes undergoing buckling based on nonlocal elasticity theory. Phys. Lett. A 2008, 372, 5701–5705. [Google Scholar] [CrossRef]
- Adali, S. Variational Principles for Vibrating Carbon Nanotubes Modeled as Cylindrical Shells Based on Strain Gradient Nonlocal Theory. J. Comput. Theor. Nanosci. 2011, 8, 1954–1962. [Google Scholar] [CrossRef]
- Adali, S. Variational principles for a double Rayleigh beam system undergoing vibrations and connected by a nonlinear Winkler–Pasternak elastic layer. Nonlinear Eng. 2023, 12, 20220259. [Google Scholar] [CrossRef]
- Adali, S. A variational formulation for coupled single-walled carbon nanotubes undergoing vibrations in the presence of an axial magnetic field. Math. Model. Eng. Probl. 2023, 10, 1180–1188. [Google Scholar] [CrossRef]
- Salmon, R. Practical use of Hamilton’s principle. J. Fluid Mech. 1983, 132, 431–444. [Google Scholar] [CrossRef]
- Junker, P.; Balzani, D. An extended Hamilton principle as unifying theory for coupled problems and dissipative microstructure evolution. Contin. Mech. Thermodyn. 2021, 33, 1931–1956. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adali, S. Variational Principles for Coupled Boron Nitride Nanotubes Undergoing Vibrations, Including Piezoelastic and Surface Effects. Dynamics 2025, 5, 21. https://doi.org/10.3390/dynamics5020021
Adali S. Variational Principles for Coupled Boron Nitride Nanotubes Undergoing Vibrations, Including Piezoelastic and Surface Effects. Dynamics. 2025; 5(2):21. https://doi.org/10.3390/dynamics5020021
Chicago/Turabian StyleAdali, Sarp. 2025. "Variational Principles for Coupled Boron Nitride Nanotubes Undergoing Vibrations, Including Piezoelastic and Surface Effects" Dynamics 5, no. 2: 21. https://doi.org/10.3390/dynamics5020021
APA StyleAdali, S. (2025). Variational Principles for Coupled Boron Nitride Nanotubes Undergoing Vibrations, Including Piezoelastic and Surface Effects. Dynamics, 5(2), 21. https://doi.org/10.3390/dynamics5020021