Dynamical Invariants for Generalized Coherent States via Complex Quantum Hydrodynamics
Abstract
:1. Introduction
2. Position Representation
2.1. Dynamics of Bohmian Quantities
2.2. Parametric Oscillator
2.3. Dynamical Invariant
2.4. Phase Angles of the Complex Quantities
3. Momentum Representation
3.1. Parametric Oscillator
3.2. Dynamical Invariants
4. Linear Potential
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ermakov, V.P. Second-order differential equations: Conditions of complete integrability. Univ. Izv. Kiev 1880, 20, 123–145. [Google Scholar] [CrossRef] [Green Version]
- Lewis, H.R., Jr. Classical and quantum systems with time-dependent harmonic-oscillator-type Hamiltonians. Phys. Rev. Lett. 1967, 18, 510. [Google Scholar] [CrossRef]
- Cerveró, J.M.; Estévez, P.G. A Review in Ermakov Systems and Their Symmetries. Symmetry 2021, 13, 493. [Google Scholar] [CrossRef]
- Andrzejewski, K. Dynamics of entropy and information of time-dependent quantum systems: Exact results. arXiv 2021, arXiv:2108.00975. [Google Scholar]
- Soto-Eguibar, F.; Asenjo, F.A.; Hojman, S.A.; Moya-Cessa, H.M. Bohm potential for the time dependent harmonic oscillator. arXiv 2021, arXiv:2101.05907. [Google Scholar]
- Sen, A.; Zurab, S. Ermakov-Lewis invariant in Koopman-von Neumann mechanics. Int. J. Theor. Phys. 2020, 59, 2187. [Google Scholar] [CrossRef]
- Mandal, S.; Kora, M.; Bayen, D.K.; Saha, K.C. Exactly Solvable Model of Classical and Quantum Oscillators of Time Dependent Complex Frequencies: Squeezing Properties of Coherent Field. Braz. J. Phys. 2021, 51, 954. [Google Scholar] [CrossRef]
- Ramos-Prieto, I.; Urzúa, A.R.; Fernández-Guasti, M.; Moya-Cessa, H.M. Ermakov-Lewis invariant for two coupled oscillators. J. Phys. Conf. Ser. 2020, 1540, 012009. [Google Scholar] [CrossRef]
- Moya-Cessa, H.; Tombesi, P. Filtering number states of the vibrational motion of an ion. Phys. Rev. A 2000, 61, 025401. [Google Scholar] [CrossRef] [Green Version]
- Moya-Cessa, H.; Jonathan, D.; Knight, P.L. A family of exact eigenstates for a single trapped ion interacting with a laser field. J. Mod. Opt. 2003, 50, 265. [Google Scholar] [CrossRef]
- Casanova, J.; Puebla, R.; Moya-Cessa, H.; Plenio, M.B. Connecting n th order generalised quantum Rabi models: Emergence of nonlinear spin-boson coupling via spin rotations. NPJ Quant. Inf. 2018, 5, 47. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Klimov, A.B. Generation and detection of photons in a cavity with a resonantly oscillating boundary. Phys. Rev. A 1996, 53, 2664. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ruschhaupt, A.; Schmidt, S.; del Campo, A.; Guéry-Odelin, D.; Muga, J.G. Fast Optimal Frictionless Atom Cooling in Harmonic Traps: Shortcut to Adiabaticity. Phys. Rev. Lett. 2010, 104, 063002. [Google Scholar] [CrossRef] [PubMed]
- Román-Ancheyta, R.; Ramos-Prieto, I.; Perez-Leija, A.; Busch, K.; León-Montiel, R.D.J. Dynamical Casimir effect in stochastic systems: Photon harvesting through noise. Phys. Rev. A 2017, 96, 032501. [Google Scholar] [CrossRef] [Green Version]
- Schuch, D. Quantum Theory from a Nonlinear Perspective; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Bonilla-Licea, M.; Schuch, D. Bohmian mechanics in momentum representation and beyond. Phys. Lett. A 2020, 384, 126671. [Google Scholar] [CrossRef]
- Bonilla-Licea, M.; Schuch, D. Quantum hydrodynamics with complex quantities. Phys. Lett. A 2021, 392, 127171. [Google Scholar] [CrossRef]
- Madelung, E. Quantentheorie in Hydrodynamischer Form. Z. Phys. 1927, 40, 322. [Google Scholar] [CrossRef]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables I. Phys. Rev. 1952, 85, 166. [Google Scholar] [CrossRef]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables II. Phys. Rev. 1952, 85, 180. [Google Scholar] [CrossRef]
- Schuch, D. Analytical solutions for the quantum parametric oscillator from corresponding classical dynamics via a complex Riccati equation. J. Phys. Conf. Ser. 2018, 1071, 012020. [Google Scholar] [CrossRef]
- Schuch, D. Some remarks on analytical solutions for a damped quantum parametric oscillator. J. Phys. Conf. Ser. 2019, 1075, 012033. [Google Scholar] [CrossRef]
- Vlasov, S.N.; Petrishchev, V.A.; Talanov, V.I. Averaged description of wave beams in linear and nonlinear media (the method of moments). Radiophys. Quantum Electron. 1971, 14, 1062. [Google Scholar] [CrossRef]
- Pérez-García, V.M.; Porras, M.A.; Vázquez, L. The nonlinear Schrödinger equation with dissipation and the moment method. Phys. Lett. A 1995, 202, 176. [Google Scholar] [CrossRef]
- Pérez-García, V.M.; Michinel, H.; Cirac, J.I.; Lewenstein, M.; Zoller, P. Dynamics of Bose-Einstein condensates: Variational solutions of the Gross–Pitaevskii equations. Phys. Rev. A 1997, 56, 1424. [Google Scholar] [CrossRef]
- García-Ripoll, J.J.; Pérez-García, V.M.; Torres, P. Extended parametric resonances in nonlinear Schrödinger systems. Phys. Rev. Lett. 1999, 83, 1715. [Google Scholar] [CrossRef] [Green Version]
- Vink, J.C.; Uwe, J.W. Gauge fixing on the lattice without ambiguity. Phys. Lett. B 1992, 369, 707. [Google Scholar] [CrossRef] [Green Version]
- Marto, J.; Moniz, V. de Broglie–Bohm FRW universes in quantum string cosmology. Phys. Rev. D 2001, 65, 023516. [Google Scholar] [CrossRef]
- Ali, A.F.; Saurya, D. Cosmology from quantum potential. Phys. Lett. B 2015, 741, 276. [Google Scholar]
- Lidsey, J.E. Cosmic dynamics of Bose–Einstein condensates. Class. Quantum Gravity 2004, 21, 777. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Non-standard non-local-in-time Lagrangians in classical mechanics. Qual. Theor. Dyn. Syst. 2014, 13, 149. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Complex backward–forward derivative operator in non-local-in-time Lagrangians mechanics. Qual. Theor. Dyn. Syst. 2017, 16, 223. [Google Scholar] [CrossRef]
- Schuch, D. On the Complex Relations Between Equations Describing the Dynamics of Wave and Particle Aspects. Int. J. Quant. Chem. 1992, 42, 663. [Google Scholar] [CrossRef]
- Schuch, D.; Moshinsky, M. Wigner distribution functions and the representation of canonical transformations in time-dependent quantum mechanics. SIGMA 2008, 4, 054. [Google Scholar] [CrossRef]
- Bender, C.M.; Boettcher, S. Real spectra in non-Hermitian Hamiltonians having P T symmetry. Physi. Rev. Lett. 1998, 80, 5243. [Google Scholar] [CrossRef] [Green Version]
- Rosas-Ortiz, O.; Castaños, O.; Schuch, D. New supersymmetry-generated complex potentials with real spectra. J. Phys. A Math. Theor. 2015, 48, 445302. [Google Scholar] [CrossRef] [Green Version]
- El-Nabulsi, R.A. Spectrum of Schrödinger Hamiltonian operator with singular inverted complex and Kratzer’s molecular potentials in fractional dimensions. Eur. Phys. J. Plus 2018, 133, 1–16. [Google Scholar] [CrossRef]
- John, M.V. Modified de Broglie—Bohm Approach to Quantum Mechanics. Found. Phys. Lett. 2002, 15, 329. [Google Scholar] [CrossRef] [Green Version]
- John, M.V. Probability and complex quantum trajectories. Ann. Phys. 2009, 324, 220. [Google Scholar] [CrossRef] [Green Version]
- Dey, S.; Fring, A. Bohmian quantum trajectories from coherent states. Phys. Rev. A 2013, 88, 022116. [Google Scholar] [CrossRef] [Green Version]
- Young, C.-D. Trajectory interpretation of the uncertainty principle in 1D systems using complex Bohmian mechanics. Phys. Lett. A 2008, 372, 6240. [Google Scholar] [CrossRef]
- Chou, C.-C.; Wyatt, R.E. Considerations on the probability density in complex space. Phys. Rev. A 2008, 78, 044101. [Google Scholar] [CrossRef]
- Chou, C.-C.; Wyatt, R.E. Complex-extended Bohmian mechanics. J. Chem. Phys. 2010, 132, 134102. [Google Scholar] [CrossRef] [PubMed]
- Poirier, B. Flux continuity and probability conservation in complexified Bohmian mechanics. Phys. Rev. A 2008, 77, 022114. [Google Scholar] [CrossRef] [Green Version]
- Goldfarb, Y.; Degani, J.; Tannor, D.J. Bohmian mechanics with complex action: A new trajectory-based formulation of quantum mechanics. J. Chem. Phys. 2006, 125, 231103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanz, Á.S.; Miret-Artés, S. Comment on “Bohmian mechanics with complex action: A new trajectory-based formulation of quantum mechanics. J. Chem. Phys. 2007, 127, 197101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldfarb, Y.; Tannor, D.J. Interference in Bohmian mechanics with complex action. J. Chem. Phys. 2007, 127, 161101. [Google Scholar] [CrossRef] [Green Version]
- Sanz, Á.S.; Borondo, F. Miret-Artés Particle diffraction studied using quantum trajectories. J. Phys. Condens. Matter 2002, 14, 6109. [Google Scholar] [CrossRef]
- Benseny, A.; Albareda, G.; Sanz, Á.S.; Mompart, J.; Oriols, X. Applied Bohmian Mechanics. Eur. Phys. J. D 2014, 68, 1–42. [Google Scholar] [CrossRef] [Green Version]
- John, M.V.; Mathew, K. Coherent states and modified de Broglie-Bohm complex quantum trajectories. Found. Phys. 2013, 43, 859. [Google Scholar] [CrossRef] [Green Version]
- Hartley, J.G.; Ray, J.R. Ermakov systems and quantum-mechanical superposition laws. Phys. Rev. A 1981, 24, 2873. [Google Scholar] [CrossRef]
- Hartley, J.G.; Ray, J.R. Solutions to the time-dependent Schrödinger equation. Phys. Rev. A 1982, 25, 2388. [Google Scholar] [CrossRef]
- Ray, J.R. Minimum-uncertainty coherent states for certain time-dependent systems. Phys. Rev. D 1982, 25, 3417. [Google Scholar] [CrossRef]
- Yang, C.N. Schrödinger—Centenary Celebration of a Polymath; Cambridge University Press: Cambridge, UK, 1987; p. 53. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonilla-Licea, M.; Schuch, D. Dynamical Invariants for Generalized Coherent States via Complex Quantum Hydrodynamics. Dynamics 2021, 1, 155-170. https://doi.org/10.3390/dynamics1020009
Bonilla-Licea M, Schuch D. Dynamical Invariants for Generalized Coherent States via Complex Quantum Hydrodynamics. Dynamics. 2021; 1(2):155-170. https://doi.org/10.3390/dynamics1020009
Chicago/Turabian StyleBonilla-Licea, Moise, and Dieter Schuch. 2021. "Dynamical Invariants for Generalized Coherent States via Complex Quantum Hydrodynamics" Dynamics 1, no. 2: 155-170. https://doi.org/10.3390/dynamics1020009
APA StyleBonilla-Licea, M., & Schuch, D. (2021). Dynamical Invariants for Generalized Coherent States via Complex Quantum Hydrodynamics. Dynamics, 1(2), 155-170. https://doi.org/10.3390/dynamics1020009