Fatigue Strength Curve for Tubular Joints of Offshore Structures under Dynamic Loading
Abstract
:1. Introduction
2. Proposed Stress Life Fatigue Curve
3. Experimental Verification
4. Case Study: Fatigue Assessment of Tubular Joint in the Splash Zone
4.1. Considered Offshore Jacket Structure
4.2. Wave Load Modelling
4.3. Time History Dynamic Analysis
4.4. Fatigue Life Assessment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- DNV Recommended Practices. DNVGL-RP-0005: Fatigue Design of Offshore Steel Structures; Det Norske Veritas: Bellum, Norway, 2016. [Google Scholar]
- HSE. HSE. HSE OTH 92 390. In Background to New Fatigue Guidance for Steel Joints and Connections in Offshore Structures, Offshore Technology Report; Health Safety Executives: London, UK, 1999. [Google Scholar]
- Brandi, R. Behavior of unstiffened tubular joints. In Proceedings of the Steel in Marine Structures Conference, Paris, France, 5–8 October 1981. [Google Scholar]
- Iwasaki, T.; Wylde, J.G. Corrosion fatigue test on welded tubular joints. Trans. ASME 1985, 107, 68–73. [Google Scholar] [CrossRef]
- Gangloff, R.P. Environmental cracking—corrosion fatigue. In Corrosion Tests and Standards Manual; Baboian, R., Dean, S.W., Jr., Hack, H.P., Hibner, E.L., Scully, J.R., Eds.; ASTM Internationals: West Conshohocken, PA, USA, 2005. [Google Scholar]
- Revie, R.W.; Uhlig, H.H. Corrosion and Corrosion Control, an Introduction to Corrosion Science and Engineering, 4th ed.; Wiley and Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Glaser, W.; Wright, L.G. Mechanically Assisted Degradation. ASM Handbooks; ASM Internationals: West Conshohocken, PA, USA, 1992; pp. 137–144. [Google Scholar]
- Pavlou, D. The theory of the S-N fatigue damage envelope: Generalization of linear, double-linear, and non-linear fatigue damage models. Int. J. Fatigue 2018, 110, 204–214. [Google Scholar] [CrossRef]
- El Aghoury, I. Numerical Tool for Fatigue Life Prediction of Corroded Steel Riveted Connections Using Various Damage Models. Ph.D. Thesis, Concordia University, Montreal, QC, Canada, 2012. [Google Scholar]
- Adasooriya, N.D.; Pavlou, D.; Hemmingsen, T. Fatigue strength degradation of corroded structural details: A formula for S-N curve. Fat. Fract. Eng. Mater. Struct. 2020, 43, 721–733. [Google Scholar] [CrossRef] [Green Version]
- Adasooriya, N.D.; Hemmingsen, T.; Pavlou, D. Fatigue strength degradation of metals in corrosive environments. In Proceedings of First Conference of Computational Methods in Offshore Technology-COTech 2017; IOP Conference Series: Materials Science and Engineering; IOP Publishing: Stavanger, Norway, 2017. [Google Scholar]
- Sigurdsson, G. Probablistic Fatigue Analysis of Jacket Type Offshore Structures. Reliab. Optim. Struct. Syst. 88 1989, 48, 91–309. [Google Scholar]
- Redion, K.; Siriwardane, S.C.; Gudmestad, O.T. Fatigue life estimation of an offshore steel jacket considering the loading sequence effect. In Proceedings of the ASME 2014 Conferences, 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, CA, USA, 8–13 June 2014. [Google Scholar]
- Dong, W.; Moan, T.; Gao, Z. Fatigue reliability analysis of the jacket support structure for offshore wind turbine considering the effect of corrosion and inspection. Reliab. Eng. Syst. Saf. 2012, 106, 11–27. [Google Scholar] [CrossRef]
- Journee, J.M.J.; Massie, M.W. Offshore Hydromechanics, 1st ed.; Delf University of Technology: Delft, The Netherlands, 2001. [Google Scholar]
- DNV Recommended Practices. DNV-RP-C205: Environmental Conditions and Environmental Loads; Det Norske Veritas: Oslo, Norway, 2010. [Google Scholar]
- NORSOK. NORSOK. NORSOK N-003. In Action and Action Effects; NORSOK: Lysaker, Norway, 2017. [Google Scholar]
- Larsen, C.M. Notes for Special Topics: Dynamic Analysis of Marine Structures; Norwegian University of Science and Technology: Trondheim, Norway, 2005. [Google Scholar]
- Gudmestad, O.T.; Connor, J.J. Linearization Methods and the Influence of Current on the Nonlinear Hydrodynamic Force. Appl. Ocean. Res. 1983, 5, 184–194. [Google Scholar] [CrossRef]
- Weldeslassie, M.W. Investigation of the Which Seas State Yield the Dominating Contribution to Fatigue Accumulation in Offshore Structures. Master’s Thesis, NTNU, Trondhiem, Norway, 2014. [Google Scholar]
- SAP 2000, Analysis Reference Manual, Version 19; CSI Computers and Structures. Available online: https://wiki.csiamerica.com/display/doc/CSI+Analysis+Reference+Manual (accessed on 21 August 2021).
- Miner, M.A. Cumulative damage in fatigue. J. Appl. Mech. 1945, 12, 159–164. [Google Scholar] [CrossRef]
Parameter | Design T-Curve | |
---|---|---|
m1 | 3 | |
12.164 | ||
m1 | 5 | |
15.606 | ||
NLCF | 104 | |
NCAFL | 107 | |
Corrosion parameters | Mean value | Conservative value |
ΔσD,cor(MPa) | 24.22 | 14.21 |
c | 0.1124 | 0.1895 |
ć | −0.3113 | −0.3883 |
Members | Diameter [m] | Thickness [mm] |
---|---|---|
Deck legs | 2.0 | 50.0 |
Jacket legs | 1.2 | 16.0 |
Braces in the vertical plane | 1.2 | 16.0 |
Braces in the horizontal plane El: +5 m | 0.8 | 8.0 |
Braces in the horizontal plane El: −10 m | 1.2 | 14.0 |
Braces in the horizontal plane El: −30 m | 1.2 | 14.0 |
Braces in the horizontal plane El: −30 m (diagonal) | 1.2 | 16.0 |
Braces in the horizontal plane El: −50 m | 1.2 | 14.0 |
Fatigue Strength Curve | From Dominant 8 Sea States | From Long-Term Wave Scatter |
---|---|---|
Design T-curve-free corrosion [1] Proposed curve Equations (5) and (9) | 89 22 | 97 46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siriwardane, S.C.; Adasooriya, N.D.; Pavlou, D. Fatigue Strength Curve for Tubular Joints of Offshore Structures under Dynamic Loading. Dynamics 2021, 1, 125-133. https://doi.org/10.3390/dynamics1010007
Siriwardane SC, Adasooriya ND, Pavlou D. Fatigue Strength Curve for Tubular Joints of Offshore Structures under Dynamic Loading. Dynamics. 2021; 1(1):125-133. https://doi.org/10.3390/dynamics1010007
Chicago/Turabian StyleSiriwardane, Sudath C., Nirosha D. Adasooriya, and Dimitrios Pavlou. 2021. "Fatigue Strength Curve for Tubular Joints of Offshore Structures under Dynamic Loading" Dynamics 1, no. 1: 125-133. https://doi.org/10.3390/dynamics1010007
APA StyleSiriwardane, S. C., Adasooriya, N. D., & Pavlou, D. (2021). Fatigue Strength Curve for Tubular Joints of Offshore Structures under Dynamic Loading. Dynamics, 1(1), 125-133. https://doi.org/10.3390/dynamics1010007