Topic Modeling the Academic Discourse on Critical Incident Stress Debriefing and Management (CISD/M) for First Responders
Abstract
1. Introduction
1.1. Rationale
- Provide a data-driven method to distill complex, multifaceted discussions into interpretable topics, reducing potential researcher bias.
- Process large volumes of text that would be impractical to analyze manually, allowing for a broader examination of the entire field.
- Facilitate the discovery of implicit connections between concepts that might not be apparent through traditional literature review.
1.2. Background
1.2.1. CISD
1.2.2. CISM
1.2.3. CISD/M
1.2.4. CISD/M and Topic Modeling
1.3. Research Question
2. Methods
2.1. Design
2.2. Corpus
- Document types: articles, review articles, letters, meeting abstracts, early access, notes, and proceeding papers.
- Language: English.
2.3. Measures
2.3.1. Topic Modeling
2.3.2.
2.3.3. Log Perplexity
2.3.4. Topic Coherence
2.3.5. Word Relevance
2.4. Apparatus
2.4.1. Orange Data Mining Widgets
2.4.2. Use of Generative AI
2.5. Data Analysis
3. Results
3.1. Model Solution
3.1.1. Three Solution
3.1.2. Four Solution
3.2. Description of Each Topic
3.2.1. Topic 1—Emergency Staff CISD Implementation Practices
3.2.2. Topic 2—Group Psychological Debriefing Outcome Studies
3.2.3. Topic 3—Military Peer Response Support Programs
3.2.4. Topic 4—First Responder Mental Health Interventions
4. Discussion
4.1. Reasons for the Obtained Topics
4.1.1. Emergency Staff CISD Implementation Practices
4.1.2. Group Psychological Debriefing Outcome Studies
4.1.3. Military Peer Response Support Programs
4.1.4. First Responder Mental Health Interventions
4.2. Limitations
4.3. Implications
4.3.1. Research Implications
Occupational Stress and Burnout
Need for Longitudinal Studies
Analysis of Procedural Adherence and Potential for Harmful Effects
- What is the optimal window for administering CISD?
- Does strict or flexible adherence to a CISD’s protocol on when to administer such an intervention lead to better outcomes?
Toward More Replicable and Tunable LDA Workflows
4.3.2. Implications for Practice
Reactive Application
Organizational Investment
Comprehensive Approaches
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013; ISBN 9780890425541. [Google Scholar]
- Haugen, P.T.; Evces, M.; Weiss, D.S. Treating posttraumatic stress disorder in first responders: A systematic review. Clin. Psychol. Rev. 2012, 32, 370–380. [Google Scholar] [CrossRef]
- Mitchell, J.T. When disaster strikes: The critical incident stress debriefing process. J. Emerg. Med. Serv. 1983, 8, 36–39. [Google Scholar]
- Blei, D.M. Probabilistic topic models. Commun. ACM 2012, 55, 77–84. [Google Scholar] [CrossRef]
- Rüdiger, M.; Antons, D.; Joshi, A.M.; Salge, T.O. Topic modeling revisited: New evidence on algorithm performance and quality metrics. PLoS ONE 2022, 17, e0266325. [Google Scholar] [CrossRef]
- Ni, C.F.; Lundblad, R.; Dykeman, C.; Bolante, R.; Łabuński, W. Content analysis of psychological first aid training manuals via topic modelling. Eur. J. Psychotraumatol. 2023, 14, 2230110. [Google Scholar] [CrossRef] [PubMed]
- Rensi, M.; Barta, M.; Moreno, J.; McCullough, R.; Glaus, R.; Lundblad, R.; Dykeman, C. Examining the key topics in research articles on burnout among firefighters, police officers, and first responders: A topic modeling analysis. J. Police Crim. Psychol. 2024, 39, 836–844. [Google Scholar] [CrossRef]
- Alvesson, M.; Sandberg, J. The problematizing review: A counterpoint to Elsbach and Van Knippenberg’s argument for integrative reviews. J. Manag. Stud. 2020, 57, 1290–1304. [Google Scholar] [CrossRef]
- Ancarani, F.; Garijo Añaños, P.; Gutiérrez, B.; Pérez-Nievas, J.; Vicente-Rodríguez, G.; Gimeno Marco, F. The effectiveness of debriefing on the mental health of rescue teams: A systematic review. Int. J. Environ. Res. Public Health 2025, 22, 590. [Google Scholar] [CrossRef]
- Billings, J.; Zhan Yuen Wong, N.; Nicholls, H.; Burton, P.; Zosmer, M.; Albert, I.; Grey, N.; El-Leithy, S.; Murphy, D.; Tehrani, N.; et al. Post-incident psychosocial interventions after a traumatic incident in the workplace: A systematic review of current research evidence and clinical guidance. Eur. J. Psychotraumatol. 2023, 14, 2281751. [Google Scholar] [CrossRef]
- Mitchell, J.T.; Everly, G.S. Critical Incident Stress Management (CISM). In First Responder Mental Health: A Clinician’s Guide; Bourke, M.L., Van Hasselt, V.B., Buser, S.J., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2023; pp. 179–209. [Google Scholar] [CrossRef]
- Everly, G.S.; Mitchell, J.T. Critical Incident Stress Management (CISM): A New Era and Standard of Care in Crisis Intervention, 2nd ed.; Chevron Publishing Corporation: Sussex, UK, 1999; ISBN 9781883581169. [Google Scholar]
- Everly, G.S.; Flannery, R.B.; Eyler, V. Critical incident stress management (CISM): A statistical review of the literature. Psychiatr. Q. 2002, 73, 171–182. [Google Scholar] [CrossRef]
- Stileman, H.M.; Jones, C.A. Revisiting the debriefing debate: Does psychological debriefing reduce PTSD symptomology following work-related trauma? A meta-analysis. Front. Psychol. 2023, 14, 1248924. [Google Scholar] [CrossRef]
- Li, L.; Lemke, F. Shaping the future of business sustainability: LDA topic modeling insights, definitions, and research agenda. J. Bus. Ethics 2025. [Google Scholar] [CrossRef]
- Řehůřek, R.; Sojka, P. Gensim: Topic Modelling for Humans. 2024. Available online: https://radimrehurek.com/gensim/ (accessed on 15 October 2024).
- Cao, Q.; Cheng, X.; Liao, S. A comparison study of topic modeling based literature analysis by using full texts and abstracts of scientific articles: A case of COVID-19 research. Libr. Hi Tech 2022, 41, 543–569. [Google Scholar] [CrossRef]
- Kim, S.; Park, J. Leveraging abstracts for scalable topic modeling in large corpora. Appl. Sci. 2022, 12, 3945. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Chansanam, W.; Hunsapun, N.; Chaichuay, V.; Kanyacome, S.; Takhom, A.; Jaroenruen, Y.; Li, C. Evaluating the performance of topic modeling techniques for bibliometric analysis research: An LDA-based approach. HighTech Innov. J. 2024, 5, 312–330. [Google Scholar] [CrossRef]
- Clarivate. Web of Science Platform. Available online: https://clarivate.com/products/scientific-and-academic-research/research-discovery-and-workflow-solutions/webofscience-platform/ (accessed on 19 March 2024).
- Kapadia, S.; Evaluate Topic Models: Latent Dirichlet Allocation (LDA). Towards Data Science. 2024. Available online: https://towardsdatascience.com/evaluate-topic-model-in-python-latent-dirichlet-allocation-lda-7d57484bb5d0 (accessed on 15 October 2024).
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. Available online: https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf (accessed on 1 May 2024).
- Sievert, C.; Shirley, K. LDAvis: A method for visualizing and interpreting topics. In Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces , Baltimore, MD, USA, 27 June 2014; pp. 63–70. Available online: https://aclanthology.org/W14-3110.pdf (accessed on 6 October 2024).
- Bioinformatics Lab, University of Ljubljana. Orange Data Mining, Version 3.37. 2024. Available online: https://orangedatamining.com/ (accessed on 1 May 2024).
- Bioinformatics Lab, University of Ljubljana. Topic Modelling. 2024. Available online: https://orangedatamining.com/widget-catalog/text-mining/topicmodelling-widget/ (accessed on 1 May 2024).
- Bioinformatics Lab, University of Ljubljana. LDAvis. 2024. Available online: https://orangedatamining.com/widget-catalog/text-mining/LDAvis/ (accessed on 1 May 2024).
- MDPI. MDPI’s Updated Guidelines on Artificial Intelligence and Authorship. 2023. Available online: https://www.mdpi.com/about/announcements/5687 (accessed on 28 December 2024).
- WAME. WAME Recommendations on Chatbots and Generative Artificial Intelligence in Relation to Scholarly Publications. 2023. Available online: https://wame.org/page3.php?id=106 (accessed on 18 July 2024).
- Kozlowski, D.; Pradier, C.; Benz, P. Generative AI for automatic topic labelling. arXiv 2024. [Google Scholar] [CrossRef]
- Wang, Z.; Mao, S.; Wu, W.; Ge, T.; Wei, F.; Ji, H. Unleashing the emergent cognitive synergy in large language models: A task-solving agent through multi-persona self-collaboration. arXiv 2023, arXiv:2307.05300. [Google Scholar] [CrossRef]
- Alexander, D.A.; Klein, S. Ambulance personnel and critical incidents: Impact of accident and emergency work on mental health and emotional well-being. Br. J. Psychiatry 2001, 178, 76–81. [Google Scholar] [CrossRef]
- Maslach, C.; Jackson, S.E. The measurement of experienced burnout. J. Occup. Behav. 1981, 2, 99–113. [Google Scholar] [CrossRef]
- Mealer, M.; Burnham, E.L.; Goode, C.J.; Rothbaum, B.; Moss, M. The prevalence and impact of post traumatic stress disorder and burnout syndrome in nurses. Depress. Anxiety 2009, 26, 1118–1126. [Google Scholar] [CrossRef] [PubMed]
- Shanafelt, T.D.; Boone, S.; Tan, L.; Dyrbye, L.N.; Sotile, W.; Satele, D.; West, C.P.; Sloan, J.; Oreskovich, M.R. Burnout and satisfaction with work-life balance among US physicians relative to the general US population. Arch. Intern. Med. 2012, 172, 1377–1385. [Google Scholar] [CrossRef] [PubMed]
- Dyrbye, L.N.; Shanafelt, T.D.; Sinsky, C.A. Burnout among healthcare professionals: A call to explore and address this underrecognized threat to safe, high-quality care. Natl. Acad. Med. 2017, 41, 543–569. [Google Scholar] [CrossRef]
- Maunder, R.G.; Lancee, W.J.; Rourke, S.; Hunter, J.J.; Goldbloom, D.; Balderson, K.; Steinberg, R.; Wasylenki, D.; Koh, D.; Fones, C.S. Factors associated with the psychological impact of severe acute respiratory syndrome on nurses and other hospital workers in Toronto. Psychosom. Med. 2004, 66, 938–942. [Google Scholar] [CrossRef]
- Epstein, R.M.; Krasner, M.S. Physician resilience: What it means, why it matters, and how to promote it. Acad. Med. 2013, 88, 301–303. [Google Scholar] [CrossRef]
- Tuckey, M.R.; Scott, J.E. Group critical incident stress debriefing with emergency services personnel: A randomized controlled trial. Anxiety Stress Coping 2014, 27, 38–54. [Google Scholar] [CrossRef]
- Watson, P.J.; Gibson, L.E.; Ruzek, J.I. Peer debriefing following traumatic events. J. Loss Trauma 2013, 18, 265–277. [Google Scholar] [CrossRef]
- Rose, S.; Bisson, J.; Wessely, S. Psychological debriefing for preventing post traumatic stress disorder (PTSD). Cochrane Database Syst. Rev. 2002, 2, CD000560. [Google Scholar] [CrossRef]
- Robinson, R.; Mitchell, J.T. Evaluation of psychological debriefings. J. Trauma. Stress 1993, 6, 367–382. [Google Scholar] [CrossRef]
- Hobfoll, S.E.; Watson, P.; Bell, C.C.; Bryant, R.A.; Brymer, M.J.; Friedman, M.J.; Ursano, R.J. Five essential elements of immediate and mid-term mass trauma intervention: Empirical evidence. Psychiatry 2007, 70, 283–315. [Google Scholar] [CrossRef]
- Bonanno, G.A.; Brewin, C.R.; Kaniasty, K.; La Greca, A.M. Weighing the costs of disaster: Consequences, risks, and resilience in individuals, families, and communities. Psychol. Sci. Public Interest 2010, 11, 1–49. [Google Scholar] [CrossRef]
- Norris, F.H.; Friedman, M.J.; Watson, P.J. 60,000 disaster victims speak: Part II. Summary and implications of the disaster mental health research. Psychiatry 2002, 65, 240–260. [Google Scholar] [CrossRef]
- Foa, E.B.; Keane, T.M.; Friedman, M.J.; Cohen, J.A. Effective Treatments for PTSD: Practice Guidelines from the International Society for Traumatic Stress Studies, 2nd ed.; Guilford Press: New York, NY, USA, 2008; ISBN 9781609181499. [Google Scholar]
- Ehlers, A.; Clark, D.M. A cognitive model of posttraumatic stress disorder. Behav. Res. Ther. 2000, 38, 319–345. [Google Scholar] [CrossRef] [PubMed]
- Cloitre, M.; Courtois, C.A.; Charuvastra, A.; Carapezza, R.; Stolbach, B.C.; Green, B.L. Treatment of complex PTSD: Results of the ISTSS expert clinician survey on best practices. J. Trauma. Stress 2011, 24, 615–627. [Google Scholar] [CrossRef]
- Maier, D.; Waldherr, A.; Miltner, P.; Wiedemann, G.; Niekler, A.; Keinert, A.; Pfetsch, B.; Heyer, G.; Reber, U.; Häussler, T.; et al. Applying LDA topic modeling in communication research: Toward a valid and reliable methodology. In Computational Methods for Communication Science; van Atteveldt, W., Peng, T.-Q., Eds.; Routledge: London, UK, 2021; pp. 13–38. [Google Scholar] [CrossRef]
- Shanafelt, T.D.; Noseworthy, J.H. Executive leadership and physician well-being: Nine organizational strategies to promote engagement and reduce burnout. Mayo Clin. Proc. 2017, 92, 129–146. [Google Scholar] [CrossRef] [PubMed]
- Feist, J.B.; Feist, J.C.; Cipriano, P. Stigma compounds the consequences of clinician burnout during COVID-19: A call to action to break the culture of silence. NAM Perspect. 2020, 2020, 10-31478. [Google Scholar] [CrossRef] [PubMed]
- Patton, M.Q. Utilization-Focused Evaluation, 4th ed.; Sage Publications: Thousand Oaks, CA, USA, 2008; ISBN 9781412958615. [Google Scholar]
- Pointon, L.; Hinsby, K.; Keyworth, C.; Wainwright, N.; Bates, J.; Moores, L.; Johnson, J. Exploring the experiences and perceptions of trainees undertaking a critical incident debrief training programme: A qualitative study. Int. J. Health Plan. Manag. 2024, 39, 1223–1239. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lundblad, R.; Jaeger, S.; Moreno, J.; Silber, C.; Rensi, M.; Dykeman, C. Topic Modeling the Academic Discourse on Critical Incident Stress Debriefing and Management (CISD/M) for First Responders. Trauma Care 2025, 5, 18. https://doi.org/10.3390/traumacare5030018
Lundblad R, Jaeger S, Moreno J, Silber C, Rensi M, Dykeman C. Topic Modeling the Academic Discourse on Critical Incident Stress Debriefing and Management (CISD/M) for First Responders. Trauma Care. 2025; 5(3):18. https://doi.org/10.3390/traumacare5030018
Chicago/Turabian StyleLundblad, Robert, Saul Jaeger, Jennifer Moreno, Charles Silber, Matthew Rensi, and Cass Dykeman. 2025. "Topic Modeling the Academic Discourse on Critical Incident Stress Debriefing and Management (CISD/M) for First Responders" Trauma Care 5, no. 3: 18. https://doi.org/10.3390/traumacare5030018
APA StyleLundblad, R., Jaeger, S., Moreno, J., Silber, C., Rensi, M., & Dykeman, C. (2025). Topic Modeling the Academic Discourse on Critical Incident Stress Debriefing and Management (CISD/M) for First Responders. Trauma Care, 5(3), 18. https://doi.org/10.3390/traumacare5030018