Exploring Factors That Influence Injured Patients’ Outcomes following Road Traffic Crashes: A Multi-Site Feasibility Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patients and Data Collection
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alharbi, R.; Mosley, I.; Miller, C.; Hillel, S.; Lewis, V. Factors associated with physical, psychological and functional outcomes in adult trauma patients following road traffic crash: A scoping literature review. Transp. Res. Interdiscip. Perspect. 2019, 3, e100061. [Google Scholar] [CrossRef]
- WHO. Global Status Report on Road Safety 2018; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- WHO. Global Status Report on Road Safety 2015; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Hofman, K.; Primack, A.; Keusch, G.; Hrynkow, S. Addressing the growing burden of trauma and injury in low-and middle-income countries. Am. J. Public Health 2005, 95, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Peden, M.; Scurfield, R.; Sleet, D.; Mohan, D.; Hyder, A.A.; Jarawan, E.; Mathers, C.D. World Report on Road Traffic Injury Prevention; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Nantulya, V.M.; Reich, M.R. The neglected epidemic: Road traffic injuries in developing countries. BMJ 2002, 324, 1139–1141. [Google Scholar] [CrossRef] [Green Version]
- Alanazi, F.; Hussain, S.; Mandil, A.; Alamro, N. Towards an electronic national injury surveillance system in Saudi Arabia. East. Mediterr. Health J. 2015, 21, 140–146. [Google Scholar] [CrossRef]
- Traffic Accident Statistics as of 1439 H. Available online: https://www.data.gov.sa/Data/en/dataset/traffic-accident-statistics-as-of-1439-h (accessed on 22 September 2021).
- Alharbi, R.J.; Lewis, V.; Mosley, I.; Miller, C. Current trauma care system in Saudi Arabia: A scoping literature review. Accid. Anal. Prev. 2020, 144, 105653. [Google Scholar] [CrossRef] [PubMed]
- Lindström, V.; Bohm, K.; Kurland, L. Prehospital care in Sweden. Notf. Rett. 2015, 18, 107–109. [Google Scholar] [CrossRef]
- Altwaijri, S.; Quddus, M.; Bristow, A. Analysing the severity and frequency of traffic crashes in riyadh city using statistical models. Int. J. Transp. Sci. Technol. 2012, 1, 351–364. [Google Scholar] [CrossRef] [Green Version]
- Harrington, D.T.; Connolly, M.; Biffl, W.L.; Majercik, S.D.; Cioffi, W.G. Transfer times to definitive care facilities are too long: A consequence of an immature trauma system. Ann. Surg. 2005, 241, 961–966, discussion 966-8. [Google Scholar] [CrossRef]
- Alharbi, R.; Miller, C.; Lewis, V. Protocol for a feasibility exploratory multicentre study of factors influencing trauma patients’ outcomes of traffic crashes in Saudi Arabia. BMJ Open 2019, 9, e032046. [Google Scholar] [CrossRef]
- GAFS. General Authority for Statistics, Demographic Research Bulletin; GAFS: Riyadh, Saudi Arabia, 2016. [Google Scholar]
- Alqahtani, A.S.; Abuzinada, S.A.; Cameron, P.A.; Fitzgerald, M.C.; Alenizi, A.S.; Farjou, D. Experience gained from the implementation of the Saudi TraumA Registry (STAR). BMC Health Serv. Res. 2020, 20, 1–7. [Google Scholar]
- Talving, P.; Teixeira, P.G.; Barmparas, G.; DuBose, J.; Preston, C.; Inaba, K.; Demetriades, D. Motorcycle-related injuries: Effect of age on type and severity of injuries and mortality. J. Trauma Acute Care Surg. 2010, 68, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.-M.; Lin, C.-C.; Lin, C.-C.; Liu, C.-S.; Li, T.-C.; Kao, C.-H. Long-Term Use of Zolpidem Increases the Risk of Major Injury: A Population-Based Cohort Study. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2014; pp. 589–594. [Google Scholar]
- MacKenzie, E.J.; Rivara, F.P.; Jurkovich, G.J.; Nathens, A.B.; Frey, K.P.; Egleston, B.L.; Salkever, D.S.; Scharfstein, D.O. A national evaluation of the effect of trauma-center care on mortality. N. Engl. J. Med. 2006, 354, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-Y. Statistical notes for clinical researchers: Chi-squared test and Fisher’s exact test. Restor. Dent. Endod. 2017, 42, 152–155. [Google Scholar] [CrossRef]
- Chen, P.-L.; Pai, C.-W. Evaluation of injuries sustained by motorcyclists in approach-turn crashes in Taiwan. Accid. Anal. Prev. 2019, 124, 33–39. [Google Scholar] [CrossRef]
- Wiratama, B.S.; Chen, P.-L.; Ma, S.-T.; Chen, Y.-H.; Saleh, W.; Lin, H.-A.; Pai, C.-W. Evaluating the combined effect of alcohol-involved and un-helmeted riding on motorcyclist fatalities in Taiwan. Accid. Anal. Prev. 2020, 143, 105594. [Google Scholar] [CrossRef]
- Chien, D.-K.; Hwang, H.-F.; Lin, M.-R. Injury severity measures for predicting return-to-work after a traumatic brain injury. Accid. Anal. Prev. 2017, 98, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, J.P.; Griffin, R.L.; Sathiakumar, N.; McGwin, G., Jr. Obesity and vehicle type as risk factors for injury caused by motor vehicle collision. J. Trauma Acute Care Surg. 2014, 76, 1116–1121. [Google Scholar] [CrossRef]
- Rice, T.M.; Zhu, M. Driver obesity and the risk of fatal injury during traffic collisions. Emerg. Med. J. 2014, 31, 9–12. [Google Scholar] [CrossRef]
- Lardelli-Claret, P.; Espigares-Rodríguez, E.; Amezcua-Prieto, C.; Jiménez-Moleón, J.J.; de Dios Luna-del-Castillo, J.; Bueno-Cavanillas, A. Association of age, sex and seat belt use with the risk of early death in drivers of passenger cars involved in traffic crashes. Int. J. Epidemiol. 2009, 38, 1128–1134. [Google Scholar] [CrossRef] [Green Version]
- Awadzi, K.D.; Classen, S.; Hall, A.; Duncan, R.P.; Garvan, C.W. Predictors of injury among younger and older adults in fatal motor vehicle crashes. Accid. Anal. Prev. 2008, 40, 1804–1810. [Google Scholar] [CrossRef]
- Kashani, A.T.; Rabieyan, R.; Besharati, M.M. Modeling the effect of operator and passenger characteristics on the fatality risk of motorcycle crashes. J. Inj. Violence Res. 2016, 8, 35. [Google Scholar]
- Eustace, D.; Indupuru, V.K.; Hovey, P. Identification of risk factors associated with motorcycle-related fatalities in Ohio. J. Transp. Eng. 2011, 137, 474–480. [Google Scholar] [CrossRef]
- Ishii, W.; Hitosugi, M.; Takeda, A.; Baba, M.; Iizuka, R. Factors influencing vehicle passenger fatality have changed over 10 years: A nationwide hospital-based study. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamidun, R.; Roslan, A.; Sarani, R. Exploring factors for pedestrian fatalities at junctions in Malaysia. Pertanika J. Soc. Sci. Humanit. 2017, 25, 1833–1840. [Google Scholar]
- Saidi, H.; Mutiso, B.K.; Ogengo, J. Mortality after road traffic crashes in a system with limited trauma data capability. J. Trauma Manag. Outcomes 2014, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Koval, K.J.; Cooley, M.; Cantu, R.V.; Sprott, K.F. The effects of alcohol on in-hospital mortality in drivers admitted after motor vehicle accidents. Bull. NYU Hosp. Jt. Dis. 2008, 66, 27–34. [Google Scholar]
- Markogiannakis, H.; Sanidas, E.; Messaris, E.; Koutentakis, D.; Alpantaki, K.; Kafetzakis, A.; Tsiftsis, D. Predictors of in-hospital mortality of trauma patients injured in vehicle accidents. Ulus. Travma Acil Cerrahi Derg. 2008, 14, 125–131. [Google Scholar]
- Ankarath, S.; Giannoudis, P.V.; Barlow, I.; Bellamy, M.; Matthews, S.; Smith, R. Injury patterns associated with mortality following motorcycle crashes. Injury 2002, 33, 473–477. [Google Scholar] [CrossRef]
- Ashley, D.W.; Pracht, E.E.; Medeiros, R.S.; Atkins, E.V.; NeSmith, E.G.; Johns, T.J.; Nicholas, J.M. An analysis of the effectiveness of a state trauma system: Treatment at designated trauma centers is associated with an increased probability of survival. J. Trauma Acute Care Surg. 2015, 78, 706–714. [Google Scholar] [CrossRef]
- Leung, C.; Lui, C.; Tsui, K. Predictors of outcomes of pedestrian casualties in motor vehicle injuries managed in emergency department. Hong Kong J. Emerg. Med. 2013, 20, 82–89. [Google Scholar] [CrossRef]
- Ryb, G.E.; Dischinger, P.C.; McGwin, G.; Griffin, R.L. Crash-Related Mortality and Model Year: Are Newer Vehicles Safer? In Annals of Advances in Automotive Medicine/Annual Scientific Conference; Association for the Advancement of Automotive Medicine: Chicago, IL, USA, 2011; p. 113. [Google Scholar]
- Demetriades, D.; Martin, M.; Salim, A.; Rhee, P.; Brown, C.; Chan, L. The effect of trauma center designation and trauma volume on outcome in specific severe injuries. Ann. Surg. 2005, 242, 512–517, discussion 517-9. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.; Turgeon, A.F.; Lauzier, F.; Emond, M.; Berthelot, S.; Clément, J.; Bourgeois, G.; Lapointe, J. Evolution of patient outcomes over 14 years in a mature, inclusive Canadian trauma system. World J. Surg. 2015, 39, 1397–1405. [Google Scholar] [CrossRef]
- Chiara, O.; Mazzali, C.; Lelli, S.; Mariani, A.; Cimbanassi, S. A population based study of hospitalised seriously injured in a region of Northern Italy. World J. Emerg. Surg. 2013, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Leung, K.; Ho, W.; Tong, K.; Yuen, W.K. Outcome of severely injured trauma patients at a designated trauma centre in the Hong Kong Special Administrative Region. Chin. Med. J. 2010, 123, 1251–1254. [Google Scholar] [PubMed]
- Siman-Tov, M.; Radomislensky, I.; Peleg, K. Reduction in trauma mortality in Israel during the last decade (2000–2010): The impact of changes in the trauma system. Injury 2013, 44, 1448–1452. [Google Scholar] [CrossRef] [PubMed]
- Curtis, K.; Chong, S.; Mitchell, R.; Newcombe, M.; Black, D.; Langcake, M. Outcomes of severely injured adult trauma patients in an Australian health service: Does trauma center level make a difference? World J. Surg. 2011, 35, 2332–2340. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, R.J.; Shrestha, S.; Lewis, V.; Miller, C. The effectiveness of trauma care systems at different stages of development in reducing mortality: A systematic review and meta-analysis. World J. Emerg. Surg. 2021, 16, 1–12. [Google Scholar] [CrossRef]
- AbuYassin, B.H.; Aljadhey, H.; Al-Sultan, M.; Al-Rashed, S.; Adam, M.; Bates, D.W. Accuracy of the medication history at admission to hospital in Saudi Arabia. Saudi Pharm. J. 2011, 19, 263–267. [Google Scholar] [CrossRef] [Green Version]
- Romano, E.; Voas, R.B. Drug and alcohol involvement in four types of fatal crashes. J. Stud. Alcohol Drugs 2011, 72, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Siskind, V.; Steinhardt, D.; Sheehan, M.; O’Connor, T.; Hanks, H. Risk factors for fatal crashes in rural Australia. Accid. Anal. Prev. 2011, 43, 1082–1088. [Google Scholar] [CrossRef] [Green Version]
- Beirness, D.J.; Gu, K.W.; Lowe, N.J.; Woodall, K.L.; Desrosiers, N.A.; Cahill, B.; Porath, A.J.; Peaire, A. Cannabis, alcohol and other drug findings in fatally injured drivers in Ontario. Traffic Inj. Prev. 2020, 22, 1–6. [Google Scholar] [CrossRef] [PubMed]
- NHTSA. Traffic Safety Facts: A Compilation of Motor Vehicle Crash Data from the Fatality Analysis Reporting System and the General Estimates System; U.S. Department of Transportation: Washington, DC, USA, 2010; p. 20590. [Google Scholar]
- Briggs, N.C.; Levine, R.S.; Haliburton, W.P.; Schlundt, D.G.; Goldzweig, I.; Warren, R.C. The Fatality Analysis Reporting System as a tool for investigating racial and ethnic determinants of motor vehicle crash fatalities. Accid. Anal. Prev. 2005, 37, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Ammenwerth, E.; Mansmann, U.; Iller, C.; Eichstädter, R. Factors affecting and affected by user acceptance of computer-based nursing documentation: Results of a two-year study. J. Am. Med. Inform. Assoc. 2003, 10, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Björvell, C.; Wredling, R.; Thorell-Ekstrand, I. Prerequisites and consequences of nursing documentation in patient records as perceived by a group of registered nurses. J. Clin. Nurs. 2003, 12, 206–214. [Google Scholar] [CrossRef]
- Beeber, A.S.; Palmer, C.; Waldrop, J.; Lynn, M.R.; Jones, C.B. The role of doctor of nursing practice-prepared nurses in practice settings. Nurs. Outlook 2019, 67, 354–364. [Google Scholar] [CrossRef]
- Mathioudakis, A.; Rousalova, I.; Gagnat, A.A.; Saad, N.; Hardavella, G. How to keep good clinical records. Breathe 2016, 12, 369–373. [Google Scholar] [CrossRef] [Green Version]
- de Lusignan, S.; van Weel, C. The use of routinely collected computer data for research in primary care: Opportunities and challenges. Fam. Pract. 2006, 23, 253–263. [Google Scholar] [CrossRef]
- De Lusignan, S.; Wells, S.; Shaw, A.; Rowlands, G.; Crilly, T. A knowledge audit of the managers of primary care organizations: Top priority is how to use routinely collected clinical data for quality improvement. Med. Inform. Internet Med. 2005, 30, 69–80. [Google Scholar] [CrossRef]
- De Lusignan, S. An educational intervention, involving feedback of routinely collected computer data, to improve cardiovascular disease management in UK primary care. Methods Inf. Med. 2007, 46, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Roudsari, B.S.; Mock, C.N.; Kaufman, R.; Grossman, D.; Henary, B.Y.; Crandall, J. Pedestrian crashes: Higher injury severity and mortality rate for light truck vehicles compared with passenger vehicles. Inj. Prev. 2004, 10, 154–158. [Google Scholar] [CrossRef] [Green Version]
- Alharbi, R.J.; Lewis, V.; Miller, C. A state-of-the-art review of factors that predict mortality among traumatic injury patients following a road traffic crash. Australas. Emerg. Care 2021. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
Population Descriptor | KSMC | BCH | YGH | Total |
---|---|---|---|---|
Total study participants N (%) | 215 (37.8) | 256 (44.6) | 101 (17.6) | 572 (100) |
Age (in years) | ||||
Mean (±SD) | 34.6 (13.1) | 30.9 (13.2) | 36.3 (14.0) | 33.3 (13.4) |
Range | 18–76 | 18–83 | 18–90 | 18–90 |
Age group (in years) N (%) | ||||
18–34 | 133 (61.9) | 178 (70.1) | 54 (54.0) | 365 (64.1) |
35–54 | 56 (26.0) | 59 (23.2) | 37 (37.0) | 152 (26.7) |
≥55 | 26 (12.1) | 17 (6.7) | 9 (9.0) | 52 (9.1) |
Unknown or not documented N | 0 | 2 | 1 | 3 |
Gender N (%) | ||||
Male | 192 (89.3) | 209 (87.4) | 90 (90.0) | 491 (88.6) |
Female | 23 (10.7) | 30 (12.6) | 10 (10.0) | 63 (11.4) |
Unknown or not documented N | 0 | 17 | 1 | 18 |
Marital status N (%) | ||||
Married | N/A | 141 (58.5) | 63 (62.4) | 204 (59.6) |
Unmarried | N/A | 100 (41.5) | 38 (37.6) | 138 (40.4) |
Unknown or not documented N | N/A | 15 | 0 | 15 |
Weight (in kilograms) | ||||
Mean (±SD) | N/A | 72.7 (10.1) | 64.2 (12.4) | 72.5 (10.3) |
Unknown or not documented N | N/A | 19 | 93 | 112 |
Height (in centimetres) | ||||
Mean (±SD) | N/A | 163.3 (18.6) | N/A | 163.3 (18.6) |
Unknown or not documented N | N/A | 24 | 101 | 125 |
Employment status N (%) | ||||
Employed | N/A | 152 (64.7) | 73 (73.0) | 225 (67.2) |
Unemployed | N/A | 83 (35.3) | 27 (27.0) | 110 (32.8) |
Unknown or not documented N | N/A | 21 | 1 | 22 |
Education N (%) | ||||
Primary | N/A | 4 (1.6) | 0 | 4 (1.6) |
Secondary | N/A | 75 (30.7) | 0 | 75 (30.7) |
Tertiary | N/A | 165 (67.6) | 0 | 165 (67.6) |
Unknown or not documented N | N/A | 12 | 101 | 113 |
Time held a driver license (in years) | ||||
Mean (±SD) | N/A | 9.2 (10.1) | N/A | 9.2 (10.1) |
Unknown or not documented N | N/A | 155 | 101 | 256 |
Population Descriptor | KSMC | BCH | YGH | Total |
---|---|---|---|---|
Mechanism of injury N (%) | ||||
Motor Vehicle–Driver | 117 (54.4) | 143 (56.3) | 72 (71.3) | 332 (58.2) |
Motor Vehicle–Passenger | 42 (19.5) | 0 | - | 45 (7.9) |
Motor Vehicle-Front Passenger | N/A | 79 (31.1) | 11 (10.9) | 90 (15.8) |
Motor Vehicle-Rear Passenger | N/A | 5 (2.0) | 2 (2.0) | 7 (1.2) |
Motorcycle–Driver | 14 (6.5) | 8 (3.1) | 13 (12.9) | 35 (6.1) |
Motorcycle–Passenger | 2 (0.9) | 1 (0.4) | - | 3 (0.5) |
Pedestrian | 1 (0.5) | 13 (5.1) | 3 (3.0) | 17 (3.0) |
Pedal cyclist-rider or passenger | 2 (0.9) | 2 (0.8) | 0 | 4 (0.7) |
Other transport-related circumstance | 37 (17.2) | 0 | 0 | 37 (6.5) |
Unknown or not documented N | 0 | 2 | 0 | 2 |
Driver liability N (%) | ||||
Speed | ||||
Yes | N/A | 217 (93.1) | 0 | 217 (93.1) |
No | N/A | 16 (6.9) | 0 | 16 (6.9) |
Drink driving | ||||
Yes | N/A | 3 (2.0) | 0 | 3 (2.0) |
No | N/A | 144 (98.0) | 0 | 144 (98.0) |
Fatigue related | ||||
Yes | N/A | 93 (85.3) | 1 | 94 (85.5) |
No | N/A | 16 (14.7) | 0 | 16 (14.5) |
Distracted/inattentive | ||||
Yes | N/A | 125 (75.8) | 0 | 125 (75.8) |
No | N/A | 40 (24.2) | 0 | 40 (24.2) |
Unknown or not documented N | N/A | 27 | 100 | 127 |
Collision type N (%) | ||||
Head-on | N/A | 56 (34.8) | 0 | 56 (34.8) |
Rear-end | N/A | 7 (4.3) | 0 | 7 (4.3) |
Side | N/A | 35 (21.7) | 0 | 35 (21.7) |
Roll-over | N/A | 29 (18.0) | 0 | 29 (18.0) |
Multiple | N/A | 34 (21.1) | 0 | 34 (21.1) |
Unknown or not documented N | N/A | 95 | 101 | 196 |
Number of occupants | ||||
Mean (±SD) | N/A | 2.0 (6.3) | 0 | 2.0 (6.3) |
Unknown or not documented N | N/A | 5 | 101 | 106 |
Counterpart N (%) | ||||
Animal | 1 (0.2) | N/A | N/A | 1 (0.2) |
Bus ≥ 10-seater, heavy cargo truck | 4 (1.9) | N/A | N/A | 4 (1.9) |
Car | 60 (27.9) | N/A | N/A | 60 (27.9) |
Cycle | 1 (0.5) | N/A | N/A | 1 (0.5) |
Fixed or stationary object | 11 (5.1) | N/A | N/A | 11 (5.1) |
Minibus < 10-seater, pick up tuck, van | 1 (0.5) | N/A | N/A | 1 (0.5) |
Motorized two-wheeler | 1 (0.5) | N/A | N/A | 1 (0.5) |
Pedestrian | 8 (3.7) | N/A | N/A | 8 (3.7) |
Unknown or not documented N | 128 (59.5) | N/A | N/A | 128 (59.5) |
Airbag protection N (%) | ||||
Yes | N/A | 64 (26.8) | 1 (1.0) | 65 (27.7) |
No | N/A | 175 (73.2) | 0 | 175 (72.9) |
Unknown or not documented N | N/A | 17 | 100 | 117 |
Seat belt/helmet protection N (%) | ||||
Yes | N/A | 22 (8.8) | 0 | 22 (8.8) |
No | N/A | 228 (91.2) | 0 | 228 (91.2) |
Unknown or not documented N | N/A | 4 | 101 | 105 |
Population Descriptor | KSMC | BCH | YGH | Total |
---|---|---|---|---|
Prehospital physiological assessment Mean (±SD) | ||||
First SBP mmHg | 123.4 (22.6) | 136.6 (21.0) | 134.3 (28.8) | 133.6 (23.2) |
Unknown or not documented N | 155 | 64 | 52 | 271 |
First pulse at scene per min | 95.2 (18.5) | N/A | 100.2 (18.6) | 97.4 (18.6) |
Unknown or not documented N | 149 | N/A | 52 | 201 |
First respiratory rate per min | 19.0 (10.6) | N/A | 21.2 (4.3) | 20.0 (8.4) |
Unknown or not documented N | 154 | N/A | 52 | 206 |
Prehospital EMS personnel involved in care N (%) | ||||
Doctor | ||||
Yes | N/A | 9 (4.4) | 5 (6.7) | 14 (5.0) |
No | N/A | 195 (95.6) | 70 (93.3) | 265 (95) |
Paramedic | ||||
Yes | N/A | 179 (87.7) | 1 (1.3) | 180 (64.5) |
No | N/A | 25 (12.3) | 74 (98.7) | 99 (35.5) |
EMT | ||||
Yes | N/A | 86 (42.2) | 72 (96.0) | 158 (56.6) |
No | N/A | 118 (57.8) | 3 (4.0) | 121 (43.4) |
Unknown or not documented N | N/A | 1 | 0 | 1 |
Injury Time N (%) | ||||
AM | 168 (78.1) | 99 (40.1) | 50 (49.5) | 317 (56.3) |
PM | 47 (21.9) | 148 (59.9) | 51 (50.5) | 246 (43.7) |
Unknown or not documented N | 0 | 9 | 0 | 9 |
KM from scene to hospital | ||||
Mean (±SD) | N/A | 26.3 (16.0) | 0 | 26.3 (16.0) |
Unknown or not documented N | N/A | 11 | 101 | 112 |
Time to hospital (HH:MM) | ||||
Mean (±SD) | N/A | 00:28 (0:17) | 0 | 00:28 (0:17) |
Unknown or not documented N | N/A | 12 | 101 | 113 |
Prehospital procedure performed | ||||
Naso/oro airway/ETT N (%) | ||||
Yes | 29 (49.2) | 8 (3.8) | 2 (20.7) | 39 (11.4) |
No | 30 (50.8) | 201 (96.2) | 73 (97.3) | 304 (88.6) |
Unknown or not documented N | 156 | 47 | 26 | 229 |
Transportation mode N (%) | ||||
Direct | N/A | 213 (84.2) | 75 (74.3) | 288 (81.4) |
Indirect | N/A | 40 (15.8) | 26 (25.7) | 66 (18.6) |
Unknown or not documented N | N/A | 3 | 0 | 3 |
Hospital arrival mode N (%) | ||||
Ambulance | 163 (81.5) | 206 (80.5) | 75 (74.3) | 444 (79.7) |
Helicopter | 6 (3.0) | 0 | 0 | 6 (1.1) |
Police vehicle | 1 (0.5) | 0 | 0 | 1 (0.2) |
Private vehicle | 30 (15.0) | 50 (19.5) | 26 (25.7) | 106 (19.0) |
Unknown or not documented N | 15 | 0 | 0 | 15 |
Trauma team activation N (%) | ||||
Yes | 20 (9.4) | 52 (21.3) | 30 (85.7) | 102 (20.7) |
No | 193 (90.6) | 192 (78.7) | 5 (14.3) | 390 (79.3) |
Unknown or not documented N | 2 | 12 | 66 | 80 |
Hospital physiological assessment Mean (±SD) | ||||
First BP mmHg | 123.7 (21.9) | 128.7 (21.5) | 124.4 (30.9) | 126.1 (23.7) |
Unknown or not documented N | 10 | 7 | 1 | 18 |
First pulse rate per min | 91.7 (17.6) | N/A | 89.4 (22.9) | 90.9 (19.5) |
Unknown or not documented N | 10 | N/A | 1 | 11 |
Respiration rate per min | 20.3 (8.0) | N/A | 19.5 (4.9) | 20.0 (7.1) |
Unknown or not documented N | 12 | N/A | 1 | 13 |
Blood PH | 7.38 (0.1) | N/A | N/A | 7.38 (0.1) |
Unknown or not documented N | 48 | N/A | N/A | 48 |
Respiration assistance N (%) | ||||
Yes | 76 (39.4) | N/A | N/A | 76 (39.4) |
No | 117 (60.6) | N/A | N/A | 117 (60.6) |
Unknown or not documented N | 22 | N/A | N/A | 22 |
GCS | ||||
Mean (±SD) | 13.8 (3.2) | 14.3 (2.1) | 13.5 (3.4) | 14.0 (2.8) |
Unknown or not documented N | 47 | 7 | 1 | 55 |
ISS N (%) | ||||
<13 | 142 (66) | 174 (68.5) | 51 (50.5) | 367 (64.4) |
13–15 | 22 (10.2) | 20 (7.9) | 13 (12.9) | 55 (9.6) |
16–19 | 16 (7.4) | 31 (12.2) | 18 (17.8) | 65 (11.4) |
20–28 | 21 (9.8) | 12 (4.7) | 1 (1.0) | 34 (6.0) |
>28 | 14 (6.5) | 17 (6.7) | 18 (17.8) | 49 (8.6) |
Unknown or not documented N | 0 | 2 | 0 | 2 |
Injury type N (%) | ||||
Head | ||||
Yes | 56 (26.0) | 58 (22.7) | 51 (50.5) | 165 (28.8) |
No | 159 (74.0) | 198 (77.3) | 50 (49.5) | 407 (71.2) |
Spinal | ||||
Yes | 74 (34.4) | 5 (2.0) | 9 (8.9) | 88 (15.4) |
No | 141 (65.6) | 251 (98.0) | 92 (91.1) | 484 (84.6) |
Thorax and abdominal | ||||
Yes | 62 (28.8) | 30 (11.7) | 30 (29.7) | 122 (21.3) |
No | 153 (71.2) | 226 (88.3) | 71 (70.3) | 450 (78.7) |
Other type of injury | ||||
Yes | 175 (81.4) | 214 (83.6) | 67 (66.3) | 456 (79.7) |
No | 40 (18.6) | 42 (16.4) | 34 (33.7) | 116 (20.3) |
Unknown or not documented N | 0 | 0 | 0 | 0 |
Population Descriptor | KSMC | BCH | YGH | Total |
---|---|---|---|---|
Total study participants N (%) | 215 (37.8) | 256 (44.6) | 101 (17.6) | 572 (100) |
Discharge ED N (%) | ||||
Discharged home | 1 (0.5) | N/A | N/A | 1 (0.5) |
Ward | 177 (82.3) | N/A | N/A | 177 (82.3) |
ICU or HDU | 24 (11.2) | N/A | N/A | 24 (11.2) |
Operating theatre | 12 (5.6) | N/A | N/A | 12 (5.6) |
Other | 1 (0.5) | N/A | N/A | 1 (0.5) |
Unknown or not documented N | 0 | N/A | N/A | 0 |
Days in ICU (in days) | ||||
Mean (±SD) | 1.5 (5.5) | 0.2 (1.6) | 1.5 (5.3) | 0.9 (4.2) |
Unknown or not documented N | 0 | 1 | 0 | 1 |
Days in hospital (in days) | ||||
Mean (±SD) | 13.2 (13.4) | 2.5 (4.1) | 4.8 (7.5) | 7.0 (10.4) |
Unknown or not documented N | 0 | 2 | 0 | 2 |
Outcome (30 days) N (%) | ||||
In healthcare facility | 19 (8.8) | 4 (1.6) | 18 (17.8) | 41 (7.2) |
Discharge home | 187 (87.0) | 228 (89.1) | 73 (72.3) | 488 (85.3) |
Mortuary/died | 9 (4.2) | 24 (9.4) | 10 (9.9) | 43 (7.5) |
Unknown or not documented N | 0 | 0 | 0 | 0 |
Variables | Population N (%) | Patient 30-Day Outcome | Crude OR, (95% CI) | p Value | |
---|---|---|---|---|---|
Died N (%) | Survived N (%) | ||||
Hospital level | 2.40 (1.13–5.12) | 0.01 | |||
Trauma center | 215 (37.6) | 9 (4.2) | 206 (95.8) | ||
Non-trauma center | 357 (62.4) | 34 (9.5) | 323 (90.5) | ||
Age group (in years) | 0.74 (0.28–1.98) | 0.55 | |||
18–54 | 517 (90.9) | 38 (7.4) | 479 (92.6) | ||
≥55 | 52 (9.1) | 5 (9.6) | 47 (90.4) | ||
Gender | 0.77 (0.31–1.91) | 0.57 | |||
Female | 63 (11.4) | 6 (9.5) | 57 (90.5) | ||
Male | 491 (88.6) | 37 (7.5) | 452 (92.5) | ||
Marital status | 1.05 (0.47–2.31) | 0.90 | |||
Married | 204 (59.6) | 17 (8.3) | 187 (91.7) | ||
Unmarried | 138 (40.4) | 11 (8.0) | 127 (92.0) | ||
Employment status | 0.97 (0.44–2.16) | 0.95 | |||
Employed | 225 (67.2) | 20 (8.9) | 205 (91.1) | ||
Unemployed | 110 (32.8) | 10 (9.1) | 100 (90.1) | ||
Education level | 2.77 (1.14–6.73) | 0.02 | |||
≤High school | 79 (32.4) | 12 (15.2) | 67 (84.8) | ||
Tertiary | 165 (67.6) | 10 (6.1) | 155 (93.9) | ||
Injury Time | 0.97 (0.52–1.83) | 0.94 | |||
AM | 317 (56.3) | 24 (7.6) | 293 (92.4) | ||
PM | 246 (43.7) | 19 (7.7) | 227 (92.3) | ||
Mechanism of injury | 1.97 (0.99–3.92) | 0.05 | |||
MV–Driver | 332 (57.9) | 31 (9.4) | 301 (90.6) | ||
Other Mechanism | 240 (42.1) | 12 (5.0) | 228 (95.0) | ||
Collision type | 10.35 (3.97–26.97) | <0.001 | |||
Multiple | 34 (14.9) | 15 (44.1) | 19 (55.9) | ||
Other type | 137 (85.1) | 9 (7.1) | 118 (92.9) | ||
Driver liability | |||||
Speed | 1.77 (0.22–14.09) | 0.58 | |||
Yes | 217 (93.1) | 23 (10.6) | 194 (89.4) | ||
No | 16 (6.9) | 1 (6.3) | 15 (93.8) | ||
Fatigue related | 0.05 (0.01–0.19) | <0.001 | |||
Yes | 93 (85.3) | 8 (8.5) | 86 (91.5) | ||
No | 16 (14.7) | 10 (62.5) | 8 (8.5) | ||
Distracted/inattentive | 2.99 (0.66–13.55) | 0.13 | |||
Yes | 125 (75.8) | 17 (13.6) | 108 (86.4) | ||
No | 40 (24.2) | 2 (5.0) | 38 (95.0) | ||
Hospital arrival mode | 0.19 (0.04–0.82) | 0.01 | |||
Ambulance | 450 (80.8) | 40 (8.9) | 410 (91.1) | ||
Private/police vehicle | 107 (19.2) | 2 (1.9) | 105 (98.1) | ||
Prehospital procedure- | |||||
Naso/oro airway/ETT | 0.22 (0.09–0.52) | <0.001 | |||
Yes | 39 (11.4) | 10 (25.6) | 29 (74.4) | ||
No | 304 (88.6) | 22 (7.2) | 282 (92.8) | ||
Trauma team activation | 0.06 (0.02–0.14) | <0.001 | |||
Yes | 102 (20.7) | 26 (25.5) | 76 (74.5) | ||
No | 390 (79.3) | 8 (2.1) | 382 (97.9) | ||
First prehospital SBP | 27.2 (7.98–92.67) | <0.001 | |||
≤90 mmHg | 13 (4.3) | 8 (61.5) | 5 (38.5) | ||
>90 mmHg | 288 (95.7) | 16 (5.6) | 272 (94.4) | ||
First hospital SBP | 41.47 (16.70–102.99) | <0.001 | |||
≤90 mmHg | 26 (4.7) | 17 (65.4) | 9 (34.6) | ||
>90 mmHg | 528 (95.3) | 23 (4.4) | 505 (95.6 | ||
GCS | 123 (48.33–313) | <0.001 | |||
≤8 | 40 (7.7) | 29 (72.5) | 11 (27.5) | ||
>8 | 477 (92.3) | 10 (2.1) | 467 (97.9) | ||
ISS | 497 (66.79–3710) | <0.001 | |||
<20 | 487 (85.4) | 1 (0.2) | 486 (99.8) | ||
≥20 | 83 (14.6) | 42 (50.6) | 41 (49.4) | ||
Admitted to ICU | 9.16 (4.59–18.29) | <0.001 | |||
Yes | 58 (10.2) | 18 (31.0) | 40 (69.0) | ||
No | 513 (89.8) | 24 (4.7) | 489 (95.3) | ||
Head injury | 19.31 (7.97–46.82) | <0.001 | |||
Yes | 165 (28.8) | 37 (22.4) | 128 (77.6) | ||
No | 407 (71.2) | 6 (1.5) | 401 (98.5) | ||
Spinal injury | 0.70 (0.27–1.84) | 0.47 | |||
Yes | 88 (15.4) | 5 (5.7) | 83 (94.3) | ||
No | 484 (84.6) | 38 (7.9) | 446 (92.1) | ||
Thorax/abdominal injury | 4.04 (2.14–7.64) | ||||
Yes | 122 (21.3) | 21 (17.2) | 101 (82.8) | <0.001 | |
No | 450 (78.7) | 22 (4.9) | 428 (95.1) |
Variables | Adjusted OR, (95% CI) Uncontrolled ISS | p Value |
---|---|---|
Hospital level: None-TC | 6.27 (1.36–28.83) | 0.01 |
Mechanism of injury: MV–Driver | 2.91 (0.66–12.81) | 0.15 |
Hospital SBP ≤ 90 mmHg | 8.13 (1.14–57.78) | 0.03 |
Head injury | 2.71 (0.45–16.32) | 0.27 |
Thorax and abdominal injury | 1.61 (0.35–7.30) | 0.53 |
Admitted to ICU | 0.29 (0.05–1.64) | 0.16 |
GCS ≤ 8 | 22.52 (4.09–123) | <0.001 |
ISS ≥ 20 | 122 (12.62–1188) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, R.J.; Lewis, V.; Othman, O.; Miller, C. Exploring Factors That Influence Injured Patients’ Outcomes following Road Traffic Crashes: A Multi-Site Feasibility Study. Trauma Care 2022, 2, 35-50. https://doi.org/10.3390/traumacare2010004
Alharbi RJ, Lewis V, Othman O, Miller C. Exploring Factors That Influence Injured Patients’ Outcomes following Road Traffic Crashes: A Multi-Site Feasibility Study. Trauma Care. 2022; 2(1):35-50. https://doi.org/10.3390/traumacare2010004
Chicago/Turabian StyleAlharbi, Rayan Jafnan, Virginia Lewis, Omar Othman, and Charne Miller. 2022. "Exploring Factors That Influence Injured Patients’ Outcomes following Road Traffic Crashes: A Multi-Site Feasibility Study" Trauma Care 2, no. 1: 35-50. https://doi.org/10.3390/traumacare2010004