Enhancing the Total Terminal Galactosylation of CHO Cell-Derived TNF-α Blocker-IgG1 Monoclonal Antibody Using Time-Dependent Galactose Supplementation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Line, Pre-Culture, and Reagents
2.2. Fed-Batch Culture Media for Expression of TNF-α Blocker-IgG1 with Higher Galactose
2.3. Monitoring of Cell Growth, Osmolality, Metabolites, and Antibody Titer
2.4. Protein A Chromatography for Purification of TNF-α Blocker-IgG1
2.5. HILIC-UPLC of AB-Labeled N-Glycans for Glycan Profile Analysis
2.6. Statistics
3. Results
3.1. Description of Approach
3.2. Effect of Feed Concentration on Cell Culture Parameters and Titer
3.3. Effects of Galactose Supplementation on Bioprocess, Titer, and Glycan Profile
3.4. Comparison of Batch-to-Batch Bioprocess Parameters and Glycan Profile
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Altamirano, C.; Illanes, A.; Becerra, S.; Cairó, J.J.; Gòdia, F. Considerations on the lactate consumption by CHO cells in the presence of galactose. J. Biotechnol. 2006, 125, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Altamirano, C.; Paredes, C.; Cairó, J.J.; Gòdia, F. Improvement of CHO cell culture medium formulation: Simultaneous substitution of glucose and glutamine. Biotechnol. Prog. 2000, 16, 69–75. [Google Scholar] [CrossRef]
- Anderson, R.; Hock, L.; Yao, R.; Ozturk, S. Enhanced Galactosylation of Monoclonal Antibodies: Using Medium Supplements and Precursors of UDP-Galactose, Part 1. 2018. Available online: https://www.bioprocessintl.com/cell-culture-media/enhanced-galactosylation-of-monoclonal-antibodies-using-medium-supplements-and-precursors-of-udp-galactose-part-1 (accessed on 27 December 2024).
- Babul, J.; Stellwagen, E. Measurement of protein concentration with interferences optics. Anal. Biochem. 1969, 28, 216–221. [Google Scholar] [CrossRef]
- Bheemareddy, B.R.; Pulipeta, M.; Iyer, P.; Dirisala, V.R. Effect of the total galactose content on complement-dependent cytotoxicity of the therapeutic anti-CD20 IgG1 antibodies under temperature stress conditions. J. Carbohydr. Chem. 2019, 38, 1–19. [Google Scholar] [CrossRef]
- Bheemareddy, B.R.; Reddy, P.N.; Vemparala, K.; Dirisala, V.R. Enhancement of effector functions of anti-CD20 monoclonal antibody by increased afucosylation in CHO cell line through cell culture medium optimization. J. Genet. Eng. Biotechnol. 2022, 20, 141. [Google Scholar] [CrossRef] [PubMed]
- Boune, S.; Hu, P.; Epstein, A.L.; Khawli, L.A. Principles of N-Linked Glycosylation Variations of IgG-Based Therapeutics: Pharmacokinetic and Functional Considerations. Antibodies 2020, 9, 22. [Google Scholar] [CrossRef] [PubMed]
- Butler, M. Optimisation of the cellular metabolism of glycosylation for recombinant proteins produced by Mammalian cell systems. Cytotechnology 2006, 50, 57–76. [Google Scholar] [CrossRef]
- Conte, F.; van Buuringen, N.; Voermans, N.C.; Lefeber, D.J. Galactose in human metabolism, glycosylation and congenital metabolic diseases: Time for a closer look. Biochim. Biophys. Acta Gen. Subj. 2021, 1865, 129898. [Google Scholar] [CrossRef]
- Crowell, C.K.; Grampp, G.E.; Rogers, G.N.; Miller, J.; Scheinman, R.I. Amino acid and manganese supplementation modulates the glycosylation state of erythropoietin in a CHO culture system. Biotechnol. Bioeng. 2007, 96, 538–549. [Google Scholar] [CrossRef]
- Datta-Mannan, A. Mechanisms Influencing the Pharmacokinetics and Disposition of Monoclonal Antibodies and Peptides. Drug Metab. Dispos. 2019, 47, 1100–1110. [Google Scholar] [CrossRef]
- Derbyshire, M.; Shina, S. Patent Expiry Dates for Biologicals: 2018 Update. GaBI J. 2019, 8, 24–31. Available online: https://gabi-journal.net/patent-expiry-dates-for-biologicals-2018-update.html (accessed on 27 December 2024).
- EMA. Reflection Paper on a Tailored Clinical Approach in Biosimilar Development; European Medicines Agency: Amsterdam, The Netherlands, 2025. [Google Scholar]
- Fan, Y.; Del Val, I.J.; Müller, C.; Sen, J.W.; Rasmussen, S.K.; Kontoravdi, C.; Weilguny, D.; Andersen, M.R. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation. Biotechnol. Bioeng. 2015, 112, 521–535. [Google Scholar] [CrossRef] [PubMed]
- GaBI. Comparison of the Cost of Development of Biologicals and Biosimilars. 2022. Available online: https://www.gabionline.net/reports/comparison-of-the-cost-of-development-of-biologicals-and-biosimilars (accessed on 27 December 2024).
- GaBI Online. Role of Biologicals and Biosimilars in Cancer Treatment Amidst Rising Cases. In Generics and Biosimilars Initiative. 2024. Available online: https://gabionline.net/reports/role-of-biologicals-and-biosimilars-in-cancer-treatment-amidst-rising-cases (accessed on 27 December 2024).
- Gandhi, S.; Kashiramka, S.; Rathore, A.S. Emerging themes and factors influencing the prices of biotherapeutics. World Med. Health Policy 2023, 15, 613–637. [Google Scholar] [CrossRef]
- Gandhi, S.; Patankar, D.; Kashiramka, S.; Rathore, A.S. The economics of translating a biosimilar from lab to market in India. Ann. N. Y. Acad. Sci. 2024, 1541, 219–229. [Google Scholar] [CrossRef]
- Gessner, J.E.; Heiken, H.; Tamm, A.; Schmidt, R.E. The IgG Fc receptor family. Ann. Hematol. 1998, 76, 231–248. [Google Scholar] [CrossRef]
- Grainger, R.K.; James, D.C. CHO cell line specific prediction and control of recombinant monoclonal antibody N-glycosylation. Biotechnol. Bioeng. 2013, 110, 2970–2983. [Google Scholar] [CrossRef]
- Gramer, M.J.; Eckblad, J.J.; Donahue, R.; Brown, J.; Shultz, C.; Vickerman, K.; Priem, P.; Bremer, E.T.v.D.; Gerritsen, J.; van Berkel, P.H. Modulation of antibody galactosylation through feeding of uridine, manganese chloride, and galactose. Biotechnol. Bioeng. 2011, 108, 1591–1602. [Google Scholar] [CrossRef]
- Gupta, K.; Modi, D.; Jain, R.; Dandekar, P. A Stable CHO K1 Cell Line for Producing Recombinant Monoclonal Antibody Against TNF-α. Mol. Biotechnol. 2021, 63, 828–839. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Chaudari, P.S.; Nath, R. Opportunities and Challenges in Biosimilar Development. 2017. Available online: https://www.bioprocessintl.com/biosimilars/opportunities-and-challenges-in-biosimilar-development (accessed on 27 December 2024).
- Hills, A.E.; Patel, A.; Boyd, P.; James, D.C. Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NS0 cells. Biotechnol. Bioeng. 2001, 75, 239–251. [Google Scholar] [CrossRef]
- Houde, D.; Peng, Y.; Berkowitz, S.A.; Engen, J.R. Post-translational Modifications Differentially Affect IgG1 Conformation and Receptor Binding. Mol. Cell Proteom. 2010, 9, 1716–1728. [Google Scholar] [CrossRef]
- ICH Q6B Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products; European Medicines Agency: Amsterdam, The Netherlands, 1999.
- Jefferis, R. Glycosylation of recombinant antibody therapeutics. Biotechnol. Prog. 2005, 21, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Jefferis, R. Recombinant antibody therapeutics: The impact of glycosylation on mechanisms of action. Trends Pharmacol. Sci. 2009, 30, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Jennewein, M.F.; Alter, G. The Immunoregulatory Roles of Antibody Glycosylation. Trends Immunol. 2017, 38, 358–372. [Google Scholar] [CrossRef]
- Kamiya, Y.; Satoh, T.; Kato, K. Recent advances in glycoprotein production for structural biology: Toward tailored design of glycoforms. Curr. Opin. Struct. Biol. 2014, 26, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Kildegaard, H.F.; Fan, Y.; Sen, J.W.; Larsen, B.; Andersen, M.R. Glycoprofiling effects of media additives on IgG produced by CHO cells in fed-batch bioreactors. Biotechnol. Bioeng. 2016, 113, 359–366. [Google Scholar] [CrossRef]
- Kirchhoff, C.F.; Wang, X.M.; Conlon, H.D.; Anderson, S.; Ryan, A.M.; Bose, A. Biosimilars: Key regulatory considerations and similarity assessment tools. Biotechnol. Bioeng. 2017, 114, 2696–2705. [Google Scholar] [CrossRef]
- Liu, L. Antibody Glycosylation and Its Impact on the Pharmacokinetics and Pharmacodynamics of Monoclonal Antibodies and Fc-Fusion Proteins. J. Pharm. Sci. 2015, 104, 1866–1884. [Google Scholar] [CrossRef]
- Maverakis, E.; Kim, K.; Shimoda, M.; Gershwin, M.E.; Patel, F.; Wilken, R.; Raychaudhuri, S.; Ruhaak, L.R.; Lebrilla, C.B. Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: A critical review. J. Autoimmun. 2015, 57, 1–13. [Google Scholar] [CrossRef]
- McCracken, N.A.; Kowle, R.; Ouyang, A. Control of galactosylated glycoforms distribution in cell culture system. Biotechnol. Prog. 2014, 30, 547–553. [Google Scholar] [CrossRef]
- Fontanillo, M.; Körs, B.; Monnard, A. Three Imperatives for R&D in Biosimilars|McKinsey. 2022. Available online: https://www.mckinsey.com/industries/life-sciences/our-insights/three-imperatives-for-r-and-d-in-biosimilars (accessed on 27 December 2024).
- O’flaherty, R.; Bergin, A.; Flampouri, E.; Mota, L.M.; Obaidi, I.; Quigley, A.; Xie, Y.; Butler, M. Mammalian cell culture for production of recombinant proteins: A review of the critical steps in their biomanufacturing. Biotechnol. Adv. 2020, 43, 107552. [Google Scholar] [CrossRef]
- Pfizer. What are Biosimilars and Biologics?|Pfizer Biosimilars. In Biosimilars and Biologics|Pfizer Biosimilars. 2024. Available online: https://www.pfizerbiosimilars.com/characteristics-of-biosimilars/ (accessed on 27 December 2024).
- Raju, T.S. Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr. Opin. Immunol. 2008, 20, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Reichert, J.M. Global antibody development trends. MAbs 2009, 1, 86–87. [Google Scholar] [CrossRef] [PubMed]
- Reichert, J.M. Metrics for antibody therapeutics development. MAbs 2010, 2, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Reichert, J.M.; Rosensweig, C.J.; Faden, L.B.; Dewitz, M.C. Monoclonal antibody successes in the clinic. Nat. Biotechnol. 2005, 23, 1073–1078. [Google Scholar] [CrossRef]
- Ritacco, F.V.; Wu, Y.; Khetan, A. Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: History, key components, and optimization strategies. Biotechnol. Prog. 2018, 34, 1407–1426. [Google Scholar] [CrossRef]
- Spearman, M.; Butler, M. Glycosylation in Cell Culture. In Animal Cell Culture; Al-Rubeai, M., Ed.; Springer International Publishing: Cham, Swizerland, 2015; pp. 237–258. [Google Scholar]
- St Amand, M.M.; Radhakrishnan, D.; Robinson, A.S.; Ogunnaike, B.A. Identification of manipulated variables for a glycosylation control strategy. Biotechnol. Bioeng. 2014, 111, 1957–1970. [Google Scholar] [CrossRef]
- Thomann, M.; Reckermann, K.; Reusch, D.; Prasser, J.; Tejada, M.L. Fc-galactosylation modulates antibody-dependent cellular cytotoxicity of therapeutic antibodies. Mol. Immunol. 2016, 73, 69–75. [Google Scholar] [CrossRef]
- Thomann, M.; Schlothauer, T.; Dashivets, T.; Malik, S.; Avenal, C.; Bulau, P.; Rüger, P.; Reusch, D. In vitro glycoengineering of IgG1 and its effect on Fc receptor binding and ADCC activity. PLoS ONE 2015, 10, e0134949. [Google Scholar] [CrossRef]
- Tsuruta, L.R.; Lopes dos Santos, M.; Moro, A.M. Biosimilars advancements: Moving on to the future. Biotechnol. Prog. 2015, 31, 1139–1149. [Google Scholar] [CrossRef]
- US FDA. Guidance for Industry: Quality Considerations in Demonstrating Biosimilarity of a Therapeutic Protein Product to a Reference Protein Product; U.S. Food and Drug Administration: Washington, DC, USA, 2015. [Google Scholar]
- van Osch, T.L.J.; Nouta, J.; Derksen, N.I.L.; van Mierlo, G.; van der Schoot, C.E.; Wuhrer, M.; Rispens, T.; Vidarsson, G. Fc Galactosylation Promotes Hexamerization of Human IgG1, Leading to Enhanced Classical Complement Activation. J. Immunol. 2021, 207, 1545–1554. [Google Scholar] [CrossRef]
- Varki, A.; Cummings, R.D.; Aebi, M.; Packer, N.H.; Seeberger, P.H.; Esko, J.D.; Stanley, P.; Hart, G.; Darvill, A.; Kinoshita, T.; et al. Symbol Nomenclature for Graphical Representations of Glycans. Glycobiology 2015, 25, 1323–1324. [Google Scholar] [CrossRef] [PubMed]
- Varki, A.; Cummings, R.D.; Esko, J.D.; Stanley, P.; Hart, G.W.; Aebi, M.; Darvill, A.G.; Kinoshita, T.; Packer, N.H.; Prestegard, J.H.; et al. (Eds.) Essentials of Glycobiology, 3rd ed.; Cold Spring Harbor Laboratory Press: Long Island, NY, USA, 2015. [Google Scholar]
- Voruganti, S.; Xu, J.; Li, X.; Balakrishnan, G.; Singh, S.M.; Kar, S.R.; Das, T.K. A Detailed Protocol for Generation of Therapeutic Antibodies with Galactosylated Glycovariants at Laboratory Scale Using In-Vitro Glycoengineering Technology. J. Pharm. Sci. 2021, 110, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Wada, R.; Matsui, M.; Kawasaki, N. Influence of N-glycosylation on effector functions and thermal stability of glycoengineered IgG1 monoclonal antibody with homogeneous glycoforms. mAbs 2019, 11, 350–372. [Google Scholar] [CrossRef]
- Walsh, G.; Jefferis, R. Post-translational modifications in the context of therapeutic proteins. Nat. Biotechnol. 2006, 24, 1241–1252. [Google Scholar] [CrossRef]
- Wei, B.; Gao, X.; Cadang, L.; Izadi, S.; Liu, P.; Zhang, H.-M.; Hecht, E.; Shim, J.; Magill, G.; Pabon, J.R.; et al. Fc galactosylation follows consecutive reaction kinetics and enhances immunoglobulin G hexamerization for complement activation. mAbs 2021, 13, 1893427. [Google Scholar] [CrossRef]
- Wolf, B.; Piksa, M.; Beley, I.; Patoux, A.; Besson, T.; Cordier, V.; Voedisch, B.; Schindler, P.; Stöllner, D.; Perrot, L.; et al. Therapeutic antibody glycosylation impacts antigen recognition and immunogenicity. Immunology 2022, 166, 380–407. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.-H. Protein Glycosylation: New Challenges and Opportunities. J. Org. Chem. 2005, 70, 4219–4225. [Google Scholar] [CrossRef]
- Wong, N.S.; Wati, L.; Nissom, P.M.; Feng, H.; Lee, M.; Yap, M.G. An investigation of intracellular glycosylation activities in CHO cells: Effects of nucleotide sugar precursor feeding. Biotechnol. Bioeng. 2010, 107, 321–336. [Google Scholar] [CrossRef]
- Wright, A.; Sato, Y.; Okada, T.; Chang, K.H.; Endo, T.; Morrison, S.L. In vivo trafficking and catabolism of IgG1 antibodies with Fc associated carbohydrates of differing structure. Glycobiology 2000, 10, 1347–1355. [Google Scholar] [CrossRef]
- Xu, W.-J.; Lin, Y.; Mi, C.-L.; Pang, J.-Y.; Wang, T.-Y. Progress in fed-batch culture for recombinant protein production in CHO cells. Appl. Microbiol. Biotechnol. 2023, 107, 1063–1075. [Google Scholar] [CrossRef]
- Chen, Y.; Monnard, A.; da Silva, J.S. An Inflection Point for Biosimilars|McKinsey. 2021. Available online: https://www.mckinsey.com/industries/life-sciences/our-insights/an-inflection-point-for-biosimilars (accessed on 27 December 2024).
- Zhang, H.; Shi, N.; Diao, Z.; Chen, Y.; Zhang, Y. Therapeutic potential of TNFα inhibitors in chronic inflammatory disorders: Past and future. Genes. Dis. 2021, 8, 38–47. [Google Scholar] [CrossRef] [PubMed]
Galactose Supplementation | Feed Particulars | Galactose Feeding Regime |
---|---|---|
No galactose (initial process) | Basal media containing Efficient Feed B+ at 2× concentration | No galactose supplementation |
From day 8 onwards | Galactose (1.5 g/L) on days 8 and 10 | |
From day 6 onwards | Galactose (1.5 g/L) on days 6, 8, 10, and 12 | |
From day 4 onwards (optimized process) | Galactose (1.5 g/L) on days 4, 6, 8, and 10 |
Parameters | Set Points |
---|---|
pH | 7.10 ± 0.3 |
Agitation | 275 rpm |
Dissolved oxygen % set point | 30% ± 0.5 |
Temperature (°C) | 37 °C |
Sparger type | Ring sparger |
Gases/O2 (SP) | 100–300 ccm |
Gases/air (OL) | 50 ccm |
Gases/CO2 (SP) | 10 ccm |
Feed Details | Titer (mg/L) |
---|---|
1.0× Efficient Feed B+ | 717 |
1.5× Efficient Feed B+ | 1536 |
2.0× Efficient Feed B+ | 1852 |
2.5× Efficient Feed B+ | 2039 |
3.0× Efficient Feed B+ | 2137 |
Galactose Supplementation | Total Galactose | Total Mannose | Total Fucose |
---|---|---|---|
No galactose | 7.7 | 7.6 | 75.1 |
From day 8 onwards | 10.8 | 6.2 | 83.7 |
From day 6 onwards | 10.8 | 6.1 | 80.3 |
From day 4 onwards | 15.8 | 5.4 | 81.1 |
Galactose Supplementation | Titer (mg/L) |
---|---|
No galactose | 1644 |
From day 8 onwards | 1852 |
From day 6 onwards | 1770 |
From day 4 onwards | 1675 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulipeta, M.; Iyer, P.K.; Palakurthy, R.K.; Pullaguri, N.; Pinnamaneni, R.; Chilukuri, S.R. Enhancing the Total Terminal Galactosylation of CHO Cell-Derived TNF-α Blocker-IgG1 Monoclonal Antibody Using Time-Dependent Galactose Supplementation. Biologics 2025, 5, 16. https://doi.org/10.3390/biologics5020016
Pulipeta M, Iyer PK, Palakurthy RK, Pullaguri N, Pinnamaneni R, Chilukuri SR. Enhancing the Total Terminal Galactosylation of CHO Cell-Derived TNF-α Blocker-IgG1 Monoclonal Antibody Using Time-Dependent Galactose Supplementation. Biologics. 2025; 5(2):16. https://doi.org/10.3390/biologics5020016
Chicago/Turabian StylePulipeta, Mallikarjuna, Pradeep Kumar Iyer, Rajendra Kumar Palakurthy, Narasimha Pullaguri, Rajasekhar Pinnamaneni, and Srinivas Reddy Chilukuri. 2025. "Enhancing the Total Terminal Galactosylation of CHO Cell-Derived TNF-α Blocker-IgG1 Monoclonal Antibody Using Time-Dependent Galactose Supplementation" Biologics 5, no. 2: 16. https://doi.org/10.3390/biologics5020016
APA StylePulipeta, M., Iyer, P. K., Palakurthy, R. K., Pullaguri, N., Pinnamaneni, R., & Chilukuri, S. R. (2025). Enhancing the Total Terminal Galactosylation of CHO Cell-Derived TNF-α Blocker-IgG1 Monoclonal Antibody Using Time-Dependent Galactose Supplementation. Biologics, 5(2), 16. https://doi.org/10.3390/biologics5020016