The Effect of Sample Handling on Rabies-Neutralizing Antibody Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Room Temperature Stability
2.3. Heat Inactivation (HI) Variables
2.4. Eight-Well Chamber Slide Incubation (2 to 8 °C)
2.5. Freeze–Thaw Stability
2.6. RFFIT Serological Testing
2.7. Data Analysis
3. Results
3.1. Room Temperature Stability of RFFIT IU/mL Results
3.2. Influence of Sample Serum Heat Inactivation Time on Stability of RFFIT IU/mL Results
3.3. Influence of 2 to 8 °C Storage of Sample Dilutions in Chamber Slide Wells on the RFFIT IU/mL Results
3.4. Freeze-Thaw Stability of RFFIT IU/mL Results
3.5. Intra-Assay Variability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Expert Consultation on Rabies, Third Report; World Health Organization: Geneva, Switzerland, 2018; pp. 1–195. [Google Scholar]
- Moore, S.M.; Hanlon, C.A. Rabies-Specific Antibodies: Measuring Surrogates of Protection against a Fatal Disease. PLoS Neglect. Trop. Dis. 2010, 4, e595. [Google Scholar] [CrossRef] [PubMed]
- Wandeler, A.I. Rabies vaccinology and immunology. Dev. Biol. 2006, 125, 181–184. [Google Scholar]
- Sturgeon, C.M.; Viljoen, A. Analytical error and interference in immunoassay: Minimizing risk. Ann. Clin. Biochem. Int. J. 2011, 48 Pt. 5, 418–432. [Google Scholar] [CrossRef]
- Kostense, S.; Moore, S.; Companjen, A.; Bakker, A.B.; Marissen, W.E.; von Eyben, R.; Weverling, G.J.; Hanlon, C.; Goudsmit, J. Validation of the rapid fluorescent focus inhibition test (RFFIT) for rabies virus neutralizing antibodies in clinical samples. Antimicrob. Agents Chemother. 2012, 56, 3524–3530. [Google Scholar] [CrossRef] [PubMed]
- Timiryasova, T.M.; Luo, P.; Zheng, L.; Singer, A.; Zedar, R.; Garg, S.; Petit, C.; Moore, S.; Hu, B.T.; Brown, M. Rapid fluorescent focus inhibition test optimization and validation: Improved detection of neutralizing antibodies to rabies virus. J. Immunol. Methods 2019, 474, 112626. [Google Scholar] [CrossRef] [PubMed]
- Rupprecht, C.E.; Briggs, D.; Brown, C.M.; Franka, R.; Katz, S.L.; Kerr, H.D.; Lett, S.M.; Levis, R.; Meltzer, M.I.; Schaffner, W.; et al. Use of a reduced (4-dose) vaccine schedule for postexposure prophylaxis to prevent human rabies: Recommendations of the advisory committee on immunization practices. MMWR Recomm. Rep. 2010, 59, 1–9. [Google Scholar] [PubMed]
- Rao, A.K.; Briggs, D.; Moore, S.M.; Whitehill, F.; Campos-Outcalt, D.; Morgan, R.L.; Wallace, R.M.; Romero, J.R.; Bahta, L.; Frey, S.E.; et al. Use of a Modified Preexposure Prophylaxis Vaccination Schedule to Prevent Human Rabies: Recommendations of the Advisory Committee on Immunization Practices—United States, 2022. Mmwr. Morb. Mortal. Wkly. Rep. 2022, 71, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Laboratory Techniques in Rabies. The Rapid Fluorescent Focus Inhibition Test (RFFIT), 5th ed.; World Health Organization: Geneva, Switzerland, 2018; p. 288. [Google Scholar]
- Kostense, S.; Hendriks, J. Challenges of Immunogenicity Assays for Vaccines. Bioanalysis 2012, 4, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.J.; Durham, T.M. Reproducibility of serological titers. J. Clin. Microbiol. 1980, 11, 541–545. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.M.; Gilbert, A.; Vos, A.; Freuling, C.M.; Ellis, C.; Kliemt, J.; Muller, T. Rabies Virus Antibodies from Oral Vaccination as a Correlate of Protection against Lethal Infection in Wildlife. Trop. Med. Infect. Dis. 2017, 2, 31. [Google Scholar] [CrossRef] [PubMed]
- Myler, H.; Pedras-Vasconcelos, J.; Lester, T.; Civoli, F.; Xu, W.; Wu, B.; Vainshtein, I.; Luo, L.; Hassanein, M.; Liu, S.; et al. Neutralizing Antibody Validation Testing and Reporting Harmonization. AAPS J. 2023, 25, 69. [Google Scholar] [CrossRef] [PubMed]
- Rudd, R.J.; Appler, K.A.; Wong, S.J. Presence of Cross-Reactions with Other Viral Encephalitides in the Indirect Fluorescent-Antibody Test for Diagnosis of Rabies. J. Clin. Microbiol. 2013, 51, 4079–4082. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, V.S.; Egger, S.; Betsou, F.; Waterboer, T.; Pawlita, M.; Michel, A.; Baker, M.S.; Banks, E.; Sitas, F. Preanalytical Stability of Antibodies to Pathogenic Antigens. Cancer Epidemiol. Biomark. Prev. 2017, 26, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.; Youngman, L.D.; Palmer, A.; Parish, S.; Peto, R.; Collins, R. Stability of plasma analytes after delayed separation of whole blood: Implications for epidemiological studies. Int. J. Epidemiol. 2003, 32, 125–130. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Rabies vaccines: WHO position paper, April 2018—Recommendations. Vaccine 2018, 36, 5500–5503. [Google Scholar] [CrossRef] [PubMed]
Treatment Groups | Ave %CV | Ave %R | % Samples with <50% CV% | % Samples with <30% CV% | % Samples within 50–150% %R | Result Consistency at 0.1 IU/mL 1 | Result Consistency at 0.5 IU/mL 1 |
---|---|---|---|---|---|---|---|
Room Temperature Stability | |||||||
4 h | 8.7 | 98.5 | 100 | 96.7 | 100 | 100 (30/30) | 100 (30/30) |
12 h | 7.6 | 98.2 | 100 | 96.7 | 96.7 | 100 (30/30) | 100 (30/30) |
24 h | 9.7 | 97.3 | 100 | 100 | 100 | 100 (30/30) | 100 (30/30) |
48 h | 9.7 | 95.5 | 100 | 100 | 100 | 100 (30/30) | 100 (30/30) |
72 h | 10.0 | 101.3 | 100 | 93.3 | 96.7 | 100 (30/30) | 100 (30/30) |
1 week | 7.8 | 99.6 | 100 | 93.3 | 96.7 | 100 (30/30) | 100 (30/30) |
2 week | 9.1 | 102.0 | 100 | 96.7 | 96.7 | 100 (30/30) | 100 (30/30) |
Heat Inactivation Treatment | |||||||
Overnight HI | 15.5 | 85.8 | 93.1 | 82.8 | 89.7 | 100 (30/30) | 100 (30/30) |
HI from −80C | 7.9 | 105.8 | 100 | 96.7 | 96.7 | 100 (30/30) | 100 (30/30) |
2 × HI with 4C storage | 10.8 | 112.3 | 100 | 96.7 | 93.3 | 100 (30/30) | 100 (30/30) |
2 × HI with −80C storage | 11.4 | 112.0 | 100 | 93.3 | 93.3 | 100 (30/30) | 100 (30/30) |
8-Well Chamber Slide Incubation | |||||||
1 h | 8.0 | 108.4 | 100 | 94.4 | 94.4 | 100 (36/36) | 100 (36/36) |
2 h | 10.4 | 114.7 | 100 | 97.2 | 91.7 | 100 (36/36) | 100 (36/36) |
4 h | 7.2 | 94.5 | 100 | 100 | 100 | 100 (36/36) | 97.2 (35/36) |
6 h | 13.7 | 116.7 | 100 | 94.4 | 91.7 | 100 (36/36) | 100 (36/36) |
Overnight | 7.5 | 102.9 | 100 | 97.2 | 97.2 | 100 (36/36) | 100 (36/36) |
Freeze–Thaw Treatment | |||||||
4 freeze–thaw cycles | 8.9 | 96.9 | 100 | 96.7 | 100 | 100 (30/30) | 100 (30/30) |
6 freeze–thaw cycles | 8.8 | 98.7 | 100 | 93.3 | 96.7 | 100 (30/30) | 100 (30/30) |
Treatment Groups | Ave %CV | % Samples with <50% CV% | % Samples with <30% CV% |
---|---|---|---|
Room Temperature Stability | |||
Control (0 h) | 13.0 | 96.7% | 93.3% |
4 h | 10.6 | 96.7% | 93.3% |
12 h | 9.9 | 96.7% | 93.3% |
24 h | 14.6 | 90.0% | 83.3% |
48 h | 10.8 | 93.3% | 90.0% |
72 h | 12.9 | 86.7% | 83.3% |
1 week | 10.8 | 96.7% | 96.7% |
2 week | 11.2 | 93.3% | 90.0% |
Heat Inactivation Treatment | |||
Control (1 × HI) | 13.3 | 100.0% | 96.7% |
Overnight HI | 25.6 | 86.7% | 63.3% |
HI from −80 °C | 14.3 | 96.7% | 76.7% |
2 × HI with 4 °C Storage | 12.0 | 100.0% | 90.0% |
2 × HI with −80 °C Storage | 10.9 | 100.0% | 90.0% |
8-Well Chamber Slide Incubation | |||
Control (no storage incubation) | 9.5 | 100.0% | 96.7% |
1 h | 11.9 | 100.0% | 86.7% |
2 h | 16.9 | 96.7% | 83.3% |
4 h | 9.1 | 100.0% | 93.3% |
6 h | 14.0 | 100.0% | 83.3% |
Overnight | 11.4 | 100.0% | 83.3% |
Freeze–Thaw Treatment | |||
Control (0 freeze–thaw cycles | 8.5 | 100.0% | 90.0% |
4 freeze–thaw cycles | 8.9 | 100.0% | 93.3% |
6 freeze–thaw cycles | 15.5 | 90.0% | 86.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pralle, S.J.; Gatrell, S.K.; Keating, C.C.; Moore, S.M. The Effect of Sample Handling on Rabies-Neutralizing Antibody Stability. Biologics 2024, 4, 232-241. https://doi.org/10.3390/biologics4030016
Pralle SJ, Gatrell SK, Keating CC, Moore SM. The Effect of Sample Handling on Rabies-Neutralizing Antibody Stability. Biologics. 2024; 4(3):232-241. https://doi.org/10.3390/biologics4030016
Chicago/Turabian StylePralle, Samantha J., Stephanie K. Gatrell, Cassidy C. Keating, and Susan M. Moore. 2024. "The Effect of Sample Handling on Rabies-Neutralizing Antibody Stability" Biologics 4, no. 3: 232-241. https://doi.org/10.3390/biologics4030016
APA StylePralle, S. J., Gatrell, S. K., Keating, C. C., & Moore, S. M. (2024). The Effect of Sample Handling on Rabies-Neutralizing Antibody Stability. Biologics, 4(3), 232-241. https://doi.org/10.3390/biologics4030016