The Dawn of In Vivo Gene Editing Era: A Revolution in the Making
Abstract
:1. Introduction
2. The Science of Gene Editing
2.1. Next-Generation Sequencing
2.2. Personalized Medicine
2.3. Targeting
3. Current Status
4. GE Tools
4.1. Nuclease Mediated
4.2. Prime Editing
4.3. Base Editing (BE)
4.4. Mitochondrial Base Editing
4.5. Nickase-Based Genome Engineering
4.6. Homologous Recombination
4.7. TFD-ODN Techniques
4.8. Argonautes
4.9. Integrase
4.10. Recombinase
5. Current Status
6. Challenges and Concerns
7. Regulatory
8. Delivery Tools
8.1. Overview
8.2. CRISPR
8.3. Vectors
8.4. AAV
8.5. Direct
8.6. LNPs
8.7. Nano Particles
8.8. Plasmid
8.9. Ribonucleoproteins (RNP)
9. Prospective Views
10. Conclusions
Funding
Conflicts of Interest
References
- Jackson, D.A.; Symons, R.H.; Berg, P. Biochemical method for inserting new genetic information into DNA of Simian Virus 40: Circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc. Natl. Acad. Sci. USA 1972, 69, 2904–2909. [Google Scholar] [CrossRef] [PubMed]
- Mittal, R.D. Gene Editing in Clinical Practice: Where are We? Indian J. Clin. Biochem. 2019, 34, 19–25. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (US) Board on Agriculture. Genetic Engineering of Plants: Agricultural Research Opportunities and Policy Concerns; Gene Transfer; National Academies Press (US): Washington, DC, USA, 1984. Available online: https://www.ncbi.nlm.nih.gov/books/NBK216398/ (accessed on 10 July 2022).
- Komor, A.C.; Badran, A.H.; Liu, D.R. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 2017, 168, 20–36. [Google Scholar] [CrossRef] [PubMed]
- Platt, R.J.; Chen, S.; Zhou, Y.; Yim, M.J.; Swiech, L.; Kempton, H.R.; Dahlman, J.E.; Parnas, O.; Eisenhaure, T.M.; Jovanovic, M.; et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 2014, 159, 440–455. [Google Scholar] [CrossRef]
- Brokowski, C.; Adli, M. CRISPR ethics: Moral considerations for applications of a powerful tool. J. Mol. Biol. 2019, 431, 88–101. [Google Scholar] [CrossRef]
- Seoane-Vazquez, E.; Rodriguez-Monguio, R.; Szeinbach, S.L.; Visaria, J. Incentives for orphan drug research and development in the United States. Orphanet J. Rare Dis. 2007, 2, 33. [Google Scholar] [CrossRef]
- Maus, M.V.; Grupp, S.A.; Porter, D.L.; June, C.H. Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood 2014, 123, 2625–2635. [Google Scholar] [CrossRef]
- Zhang, C.; Peng, Y.; Hublitz, P.; Zhang, H.; Dong, T. Genetic abrogation of immune checkpoints in antigen-specific cytotoxic T-lymphocyte as a potential alternative to blockade immunotherapy. Sci. Rep. 2019, 9, 5549. [Google Scholar] [CrossRef]
- Mullard, A. Nature. Gene Editing Pipeline Takes Off. 2020. Available online: https://www.nature.com/articles/d41573-020-00096-y (accessed on 6 March 2023).
- Alagoz, M.; Kherad, N. Advance GE technologies in the treatment of human diseases: CRISPR therapy (Review). Int. J. Mol. Med. 2020, 46, 521–534. [Google Scholar] [CrossRef]
- EMA. Expert Meeting on GE Technologies Used in Medicine Development. 2017. Available online: https://www.ema.europa.eu/en/events/expert-meeting-genome-editing-technologies-used-medicine-development (accessed on 6 July 2023).
- Ho, B.X.; Loh, S.J.H.; Chan, W.K.; Soh, B.S. In Vivo GE as a Therapeutic Approach. Int. J. Mol. Sci. 2018, 19, 2721. [Google Scholar] [CrossRef]
- Li, H.; Yang, Y.; Hong, W.; Huang, M.; Wu, M.; Zhao, X. Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects. Signal Transduct. Target. Ther. 2020, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- de Buhr, H.; Jan Lebbink, R. Harnessing CRISPR to combat human viral infections. Curr. Opin. Immunol. 2018, 54, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Maeder, M.L.; Gersbach, C.A. Genome-editing technologies for gene and cell therapy. Mol. Ther. 2016, 24, 430–446. [Google Scholar] [CrossRef]
- Stadtmauer, E.A.; Fraietta, J.A.; Davis, M.M.; Cohen, A.D.; Weber, K.L.; Lancaster, E.; Mangan, P.A.; Kulikovskaya, I.; Gupta, M.; Chen, F.; et al. CRISPR-engineered T cells in patients with refractory cancer. Science 2020, 367, eaba7365. [Google Scholar] [CrossRef] [PubMed]
- Maeder, M.L.; Stefanidakis, M.; Wilson, C.J.; Baral, R.; Barrera, L.A.; Bounoutas, G.S.; Bumcrot, D.; Chao, H.; Ciulla, D.M.; DaSilva, J.A.; et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat. Med. 2019, 25, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Naldini, L. Ex vivo gene transfer and correction for cell-based therapies. Nat. Rev. Genet. 2011, 12, 301–315. [Google Scholar] [CrossRef]
- Behr, M.; Zhou, J.; Xu, B.; Zhang, H. In vivo delivery of CRISPR-Cas9 therapeutics: Progress and challenges. Acta Pharm. Sin. B 2021, 11, 2150–2171. [Google Scholar] [CrossRef]
- Hong, A. CRISPR in personalized medicine: Industry perspectives in gene editing. Semin. Perinatol. 2018, 42, 501–507. [Google Scholar] [CrossRef]
- Selvakumar, S.C.; Preethi, K.A.; Ross, K.; Tusubira, D.; Khan, M.W.A.; Mani, P.; Rao, T.N.; Sekar, D. CRISPR/Cas9 and next-generation sequencing in the personalized treatment of Cancer. Mol. Cancer 2022, 21, 83. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, Y.; Zhang, L.; Jin, Q.; Wang, L.; Xu, S.; Chen, K.; Li, L.; Zeng, T.; Fan, X.; et al. i-CRISPR: A personalized cancer therapy strategy through cutting cancer-specific mutations. Mol. Cancer 2022, 21, 164. [Google Scholar] [CrossRef]
- FDA. Available online: https://www.personalizedmedicinecoalition.org/Userfiles/PMC-Corporate/file/Personalized_Medicine_at_FDA_The_Scope_Significance_of_Progress_in_2021.pdf (accessed on 6 March 2023).
- Available online: https://precision.fda.gov/ (accessed on 2 July 2023).
- Hyman, D.M.; Taylor, B.S.; Baselga, J. Implementing genome-driven oncology. Cell 2017, 168, 584–599. [Google Scholar] [CrossRef]
- Quick, J.; Loman, N.J.; Duraffour, S.; Simpson, J.T.; Severi, E.; Cowley, L.; Bore, J.A.; Koundouno, R.; Dudas, G.; Mikhail, A.; et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 2016, 530, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Talkowski, M.E.; Ordulu, Z.; Pillalamarri, V. Clinical diagnosis by whole-genome sequencing of a prenatal sample. N. Engl. J. Med. 2014, 371, 2349–2351. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Muzny, D.M.; Reid, J.G.; Bainbridge, M.N.; Willis, A.; Ward, P.A.; Braxton, A.; Beuten, J.; Xia, F.; Niu, Z.; et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N. Engl. J. Med. 2013, 369, 1502–1511. [Google Scholar] [CrossRef] [PubMed]
- Margolin, K. The Promise of Molecularly Targeted and Immunotherapy for Advanced Melanoma. Curr. Treat. Options Oncol. 2016, 17, 48. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Human Genome Editing: Science, Ethics, and Governance; National Academies Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Hamosh, A.; Scott, A.F.; Amberger, J.; Valle, D.; McKusick, V.A. Online Mendelian Inheritance in Man (OMIM). Hum. Mutat. 2000, 15, 57–61. [Google Scholar] [CrossRef]
- Baker, D.J.; Childs, B.G.; Durik, M.; Wijers, M.E.; Sieben, C.J.; Zhong, J.; Saltness, R.A.; Jeganathan, K.B.; Verzosa, G.C.; Pezeshki, A.; et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 2016, 530, 184–189. [Google Scholar] [CrossRef]
- Ranganath, L.R.; Khedekar, P.; Iqbal, Z. Alkaptonuria, ochronosis, and ochronotic arthropathy. Semin. Arthritis Rheum. 2020, 33, 280–291. [Google Scholar]
- Bjursell, M.; Porritt, M.J.; Ericson, E.; Taheri-Ghahfarokhi, A.; Clausen, M.; Magnusson, L.; Admyre, T.; Nitsch, R.; Mayr, L.; Aasehaug, L.; et al. Therapeutic Genome Editing With CRISPR/Cas9 in a Humanized Mouse Model Ameliorates α1-antitrypsin Deficiency Phenotype. Ebiomedicine 2018, 29, 104–111. [Google Scholar] [CrossRef]
- Kashtan, C.E.; Michael, A.F. Alport syndrome. Kidney Int. 2014, 66, 748–758. [Google Scholar]
- Brown, R.H.; Al-Chalabi, A. Amyotrophic lateral sclerosis. N. Engl. J. Med. 2017, 377, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, S.; Tonnu, N.; Tachikawa, K.; Limphong, P.; Vega, J.B.; Karmali, P.P.; Chivukula, P.; Verma, I.M. Systemic delivery of factor IX messenger RNA for protein replacement therapy. Proc. Natl. Acad. Sci. USA 2017, 114, E1941–E1950. [Google Scholar] [CrossRef] [PubMed]
- Citorik, R.J.; Mimee, M.; Lu, T.K. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 2014, 32, 1141–1145. [Google Scholar] [CrossRef]
- Musunuru, K.; Pirruccello, J.P.; Do, R.; Peloso, G.M.; Guiducci, C.; Sougnez, C.; Garimella, K.V.; Fisher, S.; Abreu, J.; Barry, A.J.; et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N. Engl. J. Med. 2010, 363, 2220–2227. [Google Scholar] [CrossRef]
- Kumar, R.; Kawai, T.; Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 2020, 30, 16–34. [Google Scholar] [CrossRef] [PubMed]
- Beales, P.L.; Elcioglu, N.; Woolf, A.S.; Parker, D.; Flinter, F.A. New criteria for improved diagnosis of Bardet-Biedl syndrome: Results of a population survey. J. Med. Genet. 1999, 36, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.E.; Nixon, C.; Steward, C.G.; Gauvreau, K.; Maisenbacher, M.; Fletcher, M.; Geva, J.; Byrne, B.J.; Spencer, C.T. The Barth Syndrome Registry: Distinguishing disease characteristics and growth data from a longitudinal study. Am. J. Med. Genet. Part A 2012, 158, 2726–2732. [Google Scholar] [CrossRef]
- Frangoul, H.; Altshuler, D.; Cappellini, M.D.; Chen, Y.S.; Domm, J.; Eustace, B.K.; Foell, J.; de la Fuente, J.; Grupp, S.; Handgretinger, R.; et al. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. N. Engl. J. Med. 2021, 384, 252–260. [Google Scholar] [CrossRef]
- Wu, W.H.; Tsai, Y.T.; Justus, S.; Lee, T.T.; Zhang, L.; Lin, C.S.; Bassuk, A.G.; Mahajan, V.B.; Tsang, S.H. CRISPR Repair Reveals Causative Mutation in a Preclinical Model of Retinitis Pigmentosa. Mol. Ther. 2016, 24, 1388–1394. [Google Scholar] [CrossRef]
- Swiech, L.; Heidenreich, M.; Banerjee, A.; Habib, N.; Li, Y.; Trombetta, J.; Sur, M.; Zhang, F. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat. Biotechnol. 2015, 33, 102–106. [Google Scholar] [CrossRef]
- Matalon, R.; Michals-Matalon, K. Spongy degeneration of the brain, Canavan disease: Biochemical and molecular findings. Front. Biosci. 2000, 5, D307–D311. [Google Scholar] [PubMed]
- Rupp, L.J.; Schumann, K.; Roybal, K.T.; Gate, R.E.; Ye, C.J.; Lim, W.A.; Marson, A. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci. Rep. 2017, 7, 737. [Google Scholar] [CrossRef] [PubMed]
- Flynn, R.; Grundmann, A.; Renz, P.; Hänseler, W.; James, W.S.; Cowley, S.A.; Moore, M.D. CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Exp. Hematol. 2015, 43, 838–848.e3. [Google Scholar] [CrossRef] [PubMed]
- Hodges, C.A.; Conlon, R.A. Delivering on the promise of gene editing for cystic fibrosis. Genes Dis. 2019, 6, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Cherqui, S. De la découverte du gène aux premiers essais de thérapie génique [Cystinosis: From the gene identification to the first gene therapy clinical trial]. Med. Sci. 2023, 39, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Wang, J.; Tan, Y.; Beyer, A.I.; Xie, F.; Muench, M.O.; Kan, Y.W. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia. Proc. Natl. Acad. Sci. USA 2016, 113, 10661–10665. [Google Scholar] [CrossRef]
- Long, C.; Amoasii, L.; Mireault, A.A.; McAnally, J.R.; Li, H.; Sanchez-Ortiz, E.; Bhattacharyya, S.; Shelton, J.M.; Bassel-Duby, R.; Olson, E.N. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 2016, 351, 400–403. [Google Scholar] [CrossRef]
- Albanese, A.; Bhatia, K.; Bressman, S.B.; Delong, M.R.; Fahn, S.; Fung, V.S.; Hallett, M.; Jankovic, J.; Jinnah, H.A.; Klein, C.; et al. Phenomenology and classification of dystonia: A consensus update. Mov. Disord. 2013, 28, 863–873. [Google Scholar] [CrossRef]
- Bonafont, J.; Mencía, Á.; García, M.; Torres, R.; Rodríguez, S.; Carretero, M.; Chacón-Solano, E.; Modamio-Høybjør, S.; Marinas, L.; León, C.; et al. Clinically Relevant Correction of Recessive Dystrophic Epidermolysis Bullosa by Dual sgRNA CRISPR/Cas9-Mediated Gene Editing. Mol. Ther. 2019, 27, 986–998. [Google Scholar] [CrossRef]
- Toomes, C.; Bottomley, H.M.; Jackson, R.M.; Towns, K.V.; Scott, S.; Mackey, D.A.; Craig, J.E.; Jiang, L.; Yang, Z.; Trembath, R.; et al. Mutations in LRP5 or FZD4 underlie the common familial exudative vitreoretinopathy locus on chromosome 11q. Am. J. Hum. Genet. 2004, 74, 721–730. [Google Scholar] [CrossRef]
- Rio, P.; Baños, R.; Lombardo, A.; Quintana-Bustamante, O.; Alvarez, L.; Garate, Z.; Genovese, P.; Almarza, E.; Valeri, A.; Díez, B.; et al. Targeted gene therapy and cell reprogramming in Fanconi anemia. EMBO Mol. Med. 2014, 6, 835–848. [Google Scholar] [CrossRef] [PubMed]
- Park, C.Y.; Halevy, T.; Lee, D.R.; Sung, J.J.; Lee, J.S.; Yanuka, O.; Benvenisty, N.; Kim, D.W. Reversion of FMR1 Methylation and Silencing by Editing the Triplet Repeats in Fragile X iPSC-Derived Neurons. Cell Rep. 2015, 13, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.; Amaral, O.; Alves, S. Therapy of Gaucher disease: Past, present and future perspectives. J. Inherit. Metab. Dis. 2017, 40, 853–867. [Google Scholar]
- Li, Y.; Guha, C.; Asp, P.; Wang, X.; Tchaikovskya, T.L.; Kim, K.; Mendel, M.; Cost, G.J.; Perlmutter, D.H.; Roy-Chowdhury, N.; et al. Resolution of hepatic fibrosis after ZFN-mediated gene editing in the PiZ mouse model of human α1-antitrypsin deficiency. Hepatol. Commun. 2023, 7, e0070. [Google Scholar] [CrossRef] [PubMed]
- Endo, M.; Fujii, K.; Sugita, K.; Saito, K.; Kohno, Y.; Miyashita, T. Nationwide survey of nevoid basal cell carcinoma syndrome in Japan revealing the low frequency of basal cell carcinoma. Am. J. Med. Genet. Part A 2012, 158, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Kavaklı, K.; Antmen, B.; Okan, V.; Şahin, F.; Aytaç, S.; Balkan, C.; Berber, E.; Kaya, Z.; Küpesiz, A.; Zülfikar, B. Gene therapy in haemophilia: Literature review and regional perspectives for Turkey. Ther. Adv. Hematol. 2022, 13, 20406207221104591. [Google Scholar] [CrossRef]
- Hosman, A.E.; de Gussem, E.M.; Balemans, W.A.F.; Gauthier, A.; Westermann, C.J.J.; Snijder, R.J.; Post, M.C.; Mager, J.J. Screening children for pulmonary arteriovenous malformations: Evaluation of 18 years of experience. Pediatr. Pulmonol. 2019, 54, 1572–1579. [Google Scholar] [CrossRef]
- Ebina, H.; Misawa, N.; Kanemura, Y.; Koyanagi, Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci. Rep. 2013, 3, 2510. [Google Scholar] [CrossRef]
- Yang, S.; Chang, R.; Yang, H.; Zhao, T.; Hong, Y.; Kong, H.E.; Sun, X.; Qin, Z.; Jin, P.; Li, S.; et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J. Clin. Investig. 2017, 127, 2719–2724. [Google Scholar] [CrossRef]
- Wojciak, J.; Płoski, R.; Pollak, A. Application of targeted gene panel sequencing and whole exome sequencing in neonates and infants with suspected genetic disorder. J. Appl. Genet. 2020, 61, 341–349. [Google Scholar]
- Whyte, M.P. Hypophosphatasia—Aetiology, nosology, pathogenesis, diagnosis and treatment. Nat. Rev. Endocrinol. 2017, 13, 233. [Google Scholar] [CrossRef] [PubMed]
- Menon, T.; Firth, A.L.; Scripture-Adams, D.D.; Galic, Z.; Qualls, S.J.; Gilmore, W.B.; Ke, E.; Singer, O.; Anderson, L.S.; Bornzin, A.R.; et al. Lymphoid regeneration from gene-corrected SCID-X1 subject-derived iPSCs. Cell Stem Cell 2020, 16, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Marti-Gutierrez, N.; Park, S.W.; Wu, J.; Lee, Y.; Suzuki, K.; Koski, A.; Ji, D.; Hayama, T.; Ahmed, R.; et al. Correction of a pathogenic gene mutation in human embryos. Nature 2017, 548, 413–419. [Google Scholar] [CrossRef]
- Romani, M.; Micalizzi, A.; Valente, E.M. Joubert syndrome: Congenital cerebellar ataxia with the molar tooth. Lancet Neurol. 2013, 12, 894–905. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuis, M.H.; Vasen, H.F. Correlations between mutation site in APC and phenotype of familial adenomatous polyposis (FAP): A review of the literature. Crit. Rev. Oncol./Hematol. 2007, 61, 153–161. [Google Scholar] [CrossRef] [PubMed]
- den Hollander, A.I.; Roepman, R.; Koenekoop, R.K.; Cremers, F.P. Leber congenital amaurosis: Genes, proteins and disease mechanisms. Prog. Retin. Eye Res. 2008, 27, 391–419. [Google Scholar] [CrossRef]
- Steinhart, Z.; Pavlovic, Z.; Chandrashekhar, M.; Hart, T.; Wang, X.; Zhang, X.; Robitaille, M.; Brown, K.R.; Jaksani, S.; Overmeer, R.; et al. Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nat. Med. 2017, 23, 60–68. [Google Scholar] [CrossRef]
- Schneider, K.; Zelley, K.; Nichols, K.E.; Garber, J. Li-Fraumeni Syndrome. In GeneReviews®; University of Washington: Seattle, WA, USA, 2017; pp. 1993–2021. [Google Scholar]
- Giudicessi, J.R.; Ackerman, M.J. Genotype-and phenotype-guided management of congenital long QT syndrome. Curr. Probl. Cardiol. 2013, 38, 417–455. [Google Scholar] [CrossRef]
- Lynch, H.T.; Lynch, P.M.; Lanspa, S.J.; Snyder, C.L.; Lynch, J.F.; Boland, C.R. Review of the Lynch syndrome: History, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin. Genet. 2009, 76, 1–18. [Google Scholar] [CrossRef]
- Kasza, K.E.; Supriyatno, S.; Zallen, J.A. Cellular defects resulting from disease-related myosin II mutations in Drosophila. Proc. Natl. Acad. Sci. USA 2019, 116, 22205–22211. [Google Scholar] [CrossRef]
- Gammage, P.A.; Viscomi, C.; Simard, M.L.; Costa, A.S.H.; Gaude, E.; Powell, C.A.; Van Haute, L.; McCann, B.J.; Rebelo-Guiomar, P.; Cerutti, R.; et al. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat. Med. 2018, 24, 1691–1695. [Google Scholar] [CrossRef] [PubMed]
- Valstar, M.J.; Ruijter, G.J.; van Diggelen, O.P.; Poorthuis, B.J.; Wijburg, F.A. Sanfilippo syndrome: A mini-review. J. Inherit. Metab. Dis. 2008, 31, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Gilman, S.; Wenning, G.K.; Low, P.A.; Brooks, D.J.; Mathias, C.J.; Trojanowski, J.Q.; Wood, N.W.; Colosimo, C.; Dürr, A.; Fowler, C.J.; et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology 2008, 71, 670–676. [Google Scholar] [CrossRef] [PubMed]
- De Plano, L.M.; Calabrese, G.; Conoci, S.; Guglielmino, S.P.P.; Oddo, S.; Caccamo, A. Advances in CRISPR/Cas-mediated Gene Therapy in Alzheimer’s Disease. Curr. Gene Ther. 2020, 20, 253–264. [Google Scholar]
- Evans, D.G.; Baser, M.E.; McGaughran, J.; Sharif, S.; Howard, E.; Moran, A. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J. Med. Genet. 2005, 38, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Newton, J.; Milstien, S.; Spiegel, S. Niemann-Pick type C disease: The atypical sphingolipidosis. Adv. Biol. Regul. 2018, 70, 82–88. [Google Scholar] [CrossRef]
- Hsu, P.D.; Lander, E.S.; Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2021, 157, 1262–1278. [Google Scholar] [CrossRef]
- Voit, R.A.; Hendel, A.; Pruett-Miller, S.M.; Porteus, M.H. Nuclease-mediated gene editing by homologous recombination of the human globin locus. Nucleic Acids Res. 2020, 42, 1365–1378. [Google Scholar] [CrossRef]
- Del Fattore, A.; Cappariello, A.; Teti, A. Genetics, pathogenesis and complications of osteopetrosis. Bone 2008, 42, 19–29. [Google Scholar] [CrossRef]
- Levine, B.; Klionsky, D.J. Autophagy wins the 2016 Nobel Prize in Physiology or Medicine: Breakthroughs in baker’s yeast fuel advances in biomedical research. Proc. Natl. Acad. Sci. USA 2020, 114, 201–205. [Google Scholar] [CrossRef]
- Neumann, H.P.; Young, W.F.; Eng, C. Pheochromocytoma and paraganglioma. N. Engl. J. Med. 2011, 365, 410–421. [Google Scholar] [CrossRef]
- McGarrity, T.J.; Kulin, H.E.; Zaino, R.J. Peutz-Jeghers syndrome. Am. J. Gastroenterol. 2000, 95, 596–604. [Google Scholar] [CrossRef]
- Rossetti, S.; Consugar, M.B.; Chapman, A.B.; Torres, V.E.; Guay-Woodford, L.M.; Grantham, J.J.; Bennett, W.M.; Meyers, C.M.; Walker, D.L.; Bae, K.; et al. Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 2009, 18, 2143–2160. [Google Scholar] [CrossRef] [PubMed]
- Hudry, E.; Andres-Mateos, E.; Lerner, E.P.; Volak, A.; Cohen, O.; Hyman, B.T.; Maguire, C.A.; Vandenberghe, L.H. Efficient gene transfer into the CNS and peripheral tissues of newborn primates using AAV9 and a new synthetic AAV9 promoter. Mol. Ther. 2018, 26, 119–134. [Google Scholar]
- Kim, Y.; Cheong, S.A.; Lee, J.G.; Lee, S.W.; Lee, M.S.; Baek, I.J.; Sung, Y.H. Generation of knockout mice by Cpf1-mediated gene targeting. Nat. Biotechnol. 2019, 34, 808–810. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Fernández, O.; Osorio, F.G.; Quesada, V.; Rodríguez, F.; Basso, S.; Maeso, D.; Rolas, L.; Barkaway, A.; Nourshargh, S.; Folgueras, A.R.; et al. Development of a CRISPR/Cas9-based therapy for Hutchinson–Gilford progeria syndrome. Nat. Med. 2019, 25, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Hartong, D.T.; Berson, E.L.; Dryja, T.P. Retinitis pigmentosa. Lancet 2006, 368, 1795–1809. [Google Scholar] [CrossRef]
- Ananiev, G.; Williams, E.C.; Li, H.; Chang, Q. Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS ONE 2011, 6, e25255. [Google Scholar] [CrossRef]
- Kan, S.H.; Aoyagi-Scharber, M.; Le, S.Q.; Vincelette, J.; Ohmi, K.; Bullens, S.; Wendt, D.J.; Christianson, T.M.; Tiger, P.M.; Brown, J.R.; et al. Delivery of an enzyme-IGFII fusion protein to the mouse brain is therapeutic for mucopolysaccharidosis type IIIB. Proc. Natl. Acad. Sci. USA 2014, 111, 14870–14875. [Google Scholar] [CrossRef]
- Ribeil, J.-A.; Hacein-Bey-Abina, S.; Payen, E.; Magnani, A.; Semeraro, M.; Magrin, E.; Caccavelli, L.; Neven, B.; Bourget, P.; El Nemer, W.; et al. Gene therapy in a patient with sickle cell disease. N. Engl. J. Med. 2017, 376, 848–855. [Google Scholar] [CrossRef]
- Stevanin, G.; Azzedine, H.; Denora, P.; Boukhris, A.; Tazir, M.; Lossos, A.; Rosa, A.L.; Lerer, I.; Hamri, A.; Alegria, P.; et al. SPATAX consortium. Mutations in SPG11 are frequent in autosomal recessive spastic paraplegia with thin corpus callosum, cognitive decline and lower motor neuron degeneration. Brain 2019, 131, 772–784. [Google Scholar] [CrossRef] [PubMed]
- Piguet, F.; Alves, S.; Cartier, N. Clinical gene therapy for neurodegenerative diseases: Past, present, and future. Hum. Gene Ther. 2020, 31, 1264–1282. [Google Scholar] [CrossRef] [PubMed]
- Crino, P.B.; Nathanson, K.L.; Henske, E.P. The tuberous sclerosis complex. N. Engl. J. Med. 2006, 355, 1345–1356. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Xue, W.; Chen, S.; Bogorad, R.L.; Benedetti, E.; Grompe, M.; Koteliansky, V.; Sharp, P.A.; Jacks, T.; Anderson, D.G. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 2014, 32, 551–553. [Google Scholar] [CrossRef]
- Farrer, L.A.; Arnos, K.S.; Asher JHJr Baldwin, C.T.; Diehl, S.R.; Friedman, T.B.; Greenberg, J.; Grundfast, K.M.; Hoth, C.; Lalwani, A.K. Locus heterogeneity for Waardenburg syndrome is predictive of clinical subtypes. Am. J. Hum. Genet. 1994, 55, 728. [Google Scholar]
- Oshima, J.; Sidorova, J.M.; Monnat, R.J., Jr. Werner syndrome: Clinical features, pathogenesis and potential therapeutic interventions. Ageing Res. Rev. 2016, 33, 105–114. [Google Scholar] [CrossRef]
- Zuris, J.A.; Thompson, D.B.; Shu, Y.; Guilinger, J.P.; Bessen, J.L.; Hu, J.H.; Maeder, M.L.; Joung, J.K.; Chen, Z.Y.; Liu, D.R. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 2020, 33, 73–80. [Google Scholar] [CrossRef]
- Barrett, T.G.; Bundey, S.E.; Macleod, A.F. Neurodegeneration and diabetes: UK nationwide study of Wolfram (DIDMOAD) syndrome. Lancet 1995, 346, 1458–1463. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Long, J.D.; Campo-Fernandez, B.; de Oliveira, S.; Cooper, A.R.; Romero, Z.; Hoban, M.D.; Joglekar, A.V.; Lill, G.R.; Kaufman, M.L.; et al. Site-specific gene editing of human hematopoietic stem cells for X-linked hyper-IgM syndrome. Cell Rep. 2018, 23, 2606–2616. [Google Scholar] [CrossRef]
- Niu, D.; Wei, H.J.; Lin, L.; George, H.; Wang, T.; Lee, I.H.; Zhao, H.Y.; Wang, Y.; Kan, Y.; Shrock, E.; et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 2017, 357, 1303–1307. [Google Scholar] [CrossRef]
- Waterham, H.R.; Ferdinandusse, S.; Wanders, R.J. Human disorders of peroxisome metabolism and biogenesis. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2016, 1863, 922–933. [Google Scholar] [CrossRef] [PubMed]
- Cystic Fibrosis Foundation. Clinical Trials. Available online: https://www.cff.org/research-clinical-trials/types-cftr-mutations (accessed on 6 March 2023).
- FDA Approved Cell and Gene Therapy Products. Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products (accessed on 6 March 2023).
- EMA; ATMP. Available online: https://www.ema.europa.eu/en/human-regulatory/overview/advanced-therapy-medicinal-products-overview#advanced-therapies-in-the-product-lifecycle-section (accessed on 6 March 2023).
- Alliance for Regenerative Medicine. Available online: https://www.mednous.com/gene-edited-therapies-produce-first-clinical-data (accessed on 6 March 2023).
- Sharma, R.; Anguela, X.M.; Doyon, Y. In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood 2020, 136, 1447–1456. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://clinicaltrials.gov/search?term=gene%20editing&aggFilters=studyType:int (accessed on 6 March 2023).
- Anderson, L. Drugs. Cost of Gene Therapy Drugs. 2022. Available online: https://www.drugs.com/medical-answers/cost-kymriah-3331548/ (accessed on 6 March 2023).
- Nadat, M. Researchers Welcome $3.5-Million Haemophilia Gene Therapy—But Questions Remain. Available online: https://www.nature.com/articles/d41586-022-04327-7 (accessed on 6 March 2023).
- Irvine, A. Paying for CRISPR Cures: The Economics of Genetic Therapies. Available online: https://innovativegenomics.org/news/paying-for-crispr-cures/ (accessed on 6 March 2023).
- Roberts, R.J. How restriction enzymes became the workhorses of molecular biology. Proc. Natl. Acad. Sci. USA 2005, 102, 5905–5908. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Deutscher, M.P. Exoribonuclease superfamilies: Structural analysis and phylogenetic distribution. Nucleic Acids Res. 2001, 29, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Lacks, S. Deoxyribonuclease I in mammalian tissues. Specif. Inhib. Actin. J. Biol. Chem. 1977, 252, 3777–3783. [Google Scholar]
- Raines, R.T. Ribonuclease A. Chem. Rev. 1998, 98, 1045–1066. [Google Scholar]
- Wilson, G.G.; Murray, N.E. Restriction and modification systems. Annu. Rev. Genet. 1991, 25, 585–627. [Google Scholar] [CrossRef]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Stoddard, B.L. Homing endonucleases: From microbial genetic invaders to reagents for targeted DNA modification. Structure 2005, 19, 7–15. [Google Scholar] [CrossRef]
- Tainer, J.A.; Getzoff, E.D.; Alexander, H.; Houghten, R.A.; Olson, A.J.; Lerner, R.A.; Hendrickson, W.A. The reactivity of anti-peptide antibodies is a function of the atomic mobility of sites in a protein. Nature 1984, 312, 127–134. [Google Scholar] [CrossRef]
- NIH. First Restriction Enzyme Described. 1968. Available online: https://www.genome.gov/25520301/online-education-kit-1968-first-restriction-enzymes-described (accessed on 6 March 2023).
- Kim, Y.G.; Cha, J.; Chandrasegaran, S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 1996, 93, 1156–1160. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.H.; Belfort, M.; Wende, W.; Pingoud, A. From Monomeric to Homodimeric Endonucleases and Back: Engineering Novel Specificity of LAGLIDADG Enzymes. J. Mol. Biol. 2006, 361, 744–754. [Google Scholar] [CrossRef] [PubMed]
- Christian, M.; Cermak, T.; Doyle, E.L.; Schmidt, C.; Zhang, F.; Hummel, A.; Bogdanove, A.J.; Voytas, D.F. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010, 186, 757–761. [Google Scholar] [CrossRef] [PubMed]
- Sfeir, A.; Symington, L.S. Microhomology-Mediated End Joining: A Back-up Survival Mechanism or Dedicated Pathway? Trends Biochem. Sci. 2015, 40, 701–714. [Google Scholar] [CrossRef] [PubMed]
- Voytas, D.F.; Gao, C. Precision genome engineering and agriculture: Opportunities and regulatory challenges. PLoS Biol. 2014, 12, e1001877. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.labome.com/method/CRISPR-and-Genomic-Engineering.html (accessed on 6 March 2023).
- Rees, H.A.; Liu, D.R. Base editing: Precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 2018, 19, 770–788. [Google Scholar] [CrossRef]
- Anzalone, A.V.; Randolph, P.B.; Davis, J.R.; Sousa, A.A.; Koblan, L.W.; Levy, J.M.; Chen, P.J.; Wilson, C.; Newby, G.A.; Raguram, A.; et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019, 576, 149–157. [Google Scholar] [CrossRef]
- Kantor, A.; McClements, M.E.; MacLaren, R.E. CRISPR-Cas9 DNA Base-Editing and Prime-Editing. Int. J. Mol. Sci. 2020, 21, 6240. [Google Scholar] [CrossRef]
- Zhao, D.; Li, J.; Li, S.; Xin, X.; Hu, M.; Price, M.A.; Rosser, S.J.; Bi, C.; Zhang, X. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat. Biotechnol. 2021, 39, 35–40. [Google Scholar] [CrossRef]
- Clinical Trials; Base Editors. Available online: https://clinicaltrials.gov/ct2/results?cond=&term=base+editor+&cntry=&state=&city=&dist=&Search=Search (accessed on 6 March 2023).
- CRISPR News Medicine. MegaNuclease Clinical Trials. Available online: https://crisprmedicinenews.com/clinical-trials/meganuclease-clinical-trials/ (accessed on 6 March 2023).
- Gaudelli, N.M.; Komor, A.C.; Rees, H.A.; Packer, M.S.; Badran, A.H.; Bryson, D.I.; Liu, D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016, 533, 420–424. [Google Scholar]
- Jin, S.; Zong, Y.; Gao, Q.; Zhu, Z.; Wang, Y.; Qin, P.; Liang, C.; Wang, D.; Qiu, J.L.; Zhang, F.; et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 2019, 364, 292–295. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lu, Z.; Yang, G.; Huang, S.; Li, G.; Feng, S.; Liu, Y.; Li, J.; Yu, W.; Zhang, Y.; et al. Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing. Nat. Commun. 2018, 9, 2338. [Google Scholar] [CrossRef] [PubMed]
- Zuo, E.; Sun, Y.; Wei, W.; Yuan, T.; Ying, W.; Sun, H.; Yuan, L.; Steinmetz, L.M.; Li, Y.; Yang, H. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 2019, 364, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.S.; Petersen-Mahrt, S.K.; Neuberger, M.S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol. Cell 2002, 10, 1247–1253. [Google Scholar] [CrossRef]
- Boch, J.; Scholze, H.; Schornack, S.; Landgraf, A.; Hahn, S.; Kay, S.; Lahaye, T.; Nickstadt, A.; Bonas, U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 2009, 326, 1509–1512. [Google Scholar] [CrossRef]
- Mok, B.Y.; de Moraes, M.H.; Zeng, J.; Bosch, D.E.; Kotrys, A.V.; Raguram, A.; Hsu, F.; Radey, M.C.; Peterson, S.B.; Mootha, V.K.; et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 2020, 583, 631–637. [Google Scholar] [CrossRef]
- Gammage, P.A.; Rorbach, J.; Vincent, A.I.; Rebar, E.J.; Minczuk, M. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol. Med. 2014, 6, 458–466. [Google Scholar] [CrossRef]
- Kar, B.; Castillo, S.R.; Sabharwal, A.; Clark, K.J.; Ekker, S.C. Mitochondrial Base Editing: Recent Advances towards Therapeutic Opportunities. Int. J. Mol. Sci. 2023, 24, 5798. [Google Scholar] [CrossRef]
- Bacman, S.R.; Williams, S.L.; Pinto, M.; Peralta, S.; Moraes, C.T. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat. Med. 2013, 19, 1111–1113. [Google Scholar] [CrossRef]
- Reddy, P.; Ocampo, A.; Suzuki, K.; Luo, J.; Bacman, S.R.; Williams, S.L.; Sugawara, A.; Okamura, D.; Tsunekawa, Y.; Wu, J.; et al. Selective elimination of mitochondrial mutations in the germline by genome editing. Cell 2015, 161, 459–469. [Google Scholar] [CrossRef]
- San Filippo, J.; Sung, P.; Klein, H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 2008, 77, 229–257. [Google Scholar] [CrossRef] [PubMed]
- Szostak, J.W.; Orr-Weaver, T.L.; Rothstein, R.J.; Stahl, F.W. The double-strand-break repair model for recombination. Cell 1983, 33, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Kowalczykowski, S.C. Initiation of genetic recombination and recombination-dependent replication. Trends Biochem. Sci. 2000, 25, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Hunter, N. Meiotic Recombination: The Essence of Heredity. Cold Spring Harb. Perspect. Biol. 2015, 7, a016618. [Google Scholar] [CrossRef]
- Moynahan, M.E.; Chiu, J.W.; Koller, B.H.; Jasin, M. Brca1 controls homology-directed DNA repair. Mol. Cell 1999, 4, 511–518. [Google Scholar] [CrossRef]
- Didelot, X.; Bowden, R.; Wilson, D.J.; Peto, T.E.A.; Crook, D.W. Transforming clinical microbiology with bacterial genome sequencing. Nat. Rev. Genet. 2012, 13, 601–612. [Google Scholar] [CrossRef]
- Hall, B.; Limaye, A.; Kulkarni, A.B. Overview: Generation of gene knockout mice. Curr. Protoc. Cell Biol. 2009, 44, 19.12.1–19.12.17. [Google Scholar] [CrossRef]
- Hutvagner, G.; Simard, M. Argonaute proteins: Key players in RNA silencing. Nat. Rev. Mol. Cell Biol. 2008, 9, 22–32. [Google Scholar] [CrossRef]
- Beck, B.J.; Freudenreich, O.; Worth, J.L. Patients with Human Immunodeficiency Virus Infection and Acquired Immunodeficiency Syndrome. In Massachusetts General Hospital Handbook of General Hospital Psychiatry; Elsevier: Amsterdam, The Netherlands, 2010; pp. 353–370. [Google Scholar]
- Masuda, T. Non-Enzymatic Functions of Retroviral Integrase: The Next Target for Novel Anti-HIV Drug DLi, yevelopment. Front. Microbiol. 2011, 2, 210. [Google Scholar] [CrossRef]
- Doudna, J.A.; Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346, 1258096. [Google Scholar] [CrossRef]
- Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef] [PubMed]
- Esrick, E.B.; Lehmann, L.E.; Biffi, A.; Achebe, M.; Brendel, C.; Ciuculescu, M.F.; Daley, H.; MacKinnon, B.; Morris, E.; Federico, A.; et al. Post-Transcriptional Genetic Silencing of BCL11A to Treat Sickle Cell Disease. N. Engl. J. Med. 2021, 384, 205–215. [Google Scholar] [CrossRef] [PubMed]
- FDA. FDA Approves CAR-T Cell Therapy to Treat Adults with Certain Types of Large B-Cell Lymphoma; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2017.
- Li, H.; Beckman, K.A.; Veronica, P.; Bo, H.; Jonathan, S.W.; Manuel, D.L. Design and specificity of long ssDNA donors for CRISPR-based knock-in. BioRxiv 2019. BioRxiv:1508.04409. [Google Scholar]
- Wianny, F.; Zernicka-Goetz, M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat. Cell Biol. 2000, 2, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Cyranoski, D. CRISPR gene-editing tested in a person for the first time. Nat. News 2016, 539, 479. [Google Scholar] [CrossRef] [PubMed]
- Cancellieri, S.; Zeng, J.; Lin, L.Y.; Tognon, M.; Nguyen, M.A.; Lin, J.; Bombieri, N.; Maitland, S.A.; Ciuculescu, M.F.; Katta, V.; et al. Human genetic diversity alters off-target outcomes of therapeutic gene editing. Nat. Genet. 2023, 55, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Knott, G.J.; Doudna, J.A. CRISPR-Cas guides the future of genetic engineering. Science 2018, 361, 866–869. [Google Scholar] [CrossRef]
- Blasimme, A. AMA Journal of Ethics. Why Include the Public in Gene Editing Governance Deliberation? 2019. Available online: https://journalofethics.ama-assn.org/article/why-include-public-genome-editing-governance-deliberation/2019-12 (accessed on 6 March 2023).
- Available online: https://cen.acs.org/policy/First-gene-edited-babies-allegedly/96/i48 (accessed on 4 July 2023).
- Scheper, A. AMA Policies and Code of Medical Ethics’ Opinions Related to Human Genome Editing. AMA J. Ethics 2019, 21, E1056–E1058. [Google Scholar]
- Hirakawa, M.P.; Krishnakumar, R.; Timlin, J.A.; Carney, J.P.; Butler, K.S. Gene editing and CRISPR in the clinic: Current and future perspectives. Biosci. Rep. 2020, 40, BSR20200127. [Google Scholar] [CrossRef]
- European Commission. European Group on Ethics in Science and New Technologies. Available online: https://research-and-innovation.ec.europa.eu/strategy/support-policy-making/scientific-support-eu-policies/european-group-ethics_en (accessed on 6 March 2023).
- Council of Europe. Ethics and Human Rights Must Guide Any Use of GE Technologies in Human Beings. Available online: https://www.coe.int/en/web/bioethics/-/ethics-and-human-rights-must-guide-any-use-of-genome-editing-technologies-in-human-beings (accessed on 6 March 2023).
- Adashi, E.Y.; Cohen, I.G. Selective Regrets: The “Dickey Amendments” 20 Years Later. In JAMA Forum Archive; American Medical Association: Chicago, IL, USA, 2015; p. 5. [Google Scholar]
- NExTRAC NIH. Available online: https://osp.od.nih.gov/policies/novel-and-exceptional-technology-and-research-advisory-committee-nextrac/ (accessed on 6 March 2023).
- NIH Guideline. Final Action Under the NIH Guidelines for Research Involving Recombinant or Synthetic Nucleic Acid Molecules (NIH Guidelines). Available online: https://www.federalregister.gov/documents/2019/04/26/2019-08462/final-action-under-the-nih-guidelines-for-research-involving-recombinant-or-synthetic-nucleic-acid (accessed on 6 March 2023).
- Wang, D.C.; Wang, X. Off-target genome editing: A new discipline of gene science and a new class of medicine. Cell Biol. Toxicol. 2019, 35, 179–183. [Google Scholar] [CrossRef]
- Hendel, A.; Fine, E.J.; Bao, G.; Porteus, M.H. Quantifying on- and off-target genome editing. Trends Biotechnol. 2015, 33, 132–140. [Google Scholar] [CrossRef]
- Hu, W.; Kaminski, R.; Yang, F.; Zhang, Y.; Cosentino, L.; Li, F.; Luo, B.; Alvarez-Carbonell, D.; Garcia-Mesa, Y.; Karn, J.; et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc. Natl. Acad. Sci. USA 2014, 111, 11461–11466. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-H.; Tee, L.Y.; Wang, X.-G.; Huang, Q.-S.; Yang, S.-H. Off-target Effects in CRISPR/Cas9-mediated Genome Engineering. Mol. Ther.-Nucleic Acids 2015, 4, e264. [Google Scholar] [CrossRef]
- Kosicki, M.; Tomberg, K.; Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 2018, 36, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Kleinstiver, B.P.; Pattanayak, V.; Prew, M.S.; Tsai, S.Q.; Nguyen, N.T.; Zheng, Z.; Joung, J.K. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 2016, 529, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Tsuchida, C.A.; Brandes, N.; Bueno, R.; Trinidad, M.; Mazumder, T.; Yu, B.; Hwang, B.; Chang, C.; Liu, J.; Sun, Y.; et al. Mitigation of chromosome loss in clinical CRISPR-Cas9-engineered T cells. bioRxiv 2023. [Google Scholar] [CrossRef]
- Charlesworth, C.T.; Deshpande, P.S.; Dever, D.P.; Camarena, J.; Lemgart, V.T.; Cromer, M.K.; Vakulskas, C.A.; Collingwood, M.A.; Zhang, L.; Bode, N.M.; et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 2019, 25, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Wagner, D.L.; Amini, L.; Wendering, D.J.; Burkhardt, L.M.; Akyüz, L.; Reinke, P.; Volk, H.D.; Schmueck-Henneresse, M. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat. Med. 2019, 25, 242–248. [Google Scholar] [CrossRef]
- Yin, H.; Kauffman, K.J.; Anderson, D.G. Delivery technologies for genome editing. Nat. Rev. Drug Discov. 2017, 16, 387–399. [Google Scholar] [CrossRef]
- Wang, H.X.; Li, M.; Lee, C.M.; Chakraborty, S.; Kim, H.W.; Bao, G.; Leong, K.W. CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery. Chem. Rev. 2017, 117, 9874–9906. [Google Scholar] [CrossRef]
- Kojima, R.; Bojar, D.; Rizzi, G.; Hamri, G.C.; El-Baba, M.D.; Saxena, P.; Ausländer, S.; Tan, K.R.; Fussenegger, M. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat. Commun. 2018, 9, 1305. [Google Scholar] [CrossRef]
- Lee, K.; Conboy, M.; Park, H.M.; Jiang, F.; Kim, H.J.; Dewitt, M.A.; Mackley, V.A.; Chang, K.; Rao, A.; Skinner, C.; et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 2017, 1, 889–901. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.; Kim, J.S. Therapeutic opportunities and challenges of CRISPR-Cas9 gene editing: A review. Yonsei Med. J. 2020, 61, 357–368. [Google Scholar]
- Available online: https://www.genengnews.com/news/editas-medicine-pauses-trial-of-crispr-cas9-treatment-for-blindness-disorder/#:~:text=EDIT%2D101%20is%20designed%20to,machinery%20directly%20to%20photoreceptor%20cells (accessed on 4 July 2023).
- Available online: https://www.reuters.com/business/healthcare-pharmaceuticals/what-happens-when-2-million-gene-therapy-is-not-enough-2023-08-12/ (accessed on 4 July 2023).
- Nuffield Council on Bioethics. Genome editing: An ethical review. Nuffield Counc. Bioeth. 2016, 70, 289–305. [Google Scholar]
- Cyranoski, D.; Ledford, H. Genome-edited baby claim provokes international outcry. Nature 2018, 563, 607–608. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.; Xu, Y.; Zhang, X.; Ding, C.; Huang, R.; Zhang, Z.; Lv, J.; Xie, X.; Chen, Y.; Li, Y.; et al. CRISPR-Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 2019, 10, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Parens, E.; Johnston, J. Does it make sense to speak of “genetic enhancements?”. Hastings Cent. Rep. 2007, 37, S41–S49. [Google Scholar]
- World Health Organization. Advisory Committee on Developing Global Standards for Governance and Oversight of Human Genome Editing; World Health Organization: Geneva, Switzerland, 2019.
- Caulfield, T.; Chandrasekharan, S.; Joly, Y.; Cook-Deegan, R. Harm, hype and evidence: ELSI research and policy guidance. Genome Med. 2013, 5, 21. [Google Scholar] [CrossRef]
- Merker, J.D.; Devereaux, K.; Iafrate, A.J. Proficiency Testing of Standardized Samples Shows Very High Interlaboratory Agreement for Clinical Next-Generation Sequencing-Based Oncology Assays. Arch. Pathol. Lab. Med. 2019, 143, 463–471. [Google Scholar] [CrossRef]
- Schwarze, K.; Buchanan, J.; Taylor, J.C.; Wordsworth, S. Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet. Med. 2018, 20, 1122–1130. [Google Scholar] [CrossRef]
- Phillips, K.A.; Trosman, J.R.; Kelley, R.K.; Pletcher, M.J.; Douglas, M.P.; Weldon, C.B. Genomic sequencing: Assessing the health care system, policy, and big-data implications. Health Aff. 2017, 36, 1278–1285. [Google Scholar] [CrossRef]
- DiEuliis, D.; Giordano, J. Gene editing using CRISPR/Cas9: Implications for dual-use and biosecurity. Protein Cell 2017, 8, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.C.; Halper, S.M.; Vezeau, G.E.; Cetnar, D.P.; Hossain, A.; Clauer, P.R.; Salis, H.M. Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgRNA arrays. Nat. Biotechnol. 2019, 37, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
- Wirth, T.; Parker, N.; Ylä-Herttuala, S. History of gene therapy. Gene 2013, 525, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Baylis, F.; McLeod, M. First-in-human phase 1 CRISPR gene editing cancer trials: Are we ready? Curr. Gene Ther. 2017, 17, 309–319. [Google Scholar] [CrossRef]
- Borry, P.; Bentzen, H.B.; Budin-Ljøsne, I.; Cornel, M.C.; Howard, H.C.; Feeney, O.; Jackson, L.; Mascalzoni, D.; Mendes, Á.; Peterlin, B.; et al. The challenges of the expanded availability of genomic information: An agenda-setting paper. J. Community Genet. 2020, 11, 133–146. [Google Scholar] [CrossRef]
- Khatib, O.N. Noncommunicable diseases: Risk factors and regional strategies for prevention and care. East. Mediterr. Health J. 2004, 10, 778–788. [Google Scholar] [CrossRef]
- Cohen, E.R.; Ochalek, J.; Wouters, O.J.; Birger, M.; Chakraborty, S.; Morton, A. Making fair choices on the path to universal health coverage: Applying principles to difficult cases. Health Syst. Reform 2018, 4, 16–23. [Google Scholar]
- Mostaghim, S.R.; Gagne, J.J.; Kesselheim, A.S. Safety related label changes for new drugs after approval in the US through expedited regulatory pathways: Retrospective cohort study. BMJ 2017, 358, j3837. [Google Scholar] [CrossRef]
- Glassman, A.; Giedion, U.; Smith, P.C. What’s in, What’s Out: Designing Benefits for Universal Health Coverage; The World Bank: Washington, DC, USA, 2016. [Google Scholar]
- Claussnitzer, M.; Cho, J.H.; Collins, R.; Cox, N.J.; Dermitzakis, E.T.; Hurles, M.E.; Kathiresan, S.; Kenny, E.E.; Lindgren, C.M.; MacArthur, D.G.; et al. A brief history of human disease genetics. Nature 2020, 577, 179–189. [Google Scholar] [CrossRef]
- Global Gene Editing Market Report. Data Bridge Market Research 2021. Available online: https://www.databridgemarketresearch.com/reports/global-genome-editing-market (accessed on 25 August 2023).
- Araki, M.; Ishii, T. International regulatory landscape and integration of corrective genome editing into in vitro fertilization. Reprod. Biol. Endocrinol. 2014, 12, 108. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Chemistry, Manufacturing, and Control (CMC) Information for Human Gene Therapy Investigational New Drug Applications (INDs); FDA: Delaware, PA, USA, 2020.
- European Medicines Agency. Guideline on the Quality, Non-Clinical and Clinical Aspects of Gene Therapy Medicinal Products; EMA: Amsterdam, The Netherlands, 2018.
- Zhang, X.; Zhang, Y.; Qiu, Z.Q.; Tian, X.; Wang, H.; Zhang, X.; Yang, H.; Chen, Y. Ethical norms and the international governance of genetic databases and biobanks: Findings from an international study. Kennedy Inst. Ethics J. 2016, 18, 101–124. [Google Scholar]
- Gómez-Tatay, L.; Hernández-Andreu, J.M.; Aznar, J. Human germline editing: The need for ethical guidelines. Linacre Q. 2017, 84, 275–282. [Google Scholar]
- European Commission. Directive 2001/18/EC on the Deliberate Release into the Environment of GMOs; Directive 2009/41/EC on the Contained Use of Genetically Modified Micro-Organisms. J. Eur. Environ. Plan. Law 2006, 3, 3–12. [Google Scholar]
- FDA. Long Term Follow-Up After Administration of Human Gene Therapy Products; Guidance for Industry, January 2020. Available online: https://www.fda.gov/media/113768/download (accessed on 6 March 2023).
- European Council. Advanced Therapies. Available online: https://ec.europa.eu/health/human-use/advanced-therapies_en#1 (accessed on 6 March 2023).
- Mourby, M.; Morrison, M. Gene therapy regulation: Could in-body editing fall through the net? Eur. J. Hum. Genet. 2020, 28, 979–981. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A. Rationale and strategies for the development of safe and effective optimized AAV vectors for human gene therapy. Mol. Ther. Nucleic. Acids. 2023, 32, 949–959. [Google Scholar] [CrossRef]
- Gao, G.; Vandenberghe, L.H.; Wilson, J.M. New recombinant serotypes of AAV vectors. Curr. Gene Ther. 2005, 5, 285–297. [Google Scholar] [CrossRef] [PubMed]
- Mays, L.E.; Wilson, J.M. The complex and evolving story of T cell activation to AAV vector-encoded transgene products. Mol. Ther. 2011, 19, 16–27. [Google Scholar] [CrossRef]
- Montini, E.; Cesana, D.; Schmidt, M.; Sanvito, F.; Bartholomae, C.C.; Ranzani, M.; Benedicenti, F.; Sergi, L.S.; Ambrosi, A.; Ponzoni, M.; et al. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J. Clin. Investig. 2009, 119, 964. [Google Scholar] [CrossRef]
- Jayaraman, M.; Ansell, S.M.; Mui, B.L.; Tam, Y.K.; Chen, J.; Du, X.; Butler, D.; Eltepu, L.; Matsuda, S.; Narayanannair, J.K.; et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. 2012, 51, 8529–8533. [Google Scholar] [CrossRef]
- Cheng, Q.; Wei, T.; Farbiak, L.; Johnson, L.T.; Dilliard, S.A.; Siegwart, D.J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 2020, 15, 313–320. [Google Scholar] [CrossRef]
- Sato, Y.; Hashiba, K.; Sasaki, K.; Maeki, M.; Tokeshi, M.; Harashima, H.; Watanabe, T. Understanding structure–activity relationships of pH-sensitive cationic lipids facilitates the rational identification of promising lipid nanoparticles for delivering siRNAs in vivo. J. Control. Release 2020, 317, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Alexis, F.; Pridgen, E.; Molnar, L.K.; Farokhzad, O.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 2008, 5, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Neumann, E.; Schaefer-Ridder, M.; Wang, Y.; Hofschneider, P.H. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1982, 1, 841–845. [Google Scholar] [CrossRef] [PubMed]
- Weaver, J.C.; Chizmadzhev, Y.A. Theory of electroporation: A review. Bioelectrochem. Bioenerg. 1996, 41, 135–160. [Google Scholar] [CrossRef]
- Zhang, G.; Budker, V.; Wolff, J.A. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum. Gene Ther. 1999, 10, 1735–1737. [Google Scholar] [CrossRef]
- El Andaloussi, S.; Lakhal, S.; Mäger, I.; Wood, M.J. Exosomes for targeted siRNA delivery across biological barriers. Adv. Drug Deliv. Rev. 2013, 65, 391–397. [Google Scholar] [CrossRef]
- Kamerkar, S.; LeBleu, V.S.; Sugimoto, H.; Yang, S.; Ruivo, C.F.; Melo, S.A.; Lee, J.J.; Kalluri, R. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 2017, 546, 498–503. [Google Scholar] [CrossRef]
- Smith, T.T.; Stephan, S.B.; Moffett, H.F.; McKnight, L.E.; Ji, W.; Reiman, D.; Bonagofski, E.; Wohlfahrt, M.E.; Pillai, S.P.S.; Stephan, M.T. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 2017, 12, 813–820. [Google Scholar] [CrossRef]
- Deisseroth, K. Optogenetics. Nat. Methods 2011, 8, 26–29. [Google Scholar] [CrossRef]
- Plank, C.; Anton, M.; Rudolph, C.; Rosenecker, J.; Krötz, F. Enhancing and targeting nucleic acid delivery by magnetic force. Expert Opin. Biol. Ther. 2003, 3, 745–758. [Google Scholar] [CrossRef]
- Yin, H.; Kanasty, R.L.; Eltoukhy, A.A.; Vegas, A.J.; Dorkin, J.R.; Anderson, D.G. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 2014, 15, 541–555. [Google Scholar] [CrossRef] [PubMed]
- Pouponneau, P.; Leroux, J.C.; Martel, S. Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization. Biomaterials 2011, 32, 6690–6696. [Google Scholar] [CrossRef] [PubMed]
- Muthana, M.; Kennerley, A.J.; Hughes, R.; Fagnano, E.; Richardson, J.; Paul, M.; Murdoch, C.; Wright, F.; Payne, C.; Lythgoe, M.F.; et al. Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting. Nat. Commun. 2015, 6, 8009. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Chen, Y.E.; Chen, J.; Ma, P.X. Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects. Nat. Commun. 2017, 7, 10376. [Google Scholar] [CrossRef]
- Betz, O.B.; Betz, V.M.; Nazarian, A.; Egermann, M.; Gerstenfeld, L.C.; Einhorn, T.A. Delayed administration of adenoviral BMP-2 vector improves the formation of bone in osseous defects. Gene Ther. 2006, 13, 922–931. [Google Scholar] [CrossRef]
- DeWitt, M.A.; Corn, J.E.; Carroll, D. Genome editing via delivery of Cas9 ribonucleoprotein. Methods 2017, 121, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.I.; Ramli, M.N.; Woo, C.W.; Wang, Y.; Zhao, T.; Zhang, X. A chemical-inducible CRISPR–Cas9 system for rapid control of genome editing. Nat. Chem. Biol. 2016, 12, 980–987. [Google Scholar] [CrossRef]
- Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discov. 2017, 16, 181–202. [Google Scholar] [CrossRef]
- Sun, H.; Zu, Y. A Highlight of Recent Advances in Aptamer Technology and Its Application. Molecules 2015, 20, 11959–11980. [Google Scholar] [CrossRef]
- Gaj, T.; Gersbach, C.A.; Barbas, C.F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013, 31, 397–405. [Google Scholar] [CrossRef]
- Guidotti, G.; Brambilla, L.; Rossi, D. Cell-Penetrating Peptides: From Basic Research to Clinics. Trends Pharmacol. Sci. 2017, 38, 406–424. [Google Scholar] [CrossRef] [PubMed]
- Madani, F.; Lindberg, S.; Langel, Ü.; Futaki, S.; Gräslund, A. Mechanisms of cellular uptake of cell-penetrating peptides. J. Biophys. 2011, 2011, 414729. [Google Scholar] [CrossRef] [PubMed]
- Mehier-Humbert, S.; Guy, R.H. Physical methods for gene transfer: Improving the kinetics of gene delivery into cells. Adv. Drug Deliv. Rev. 2005, 57, 733–753. [Google Scholar] [CrossRef] [PubMed]
- Nyankima, A.G.; Rojas, J.D.; Cianciolo, L.; Johnson, K.A.; Dayton, P.A. In Vivo Sonoporation of Tumors Using Pulsed Acoustic Gas Embolotherapy: Calibration in a Murine Model. Ultrasound Med. Biol. 2017, 43, 2370–2381. [Google Scholar]
- Polstein, L.R.; Gersbach, C.A. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat. Chem. Biol. 2015, 11, 198–200. [Google Scholar] [CrossRef]
- Hegemann, P.; Möglich, A. Channelrhodopsin engineering and exploration of new optogenetic tools. Nat. Methods 2011, 8, 39–42. [Google Scholar] [CrossRef]
- Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 16071. [Google Scholar] [CrossRef]
- Plummer, E.M.; Manchester, M. Viral nanoparticles and virus-like particles: Platforms for contemporary vaccine design. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2011, 3, 174–196. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, E.; Kim, J.S. Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res. 2010, 20, 81–89. [Google Scholar] [CrossRef]
- Hacein-Bey-Abina, S.; Garrigue, A.; Wang, G.P.; Soulier, J.; Lim, A.; Morillon, E. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Investig. 2008, 118, 3132–3142. [Google Scholar] [CrossRef]
- Urnov, F.D.; Rebar, E.J.; Holmes, M.C.; Zhang, H.S.; Gregory, P.D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010, 11, 636–646. [Google Scholar] [CrossRef]
- Lener, T.; Gimona, M.; Aigner, L.; Börger, V.; Buzas, E.; Camussi, G. Applying extracellular vesicles based therapeutics in clinical trials—An ISEV position paper. J. Extracell. Vesicles 2015, 4, 30087. [Google Scholar] [CrossRef] [PubMed]
- Hernot, S.; Klibanov, A.L. Microbubbles in ultrasound-triggered drug and gene delivery. Adv. Drug Deliv. Rev. 2008, 60, 1153–1166. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huang, L. Lipid–Polymer Hybrid Nanoparticles for Controlled Delivery of Hydrophilic and Hydrophobic. Anticancer Drugs Cancer Nanotechnol. 2018, 9, 2. [Google Scholar]
- Mandal, B.; Bhattacharjee, H.; Mittal, N. Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 474–491. [Google Scholar] [CrossRef] [PubMed]
- Trapani, I.; Puppo, A.; Auricchio, A. Vector platforms for gene therapy of inherited retinopathies. Prog. Retin. Eye Res. 2014, 43, 108–128. [Google Scholar] [CrossRef]
- Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779. [Google Scholar] [CrossRef]
- Pi, F.; Binzel, D.W.; Lee, T.J.; Li, Z.; Sun, M.; Rychahou, P.; Li, H.; Haque, F.; Wang, S.; Croce, C.M. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat. Nanotechnol. 2018, 13, 82–89. [Google Scholar] [CrossRef]
- Dhanikula, R.S.; Argaw, A. Methotrexate-loaded polymeric nanoparticles: Synthesis, characterization, and in vitro and in vivo antitumoral activity. Mol. Pharm. 2008, 5, 718–729. [Google Scholar]
- Chow, E.K.; Zhang, X.Q.; Chen, M.; Lam, R.; Robinson, E.; Huang, H.; Schaffer, D.; Osawa, E.; Goga, A.; Ho, D. Nanodiamond Therapeutic Delivery Agents Mediate Enhanced Chemoresistant Tumor Treatment. Sci. Transl. Med. 2011, 3, 73ra21. [Google Scholar] [CrossRef]
- Liu, B.Y.; He, X.Y.; Zhuo, R.X.; Cheng, S.X. Reversal of tumor malignization and modulation of cell behaviors through GE mediated by a multi-functional nanovector. Nanoscale 2018, 10, 21209–21218. [Google Scholar] [CrossRef] [PubMed]
- Saha, K.; Sontheimer, E.J.; Brooks, P.J.; Dwinell, M.R.; Gersbach, C.A.; Liu, D.R.; Murray, S.A.; Tsai, S.Q.; Wilson, R.C.; Anderson, D.G.; et al. The NIH Somatic Cell GE program. Nature 2021, 592, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Kotterman, M.A.; Schaffer, D.V. Engineering adeno-associated viruses for clinical gene therapy. Nat. Rev. Genet. 2014, 15, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Mendell, J.R.; Sahenk, Z.; Malik, V.; Gomez, A.M.; Flanigan, K.M.; Lowes, L.P.; Alfano, L.N.; Berry, K.; Meadows, E.; Lewis, S.; et al. A phase 1/2a follistatin gene therapy trial for Becker muscular dystrophy. Mol. Ther. 2015, 23, 192–201. [Google Scholar] [CrossRef]
- Yin, H.; Song, C.Q.; Dorkin, J.R.; Zhu, L.J.; Li, Y.; Wu, Q.; Park, A.; Yang, J.; Suresh, S.; Bizhanova, A.; et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 2016, 34, 328–333. [Google Scholar] [CrossRef]
- An, M.C.; Zhang, N.; Scott, G.; Montoro, D.; Wittkop, T.; Mooney, S.; Melov, S.; Ellerby, L.M. Genetic correction of Huntington’s disease phenotypes in induced pluripotent stem cells. Cell Stem Cell 2012, 11, 253–263. [Google Scholar] [CrossRef]
- Deuse, T.; Hu, X.; Gravina, A.; Wang, D.; Tediashvili, G.; De, C.; Thayer, W.O.; Wahl, A.; Garcia, J.V.; Reichenspurner, H.; et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 2019, 37, 252–258. [Google Scholar] [CrossRef]
- Bijlani, S.; Pang, K.M.; Sivanandam, V.; Singh, A.; Chatterjee, S. The Role of Recombinant AAV in Precise Genome Editing. Front. Genome Ed. 2022, 3, 799722. [Google Scholar] [CrossRef]
- Wu, N.; Watkins, S.C.; Schaffer, P.A.; DeLuca, N.A. Prolonged gene delivery to mouse muscle is achieved by a herpes simplex virus type 1 mutant with defects in immediate-early genes encoding ICP4, ICP27, and ICP22. J. Virol. 1996, 70, 6357–6360. [Google Scholar] [CrossRef]
- Arvin, A.; Campadelli-Fiume, G.; Mocarski, E. (Eds.) Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis Cambridge; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Krisky, D.M.; Wolfe, D.; Goins, W.F.; Marconi, P.C.; Ramakrishnan, R.; Mata, M.; Rouse, R.; Fink, D.; Glorioso, J. Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons. Gene Ther. 1998, 5, 1593–1603. [Google Scholar] [CrossRef]
- Wolfe, D.; Mata, M.; Fink, D.J. A human trial of HSV-mediated gene transfer for the treatment of chronic pain. Gene Ther. 2012, 19, 873–875. [Google Scholar] [CrossRef] [PubMed]
- Saeki, Y.; Breakefield, X.O.; Chiocca, E.A. Improved HSV-1 amplicon packaging system using ICP27-deleted, oversized HSV-1 BAC DNA. Hum. Gene Ther. 2001, 12, 841–854. [Google Scholar]
- Mingozzi, F.; High, K.A. Immune responses to AAV vectors: Overcoming barriers to successful gene therapy. Blood 2011, 122, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.R.; March, J.B. Viral vectors for vaccination. Vaccines Vet. Appl. 2006, 26, 22–37. [Google Scholar]
- Naldini, L. Gene therapy returns to centre stage. Nature 2015, 526, 351–360. [Google Scholar] [CrossRef]
- Yang, W. Nucleases: Diversity of structure, function and mechanism. Q. Rev. Biophys. 2011, 44, 1–93.7. [Google Scholar] [CrossRef]
- Niazi, S.K. Making COVID-19 mRNA vaccines accessible: Challenges resolved. Expert Rev. Vaccines 2022, 21, 1163–1176. [Google Scholar] [CrossRef]
- Liu, M.-S.; Gong, S.; Yu, H.-H.; Jung, K.; Johnson, K.A.; Taylor, D.W. Engineered CRISPR/Cas9 enzymes improve discrimination by slowing DNA cleavage to allow release of off-target DNA. Nat. Commun. 2020, 11, 3576. [Google Scholar] [CrossRef]
- Pesqué, D.; Pujol, R.M.; Marcantonio, O.; Vidal-Navarro, A.; Ramada, J.M.; Arderiu-Formentí, A.; Albalat-Torres, A.; Serra, C.; Giménez-Arnau, A.M. Study of Excipients in Delayed Skin Reactions to mRNA Vaccines: Positive Delayed Intradermal Reactions to Polyethylene Glycol Provide New Insights for COVID-19 Arm. Vaccines 2022, 10, 2048. [Google Scholar] [CrossRef]
- Mirjalili Mohanna, S.Z.; Djaksigulova, D.; Hill, A.M.; Wagner, P.K.; Simpson, E.M.; Leavitt, B.R. LNP-mediated delivery of CRISPR RNP for wide-spread in vivo GE in mouse cornea. J. Control. Release 2022, 350, 401–413. [Google Scholar] [CrossRef]
- Mitchell, M.J. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef] [PubMed]
- Jouannet, P. CRISPR-Cas9, germinal cells and human embryo. Biol. Aujourd’hui 2017, 211, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Finn, J.D.; Smith, A.R.; Patel, M.C.; Shaw, L.; Youniss, M.R.; van Heteren, J.; Dirstine, T.; Ciullo, C.; Lescarbeau, R.; Seitzer, J.; et al. A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing. Cell Rep. 2018, 22, 2227–2235. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Ji, W.; Hall, J.M.; Hu, Q.; Wang, C.; Beisel, C.L.; Gu, Z. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew. Chem. Int. Ed. 2015, 54, 12029–12033. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Ouyang, K.; Xu, X.; Xu, L.; Wen, C.; Zhou, X.; Qin, Z.; Xu, Z.; Sun, W.; Liang, Y. Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing. Front Genet. 2021, 12, 673286. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, H.; Shivalila, C.S.; Dawlaty, M.M.; Cheng, A.W.; Zhang, F.; Jaenisch, R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013, 153, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Li, W.; Mao, L.; Wang, M. Nanoscale metal-organic frameworks for the intracellular delivery of CRISPR/Cas9 GE machinery. Biomater. Sci. 2021, 9, 7024–7033. [Google Scholar] [CrossRef]
- Jaganathan, D.; Ramasamy, K.; Sellamuthu, G.; Jayabalan, S.; Venkataraman, G. CRISPR for Crop Improvement: An Update Review. Front. Plant Sci. 2018, 9, 985. [Google Scholar] [CrossRef]
- Chen, K.; Wang, Y.; Zhang, R.; Zhang, H.; Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 2019, 70, 667–697. [Google Scholar] [CrossRef]
- Zhang, Y.; Massel, K.; Godwin, I.D.; Gao, C. Applications and potential of genome editing in crop improvement. Genome Biol. 2018, 19, 210. [Google Scholar] [CrossRef]
- Nielsen, A.A.; Voigt, C.A. Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks. Mol. Syst. Biol. 2014, 10, 763. [Google Scholar] [CrossRef] [PubMed]
- Green, A.A.; Silver, P.A.; Collins, J.J.; Yin, P. Toehold switches: De-novo-designed regulators of gene expression. Cell 2014, 159, 925–939. [Google Scholar] [CrossRef] [PubMed]
- Lennen, R.M.; Pfleger, B.F. Engineering Escherichia coli to synthesize free fatty acids. Trends Biotechnol. 2012, 30, 659–667. [Google Scholar] [CrossRef]
- Liu, Z.; Alper, H.S. Draft genome sequence of the oleaginous yeast Yarrowia lipolytica PO1f, a commonly used metabolic engineering host. Genome Announc. 2014, 2. [Google Scholar] [CrossRef] [PubMed]
- Mans, R.; van Rossum, H.M.; Wijsman, M.; Backx, A.; Kuijpers, N.G.; van den Broek, M.; Daran-Lapujade, P.; Pronk, J.T.; van Maris, A.J.; Daran, J.M. CRISPR/Cas9: A molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res. 2018, 18, foy012. [Google Scholar] [CrossRef] [PubMed]
- Peralta-Yahya, P.P.; Zhang, F.; Del Cardayre, S.B.; Keasling, J.D. Microbial engineering for the production of advanced biofuels. Nature 2012, 488, 320–328. [Google Scholar] [CrossRef]
- Guerrero, R.F.; Garcia-Garcia, G.; Delgado-Ramos, L.; Mellado, M. Gene editing for the efficient generation of biopolymers in Yarrowia lipolytica. J. Fungi 2019, 5, 69. [Google Scholar]
- Fernandez-Rodriguez, J.; Moser, F.; Song, M.; Voigt, C.A. Engineering RGB color vision into Escherichia coli. Nat. Chem. Biol. 2017, 13, 706–708. [Google Scholar] [CrossRef]
- Esvelt, K.M.; Gemmell, N.J. Conservation demands safe gene drive. PLoS Biol. 2017, 15, e2003850. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, X.; Chai, Y.; Zhu, Z.; Yi, P.; Feng, G.; Li, W.; Ou, G. Conditional knockouts generated by engineered CRISPR-Cas9 endonuclease reveal the roles of coronin in C. elegans neural development. Dev. Cell 2014, 30, 625–636. [Google Scholar] [CrossRef]
- Gootenberg, J.S.; Abudayyeh, O.O.; Lee, J.W.; Essletzbichler, P.; Dy, A.J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N.M.; Freije, C.A.; et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017, 356, 438–442. [Google Scholar] [CrossRef]
- Jiang, X.; Ramsay, J.A.; Ramsay, B.A. Acetone extraction of mcl-PHA from Pseudomonas putida KT2440. J. Microbiol. Methods 2016, 8, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Kyrou, K.; Hammond, A.M.; Galizi, R.; Kranjc, N.; Burt, A.; Beaghton, A.K.; Nolan, T.; Crisanti, A. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat. Biotechnol. 2018, 36, 1062–1066. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Bortesi, L.; Baysal, C.; Twyman, R.M.; Fischer, R.; Capell, T.; Schillberg, S.; Christou, P. Characteristics of genome editing mutations in cereal crops. Trends Plant Sci. 2020, 25, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Jouanin, A.; Gilissen, L.J.W.J.; Schaart, J.G.; Leigh, F.J.; Cockram, J.; Wallington, E.J.; Boyd, L.A.; van den Broeck, H.C.; van der Meer, I.M.; America, A.H.P.; et al. CRISPR/Cas9 Gene Editing of Gluten in Wheat to Reduce Gluten Content and Exposure-Reviewing Methods to Screen for Coeliac Safety. Front Nutr. 2020, 7, 51, PMCID:PMC7193451. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, J.; Suzuki, K.; Qu, J.; Wang, P.; Zhou, J.; Liu, X.; Ren, R.; Xu, X.; Ocampo, A.; et al. Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 2015, 348, 1160–1163. [Google Scholar] [CrossRef]
- Slusarczyk, A.L.; Lin, A.; Weiss, R. Foundations for the design and implementation of synthetic genetic circuits. Nat. Rev. Genet. 2012, 13, 406–420. [Google Scholar] [CrossRef]
- Yee, J.L.; McMillan, J.R.; Buller, R.M.L. Comparative analysis of the relative potential for virulence of vaccinia virus strains used in biodefense vaccines. NPJ Vaccines 2016, 1, 16001. [Google Scholar]
- Bikard, D.; Euler, C.W.; Jiang, W.; Nussenzweig, P.M.; Goldberg, G.W.; Duportet, X.; Fischetti, V.A.; Marraffini, L.A. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 2014, 32, 1146–1150. [Google Scholar] [CrossRef]
- Song, J.; Yang, D.; Xu, J.; Zhu, T.; Chen, Y.E.; Zhang, J. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat. Commun. 2016, 7, 10548. [Google Scholar] [CrossRef]
- Whitworth, K.M.; Lee, K.; Benne, J.A.; Beaton, B.P.; Spate, L.D.; Murphy, S.L.; Samuel, M.S.; Mao, J.; O’Gorman, C.; Walters, E.M.; et al. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol. Reprod. 2014, 91, 78. [Google Scholar] [CrossRef]
- Fatehullah, A.; Tan, S.H.; Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 2016, 18, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Nelson, C.E.; Hakim, C.H.; Ousterout, D.G.; Thakore, P.I.; Moreb, E.A.; Castellanos Rivera, R.M.; Madhavan, S.; Pan, X.; Ran, F.A.; Yan, W.X.; et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 2016, 351, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Hilton, I.B.; D’Ippolito, A.M.; Vockley, C.M.; Thakore, P.I.; Crawford, G.E.; Reddy, T.E.; Gersbach, C.A. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 2015, 33, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, B. Mammoth 2.0: Will genome engineering resurrect extinct species? Genome Biol. 2015, 16, 228. [Google Scholar] [CrossRef] [PubMed]
- Bess, M. Icarus 2.0: A historian’s perspective on human biological enhancement. Technol. Cult. 2015, 56, 461–487. [Google Scholar] [CrossRef]
- Ocampo, A.; Reddy, P.; Martinez-Redondo, P.; Platero-Luengo, A.; Hatanaka, F.; Hishida, T. In Vivo Amelioration of Age-Associated Hallmarks by Partial Reprogramming. Cell 2016, 167, 1719–1733.e12. [Google Scholar] [CrossRef]
- Hong, S.A.; Seo, J.H.; Wi, S.; Jung, E.S.; Yu, J.; Hwang, G.H.; Yu, J.H.; Baek, A.; Park, S.; Bae, S.; et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 2016, 540, 144–149. [Google Scholar]
- Lanphier, E.; Urnov, F.; Haecker, S.E.; Werner, M.; Smolenski, J. Don’t edit the human germ line. Nature 2015, 519, 410–411. [Google Scholar] [CrossRef]
- Tanzi, R.E.; Bertram, L. Twenty years of the Alzheimer’s disease amyloid hypothesis: A genetic perspective. Cell 2005, 120, 545–555. [Google Scholar] [CrossRef]
Condition or Disease | GE Applications |
---|---|
Aging | Genetic modification of senescent cells has been proposed to counteract aging [33]. |
Alkaptonuria | A metabolic disorder that leads to a buildup of homogentisic acid, causing various symptoms, including dark-colored urine. Gene editing could correct the HGD gene, which causes this condition [34]. |
Alpha-1 Antitrypsin Deficiency | This genetic disorder can lead to lung and liver disease. Gene editing technologies can potentially correct the faulty SERPINA1 gene that causes it [35]. |
Alport Syndrome | A genetic disorder characterized by kidney disease, hearing loss, and eye abnormalities. Gene editing could correct the COL4A3, COL4A4, or COL4A5 genes, which cause this condition [36]. |
Amyotrophic Lateral Sclerosis (ALS) | A group of neurological diseases mainly involving the nerve cells (neurons) responsible for controlling voluntary muscle movement. Gene editing might correct the SOD1, TARDBP, FUS, or C9orf72 genes, which can cause this condition [37]. |
Angioedema | A rare genetic disorder characterized by recurrent episodes of severe swelling. Gene editing might correct the SERPING1 gene, which causes this condition [38]. |
Antimicrobial Resistance | Gene editing can potentially counteract the growing problem of antibiotic resistance by directly targeting and killing antibiotic-resistant bacteria or by making the bacteria sensitive to antibiotics again [39]. |
Atherosclerosis | Gene editing can potentially treat atherosclerosis, a disease where plaque builds up inside the arteries. Using gene editing techniques to modify the PCSK9 gene, which controls LDL cholesterol levels, could potentially lower the risk of atherosclerosis [40]. |
Autoimmune Diseases | With autoimmune diseases like rheumatoid arthritis and lupus, gene editing could modify immune cells and prevent them from attacking the body’s tissues [41]. |
Bardet-Biedl Syndrome | A disorder that affects many parts of the body and can cause obesity, loss of vision, kidney abnormalities, and extra fingers or toes. Gene editing could correct any 21 genes that cause this condition, such as BBS1, BBS2, or BBS10 [42]. |
Barth Syndrome | A genetic disorder characterized by muscle weakness, delayed growth, and sometimes intellectual disability. Gene editing could correct the TAZ gene, which causes this condition [43]. |
Beta Thalassemia | Gene editing techniques have been used in attempts to treat beta-thalassemia, a blood disorder that reduces the production of hemoglobin. Researchers have manipulated the BCL11A gene to enhance the production of fetal hemoglobin as a workaround [44]. |
Blindness | Researchers have used gene editing to restore sight in blind mice, which could eventually lead to treatments for certain forms of inherited blindness in humans [45]. |
Brain Function | Gene editing has been used in neuroscience to understand the function of different genes in the brain, which could eventually help us treat or even cure neurological disorders [46]. |
Canavan Disease | A progressive, fatal neurological disorder that begins in infancy. Gene editing could correct the ASPA gene, which causes this condition [47]. |
Cancer | CRISPR has been used to develop novel cancer therapies, such as genetically modifying a patient’s immune cells to target and fight cancer cells [48]. |
Chronic Granulomatous Disease | Gene editing has been used to correct the genetic mutations that cause chronic granulomatous disease, a disorder that affects the immune system [49]. |
Cystic Fibrosis | Gene editing technologies could correct the CFTR gene mutation that leads to cystic fibrosis, a disease affecting the lungs and digestive system [50]. |
Cystinosis | A genetic disorder characterized by an accumulation of the amino acid cystine within cells, leading to various symptoms and complications. Gene editing technologies are being explored to correct the CTNS gene, which causes this condition [51]. |
Diabetes | In Type 1 diabetes, the immune system destroys insulin-producing cells. Researchers are exploring gene editing as a potential approach to protect these cells from the immune system or to create new insulin-producing cells [52]. |
Duchenne Muscular Dystrophy | A severe type of muscular dystrophy. Gene editing has shown promise in correcting the gene mutation that causes this condition [53]. |
Dystonia | A movement disorder in which a person’s muscles contract uncontrollably. Gene editing could correct any of the 20+ known genes that can cause this condition, such as TOR1A, THAP1, or GNAL [54]. |
Epidermolysis Bullosa | Gene editing technologies can potentially correct the genetic mutations that cause epidermolysis bullosa, a group of genetic conditions that cause the skin to be very fragile and to blister easily [55]. |
Familial Exudative Vitreoretinopathy | A hereditary disorder that can cause progressive vision loss. Gene editing could correct the FZD4, LRP5, TSPAN12, NDP, or ZNF408 genes, which cause this condition [56]. |
Fanconi Anemia | A rare genetic disease resulting in bone marrow failure. Gene editing could correct the FANCC gene, one of the known genes that causes this condition when mutated [57]. |
Fragile X Syndrome | A genetic disorder causing intellectual disability, behavioral and learning challenges, and various physical characteristics. Gene editing has been proposed as a potential way to correct the FMR1 gene that causes this condition [58]. |
Gaucher Disease | A genetic disorder that affects the body’s ability to break down fats. Gene editing technologies are being explored to correct the GBA gene mutations that cause this condition [59]. |
Glycogen Storage Disease Type Ia | A metabolic disorder caused by the deficiency of glucose-6-phosphatase, the enzyme necessary for the final step of gluconeogenesis and glycogenolysis. Gene editing technologies are being explored to correct the G6PC gene mutations that cause this condition [60]. |
Gorlin Syndrome | A genetic condition affecting many body parts increases the risk of developing various cancerous and noncancerous tumors. Gene editing could correct the PTCH1 gene, which causes this condition [61]. |
Hemophilia A and B | A rare bleeding disorder in which a person lacks or has low levels of specific proteins is called “clotting factors”. Gene editing might correct the F8 or F9 genes, which cause Hemophilia A and B, respectively [62]. |
Hemorrhagic Telangiectasia | A genetic disorder of blood vessel formation causes multiple direct connections between arteries and veins. Gene editing could correct the ENG, ACVRL1, or SMAD4 gene, which can cause this condition [63]. |
HIV/AIDS | Gene editing technology has been used to eradicate HIV from infected cells. This is achieved by targeting the viral DNA integrated into the host genome [64]. |
Huntington’s Disease | This inherited disease causes the progressive breakdown of nerve cells in the brain. Gene editing could potentially correct or deactivate the gene that causes Huntington’s disease [65]. |
Hypertrophic Cardiomyopathy | A disease in which the heart muscle becomes abnormally thick, making it harder for the heart to pump blood. Gene editing might correct the MYH7 gene, which causes this condition [66]. |
Hypophosphatasia | A metabolic disease that disrupts mineralization, processes in which minerals such as calcium and phosphorus are deposited in developing bones and teeth. Gene editing could correct the ALPL gene, which causes this condition [67]. |
Immunodeficiencies | Gene editing may provide treatments for primary immunodeficiencies, like severe combined immunodeficiency (SCID), where gene alterations affect the immune system’s development and function [68]. |
Infertility | Gene editing technology may be utilized to treat genetic disorders that cause infertility, offering hope to many individuals and couples wishing to have children [69]. |
Joubert Syndrome | A genetic disorder characterized by decreased muscle tone, difficulties with coordination, abnormal eye movements, and breathing problems. Gene editing could correct any of the 35 genes that cause this condition, such as AHI1, CEP290, or TMEM67 [70]. |
Juvenile Polyposis Syndrome | A genetic condition characterized by multiple polyps in the gastrointestinal tract. Gene editing could correct the BMPR1A or SMAD4 genes, which cause this condition [71]. |
Leber Congenital Amaurosis | An eye disorder that primarily affects the retina. Gene editing could correct any of the 14 known genes that can cause this condition, such as GUCY2D, RPE65, or CEP290 [72]. |
Leukemia | Specific genetic mutations cause certain forms of leukemia. Gene editing could potentially correct these mutations, leading to improved treatment outcomes [73]. |
Li-Fraumeni Syndrome | A rare, hereditary disorder that significantly increases the risk of developing several types of cancer, particularly in young adults and children. Gene editing could correct the TP53 gene, which causes this condition [74]. |
Long QT Syndrome | A disorder of the heart’s electrical activity can cause sudden, uncontrollable, and irregular heartbeats (arrhythmias), which may lead to premature death. Gene editing could correct any of the 17 known genes that can cause this condition, such as KCNQ1, KCNH2, or SCN5A [75]. |
Lynch Syndrome | A genetic condition that increases the risk of many types of cancer, particularly colorectal cancers. Gene editing could correct the MSH2, MLH1, MSH6, or PMS2 genes, which cause this condition [76]. |
Marfan Syndrome | A genetic disorder affecting the body’s connective tissue. Gene editing has been proposed to correct the faulty gene that causes this syndrome [77]. |
Mitochondrial Diseases | Mitochondrial diseases often result from mutations in the mitochondrial DNA. Scientists have used gene editing techniques to selectively eliminate mutated mitochondrial DNA and prevent these diseases [78]. |
Mucopolysaccharidosis | A group of metabolic disorders caused by the absence or malfunctioning of lysosomal enzymes needed to break down molecules called glycosaminoglycans. Gene editing could correct any of the 11 known genes that cause these conditions [79]. |
Multiple System Atrophy | A rare neurodegenerative disorder characterized by autonomic dysfunction, parkinsonism, and ataxia. Gene editing could investigate and possibly correct the underlying genetic contributors to this condition, which are not yet fully understood [80]. |
Muscular Dystrophy | Scientists have used gene editing to correct the mutation that causes Duchenne muscular dystrophy in animal models, and clinical trials are in the works [53]. |
Neurodegenerative Disorders | Gene editing can be employed to study and potentially treat neurodegenerative disorders like Parkinson’s, Alzheimer’s, and Huntington’s disease by targeting the specific genes involved in these conditions [81]. |
Neurofibromatosis | Genetic disorders that cause tumors to form on nerve tissue. Gene editing could correct the NF1 or NF2 genes that cause these conditions [82]. |
Niemann-Pick Disease | A group of severe inherited metabolic disorders in which sphingomyelin accumulates in cell lysosomes. Gene editing could correct the SMPD1 gene, which causes types A and B of this disease [83]. |
Oculocutaneous Albinism | A group of conditions that affect the coloring (pigmentation) of the skin, hair, and eyes. Gene editing could correct the OCA2 gene, causing some forms of this condition [84]. |
Osteogenesis Imperfecta | This group of genetic disorders mainly affects the bones, resulting in bones that break easily. Gene editing could correct or compensate for the faulty genes causing these conditions [85]. |
Osteopetrosis | A group of rare, genetic bone disorders that result in the bone being overly dense. Gene editing could correct the TCIRG1, CLCN7, or SNX10 genes, which cause this condition [86]. |
Pantothenate Kinase-Associated Neurodegeneration (PKAN) | A type of neurodegeneration with brain iron accumulation. Gene editing could correct the PANK2 gene, which causes this condition [87]. |
Paraganglioma and Pheochromocytoma | Rare neuroendocrine tumors originate in the adrenal glands or near specific nerves and blood vessels. Gene editing could correct the SDHA, SDHB, SDHC, SDHD, SDHAF2, VHL, RET, NF1, TMEM127, or MAX genes, which can cause these conditions [88]. |
Peutz-Jeghers Syndrome | A genetic condition characterized by the development of noncancerous growths called hamartomatous polyps in the gastrointestinal tract and a significantly increased risk of developing certain types of cancer. Gene editing could correct the STK11 gene, which causes this condition [89]. |
Polycystic Kidney Disease | A genetic disorder characterized by the growth of numerous cysts in the kidneys. Gene editing might correct the PKD1 or PKD2 genes, which cause this condition [90]. |
Pompe Disease | A metabolic disorder is caused by the buildup of a complex sugar called glycogen within cells. Gene editing could correct the GAA gene, which causes this condition [91]. |
Prader-Willi Syndrome | This complex genetic condition affects many body parts, causing weak muscle tone, feeding difficulties, poor growth, and delayed development. Using gene editing to reactivate the silenced paternal copy of the genes could provide a cure [92]. |
Progeria | Gene editing technology has shown promise in treating Progeria (also known as Hutchinson-Gilford Progeria Syndrome), a rare, fatal genetic disorder characterized by an appearance of accelerated aging in children. Gene editing can potentially correct the mutation in the LMNA gene associated with this disease [93]. |
Retinal Diseases | Gene editing holds promise in treating inherited retinal diseases. Scientists have successfully used gene editing techniques to correct a mutation causing Leber congenital amaurosis, inherited blindness, breakdown, and loss of cells in the retina. Gene editing might correct any of the 60+ known genes that can cause this condition, such as RHO, RPGR, or USH2A [94]. |
Rett Syndrome | A rare genetic disorder causing severe cognitive and physical impairments. Gene editing could potentially reactivate the silenced MECP2 gene that causes Rett syndrome [95]. |
Sanfilippo Syndrome | A type of Mucopolysaccharidosis, Sanfilippo syndrome is characterized by the body’s inability to break down certain sugars properly. Gene editing technologies are being developed to correct the SGSH gene, which causes this condition [96]. |
Sickle Cell Disease | Gene editing has shown promise in correcting the genetic mutation responsible for sickle cell disease, which causes misshapen red blood cells [97]. |
Spastic Paraplegia | A group of inherited disorders characterized by progressive weakness and stiffness of the legs. Gene editing could correct the SPG11 gene, which causes one of the more common types of this disease [98]. |
Spinocerebellar Ataxias | These genetic diseases are characterized by degenerative changes in the part of the brain related to movement control. Gene editing techniques have been applied in experimental models to correct the associated genetic mutations [99]. |
Tuberous Sclerosis Complex | A genetic disorder characterized by the growth of numerous noncancerous (benign) tumors in many body parts. Gene editing could correct the TSC1 or TSC2 genes that cause this condition [100]. |
Tyrosinemia Type 1 | A rare genetic disorder characterized by multistep disruptions that break down the amino acid tyrosine. Gene editing could correct the FAH gene mutations causing this condition [101]. |
Waardenburg Syndrome | A group of genetic conditions that can cause hearing loss and changes in coloring (pigmentation) of the hair, skin, and eyes. Gene editing could correct the PAX3 or MITF genes, which cause this condition [102]. |
Werner Syndrome | A disorder characterized by the premature appearance of features associated with normal aging. Gene editing could correct the WRN gene, which causes this condition [103]. |
Wilson Disease | A condition where copper builds up in the body, potentially leading to life-threatening organ damage. Gene editing might correct the ATP7B gene mutations causing Wilson’s disease [104]. |
Wolfram Syndrome | A genetic disorder characterized by diabetes mellitus and progressive vision loss. Gene editing could correct the WFS1 or CISD2 genes, which cause this condition [105]. |
X-Linked Agammaglobulinemia | Gene editing can potentially correct mutations in the BTK gene, which cause X-linked agammaglobulinemia, an immune system disorder that leaves the body prone to infections [106]. |
Xenotransplantation | Researchers have used gene editing to remove retroviruses from pig genomes, bringing us one step closer to pig-to-human organ transplants [107]. |
Zellweger Spectrum Disorder | A group of conditions that can affect many body parts. Gene editing could correct any 12 PEX genes known to cause these conditions [108]. |
Product | Developer | Indication |
---|---|---|
ABECMA (idecabtagene vicleucel) | Celgene Corporation | Adult patients with relapsed or refractory multiple myeloma after four or more prior lines of therapy, including an immunomodulatory agent, a proteasome inhibitor, and an anti-CD38 monoclonal antibody. |
ADSTILADRIN | Ferring Pharmaceuticals A/S | Adult patients with high-risk Bacillus Calmette-Guérin (BCG)-unresponsive non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors |
BREYANZI | Juno Therapeutics, Inc. | Adult patients with large B-cell lymphoma (LBCL), including diffuse large B-cell lymphoma (DLBCL) not otherwise specified (including DLBCL arising from indolent lymphoma), high-grade B-cell lymphoma, primary mediastinal large B-cell lymphoma, and follicular lymphoma grade 3B, who have: Refractory disease to first-line chemoimmunotherapy or relapse within 12 months of first-line chemoimmunotherapy; or Refractory disease to first-line chemoimmunotherapy or relapse after first-line chemoimmunotherapy and are not eligible for hematopoietic stem cell transplantation (HSCT) due to comorbidities or age; or Relapsed or refractory disease after two or more lines of systemic therapy. |
CARVYKTI (ciltacabtagene autoleucel) | Janssen Biotech, Inc. | Adult patients with relapsed or refractory multiple myeloma after four or more prior lines of therapy, including a proteasome inhibitor, an immunomodulatory agent, and an anti-CD38 monoclonal antibody. |
ELEVIDYS delandistrogene moxeparvovec | Sarepta Therapeutics, Inc. | Ambulatory pediatric patients aged 4 through 5 years with Duchenne muscular dystrophy (DMD) with a confirmed mutation in the DMD gene. |
GINTUIT (Allogeneic Cultured Keratinocytes and Fibroblasts in Bovine Collagen) | Organogenesis Incorporated | It is an allogeneic cellularized scaffold product indicated for topical (non-submerged) application to a surgically created vascular wound bed in mucogingival conditions in adults. |
HEMGENIX | CSL Behring LLC | HEMGENIX is an adeno-associated virus vector-based gene therapy indicated for adults with Hemophilia B (congenital Factor IX deficiency) who use Factor IX prophylaxis therapy, have current or historical life-threatening hemorrhage, or have repeated, spontaneous severe bleeding episodes. |
IMLYGIC (talimogene laherparepvec) | BioVex, Inc. | For the local unresectable cutaneous, subcutaneous, and nodal lesions in patients with recurrent melanoma after initial surgery. |
KYMRIAH (tisagenlecleucel) | Novartis Pharmaceuticals Corporation | KYMRIAH is a CD19-directed genetically modified autologous T-cell immunotherapy indicated for adult patients with relapsed or refractory follicular lymphoma after two or more lines of therapy |
LANTIDRA (donislecel) | CellTrans Inc. | Adults with Type 1 diabetes who cannot approach target hba1c because of repeated episodes of severe hypoglycemia despite intensive diabetes management and education. |
LAVIV (Azficel-T) | Fibrocell Technologies | Improvement of the appearance of moderate to severe nasolabial fold wrinkles in adults. |
LUXTURNA | Spark Therapeutics, Inc. | Patients with confirmed biallelic RPE65 mutation-associated retinal dystrophy. |
MACI (Autologous Cultured Chondrocytes on a Porcine Collagen Membrane) | Vericel Corp. | Repair single or multiple symptomatic, full-thickness cartilage defects of the knee with or without bone involvement in adults. MACI is an autologous cellularized scaffold product. |
OMISIRGE (omidubicel-onlv) | Gamida Cell Ltd. | Adults and pediatric patients 12 years and older with hematologic malignancies are planned for umbilical cord blood transplantation following myeloablative conditioning to reduce the time to neutrophil recovery and the incidence of infection. |
PROVENGE (sipuleucel-T) | Dendreon Corp. | Asymptomatic or minimally symptomatic metastatic castrate-resistant (hormone refractory) prostate cancer. |
RETHYMIC | Enzyvant Therapeutics GmbH | For immune reconstitution in pediatric patients with congenital athymia. |
ROCTAVIAN (valoctocogene roxaparvovec-rvox) | BioMarin Pharmaceutical Inc | Adults with severe hemophilia A (congenital factor VIII deficiency with factor VIII activity <1 IU/dL) without pre-existing antibodies to adeno-associated virus serotype five detected by an FDA-approved test. |
SKYSONA (elivaldogene autotemcel) | Bluebird bio, Inc. | To slow the progression of neurologic dysfunction in boys 4–17 years of age with early, active cerebral adrenoleukodystrophy (CALD). |
STRATAGRAFT | Stratatech Corporation | Adults with thermal burns containing intact dermal elements for which surgical intervention is clinically indicated (deep partial-thickness burns). |
TECARTUS (brexucabtagene autoleucel) | Kite Pharma, Inc. | Adult patients with relapsed or refractory mantle cell lymphoma (MCL). New Indication for this supplement: Adult patients with relapsed or refractory (r/r) B-cell precursor acute lymphoblastic leukemia (ALL) |
VYJUVEK | Krystal Biotech, Inc. | Wounds in patients six months of age and older with dystrophic epidermolysis bullosa with mutation(s) in the collagen type VII alpha one chain (COL7A1) gene |
YESCARTA (axicabtagene ciloleucel) | Kite Pharma, Incorporated | Adult patients with large B-cell lymphoma refractory to first-line chemoimmunotherapy or relapse within 12 months of first-line chemoimmunotherapy. Axicabtagene ciloleucel is not indicated in patients with primary central nervous system lymphoma. |
ZOLGENSMA (onasemnogene abeparvovec-xioi) | Novartis Gene Therapies, Inc. | Adult and pediatric patients with ß-thalassemia who require regular red blood cell (RBC) transfusions |
ZYNTEGLO (betibeglogene autotemcel) | Bluebird Bio, Inc. | Spinal muscular atrophy (type I) |
Attribute | Meganucleases | Zinc Finger Nucleases | TALENs | CRISPR/Cas9 |
---|---|---|---|---|
Enzyme | Endonuclease | Fok1-nuclease | Fok1-nuclease | Cas9 nuclease |
Target site | LAGLIDADG proteins | Zinc-finger binding sites | RVD tandem repeat region of TALE protein | PAM/spacer sequence |
Recognition sequence size | 12–45 bp | 9–18 bp | 14–20 bp | 3–8 bp/20 bp |
Targeting limitations | MN cleaving site | Difficult to target non-G-rich sites | 5′ targeted base must be a T for each TALEN monomer | The targeted site must precede a PAM sequence |
Advantage | High specificity; Relatively easy to deliver in vivo | Small protein size; Relatively easy in vivo delivery | High specificity; Relatively easy to engineer; targets mitochondrial DNA more efficiently and causes fewer off-target effects than MNs and ZFNs. | Easy to engineer; Easy to multiplex |
Disadvantage | Target locus must be put into the genome; complex to construct; difficult to multiplex; ineffectiveness and potential genotoxicity. The targeted locus must also contain the unique cleavage site for each endonuclease. | Expensive, time-consuming, labor-intensive, difficult to choose the target sequence, needing the coding gene to be custom-built for each target site, and highly off-target gene editing. All ZF domains must also be active. | Challenging to multiplex; not relevant in the case of DNA methylcytosine; a few in vivo deliveries; We should all be engaged; TALEs are nevertheless constrained by their repetitive sequences, which make it difficult to construct them using polymerase chain reaction (PCR), and by the fact that they are unable to target methylated DNA due to the possibility that cytosine methylation will impede TALE binding and alter recognition by its typical RVD. | Lower specificity; Limited in vivo delivery |
DNA-recognition mechanism | HR-introduced Protein-DNA interactions | DSB-introduced by Protein-DNA interactions | DSB-introduced by Protein-DNA interactions | DSB introduced by RNA-guided protein-DNA interactions |
Target specificity | High Positional mismatches are only occasionally accepted. Protein engineering is necessary for re-targeting. | High preference for G-rich sequences Positional mismatches are only occasionally accepted. Protein engineering is necessary for re-targeting. | High Requires a T at each of its target’s five ends. Some positional inconsistencies are accepted. Retargeting necessitates intricate molecular cloning. | Moderate The two base pairs that PAM recognizes must come before the RNA-targeted sequence. Positional mismatches are only occasionally accepted. A new RNA guide is necessary for re-targeting. There is no need for protein engineering. |
Multiplexing | + | + | + | ++++ |
Delivery | accessible by transduction of viral vectors and electroporation | accessible by viral vector transduction and electroporation | simple in vitro conception Due to TALEN DNA’s size and the recombination likelihood, it is challenging in vivo. | simple in vitro The big Cas9′s inadequate packing by viral vectors is the cause of the mild difficulties of distribution in vivo. |
Use as a gene activator | No | Yes endogenous gene activation minimal impacts off-target To target specific sequences, engineering work may be necessary | Yes endogenous gene activation has minimal impacts on off-target There are no time restrictions. | Yes endogenous gene activation minimal impacts off-target “NGG” PAM is necessary adjacent to the target sequence. |
Use as gene inhibitor | No | Yes Works by repressing chromatin to prevent transcriptional elongation. minimal impacts off-target To target specific sequences, engineering work may be necessary. | Yes Works by repressing chromatin to prevent transcriptional elongation. minimal impacts off-target There are no time restrictions. | Yes Works by repressing chromatin to prevent transcriptional elongation. minimal impacts off-target “NGG” PAM is necessary adjacent to the target sequence. |
Cost | High | High | High | Reasonable |
Popularity | Low | Low | Moderate | High |
Online resources | Database and Engineering for LAGLIDADG Homing Endonucleases (http://homingendonuclease.net/, accessed on 7 July 2021) | The Zinc Finger consortiums include software tools and protocols (http://www.zincfingers.org/, accessed on 7 July 2021) ZFNGenome—resources for locating ZFN target sites (https://bindr.gdcb.iastate.edu/ZFNGenome/, accessed on 7 July 2021) | Mojo Hand (http://www.talendesign.org/, accessed on 7 July 2021) or E-TALEN (http://www.e-talen.org/E-TALEN/, accessed on 7 July 2021) for TALEN design CHOPCHOP (https://chopchop.cbu.uib.no/, accessed on 7 July 2021) target site selection | Guide design: Zlab (https://zlab.bio/guide-design-resources, accessed on CRISPOR: http://crispor.tefor.net/, accessed on 7 July 2021; Benchling: https://www.benchling.com, accessed on 7 July 2021 AddGene: https://www.addgene.org/crispr, accessed on 7 July 2021; https://crispr.bme.gatech.edu, accessed on 7 July 2021 http://www.rgenome.net/cas-offinder/, accessed on 7 July 2021 |
Field | Future Developments |
---|---|
Fastest Development | |
Agriculture | The GMOs are already on the table. GE will further revolutionize agriculture by creating more nutritious crops resistant to pests and diseases or adaptable to changing climate conditions [297]. Creating disease-resistant crops [180,298] that bring greater food security [299]. |
Biocomputing | Using DNA in place of silicon chips is already in the early stages of development for data storage and processing [300]. Computers will be built inside living cells to perform complex computations [301]. |
NGS | The next-generation sequencing (NGS) technologies will expand fast and become available at the point of use in clinics, allowing more relevant and critical diagnosis, designing personalized therapies, and preventing long-term illnesses. The cost of this diagnosis will be fully reimbursed since it will prove to be the most significant measure in reducing the cost of healthcare. |
Bioenergy and Environment | Algae and certain bacteria can be edited to produce biofuels more efficiently, and gene editing can also help in bioremediation, where organisms are modified to clean up environmental pollutants [302,303]. Industrial yeasts can produce biofuels and various other chemicals; GE can improve the efficiency and versatility of these yeasts [304]. Gene editing can produce more efficient biofuels or bioplastics by altering microbial pathways, contributing to a more sustainable future [305]. |
Biomaterials | Create organisms that produce new biomaterials with unique properties, opening various industrial and scientific applications [306]. |
Biosensors | Engineer cells to detect specific molecules or conditions, creating biosensors for various applications, from medical diagnostics to environmental monitoring [307]. |
Conservation Efforts | Gene editing could aid conservation by introducing genetic diversity into endangered populations or by engineering invasive species to limit their reproduction [308]. By creating precise genetic modifications, scientists can study evolutionary pathways, development processes, and the intricate interactions of genes in real time [309]. |
CRISPR/Cas9 | CRISPR/Cas 9 has revolutionized the field of genetics and holds immense potential for various applications, from medical treatments to agricultural advancements. Beyond editing, the CRISPR system will be adapted for diagnostics. Platforms like SHERLOCK (Specific High-sensitivity Enzymatic Reporter UnLOCKing) can detect specific DNA or RNA sequences in pathogens [310]. |
Environment | Editing the genes of certain bacteria to make them produce biodegradable plastics offering an environmentally friendly alternative to conventional plastics [311]. To bolster conservation efforts by creating white-footed mice immune to the bacteria causing Lyme disease [308]. Gene drives using CRISPR/Cas9 systems have been proposed to control disease vectors, such as mosquitoes that spread malaria [312]. |
Nutrition | Gene editing can enhance the nutritional content of food crops, potentially addressing malnutrition problems in areas of the world where specific nutrient deficiencies are common [313]. To create versions of common foods that do not trigger allergic reactions. For example, researchers have used gene editing to create a variety of wheat that does not produce the proteins that cause most wheat allergies [314]. |
Personalized Medicine | With an understanding of individual genetic makeup, treatments can be tailored specifically to the genetic profile of each patient, offering better outcomes [315]. |
Synthetic Biology and Biomanufacturing | New organisms can be designed to produce complex organic compounds, pharmaceuticals, or even materials for manufacturing [316]. |
Vaccination | Creating attenuated strains of pathogens for more effective vaccines [317]. |
Slower Development | |
Drug Development | Creating models of human diseases in animals, providing a platform to test new drugs more efficiently using modeling that is not currently available [5]. |
Modifying Microbiomes | The collection of microbes living in and on us, the microbiome, plays a crucial role in our health; they can be modified to promote health and combat diseases [318]. |
Organ Transplants | Using animals like pigs, gene editing can help produce organs suitable for human transplantation [107]. Modify donor organs to increase compatibility with recipients, potentially reducing organ rejection rates [319]. |
Slowest Development | |
Animal Welfare | Improve the well-being of animals; for instance, pigs can be edited to be resistant to diseases, or chickens can be edited to only produce female offspring for egg production [320]. Researchers can use gene editing to create cell cultures or organoids that mimic human tissues for drug testing and disease modeling as an alternative to live animal testing [321]. |
Gene Therapeutics | Targeting and repairing the faulty genes by GE will likely eradicate diseases like cystic fibrosis, Duchenne muscular dystrophy, and sickle cell anemia, which are prime candidates [322]. Beyond editing DNA sequences, tools are being developed to modify the epigenome, which could offer treatments for diseases where epigenetic changes play a role [323]. Many rare genetic disorders, often neglected by mainstream research due to their low prevalence, could be targeted and potentially cured using gene editing [16]. |
Infectious Diseases | To bring extinct species back to life, or “de-extinction”. This would involve using DNA from preserved specimens to edit the genes of a closely related existing species [324]. While controversial, gene editing technologies like CRISPR have raised the possibility of enhancing human abilities beyond normal levels, or “human enhancement” [325]. |
Life Augmentation | By targeting genes involved in aging processes, gene editing may offer strategies to extend healthy human lifespan or combat age-related diseases [326]. For conditions like congenital blindness or deafness due to specific gene mutations, gene editing offers a path to restore these senses [327]. There is potential (albeit controversial) for gene editing to enhance human capabilities, such as increased strength, improved cognitive function, or resistance to diseases [328]. The possibility of enhancing cognitive abilities through gene editing is being explored. While this poses vast ethical dilemmas, it could revolutionize cognitive disorders or brain injury treatments [329]. |
Neurodegenerative Diseases | Gene editing offers promise in the treatment or delay of neurodegenerative diseases like Alzheimer’s, Parkinson’s, and Huntington’s by targeting the causative genes or modifying disease pathways [65]. |
Least Likely | |
Species Modulation | “Designer babies” (e.g., in China in 2018) and species modulations are highly possible since modifications can be passed on to subsequent generations [195]. There is a global consensus to prevent this, but as history will tell, it is impossible to contain a knowledge base. This will happen sooner or later, which may be the pivotal step in human evolution; it is of little concern to the process, whether it is brought in by long-time mutations or planned. We may be responsible for our evolution, not as an accident but as a random evolution design. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niazi, S.K. The Dawn of In Vivo Gene Editing Era: A Revolution in the Making. Biologics 2023, 3, 253-295. https://doi.org/10.3390/biologics3040014
Niazi SK. The Dawn of In Vivo Gene Editing Era: A Revolution in the Making. Biologics. 2023; 3(4):253-295. https://doi.org/10.3390/biologics3040014
Chicago/Turabian StyleNiazi, Sarfaraz K. 2023. "The Dawn of In Vivo Gene Editing Era: A Revolution in the Making" Biologics 3, no. 4: 253-295. https://doi.org/10.3390/biologics3040014
APA StyleNiazi, S. K. (2023). The Dawn of In Vivo Gene Editing Era: A Revolution in the Making. Biologics, 3(4), 253-295. https://doi.org/10.3390/biologics3040014