Non-Invasive Muscle Metabolism Assessment with Near-Infrared Spectroscopy and Electrical Muscle Stimulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.2.1. Near-Infrared Spatially Resolved Spectroscopy
2.2.2. Measurement of Subcutaneous Fat Thickness for NIRS
2.3. Electrical Muscle Stimulation
2.4. Measurement of Muscle Oxygen Consumption
2.5. Measuring Conditions
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mizuno, M.; Hamaoka, T.; Osada, T.; Shimomitsu, T.; Katsumura, T.; Quistorff, B. Correlation between Mitochondrial Enzyme Activities and the Rate of Hemoglobin Deoxygenation at Onset of Exercise in Human Gastrocnemius Muscles. Med. Sci. Sports Exerc. 1999, 31, S275. [Google Scholar] [CrossRef]
- Esbjörnsson, M.; Jansson, E.; Sundberg, C.J.; Sylvén, C.; Eiken, O.; Nygren, A.; Kaijser, L. Muscle Fibre Types and Enzyme Activities after Training with Local Leg Ischaemia in Man. Acta Physiol. Scand. 1993, 148, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.C.; Hultman, E.; Nordesjö, L.O. Glycogen, Glycolytic Intermediates and High-Energy Phosphates Determined in Biopsy Samples of Musculus Quadriceps Femoris of Man at Rest. Methods and Variance of Values. Scand. J. Clin. Lab. Investig. 1974, 33, 109–120. [Google Scholar] [CrossRef]
- Chilibeck, P.D.; McCreary, C.R.; Marsh, G.D.; Paterson, D.H.; Noble, E.G.; Taylor, A.W.; Thompson, R.T. Evaluation of Muscle Oxidative Potential by 31P-MRS during Incremental Exercise in Old and Young Humans. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 78, 460–465. [Google Scholar] [CrossRef]
- Cheatle, T.R.; Potter, L.A.; Cope, M.; Delpy, D.T.; Coleridge Smith, P.D.C.; Scurr, J.H. Near-Infrared Spectroscopy in Peripheral Vascular Disease. Br. J. Surg. 1991, 78, 405–408. [Google Scholar] [CrossRef]
- De Blasi, R.A.; Cope, M.; Ferrari, M. Oxygen Consumption of Human Skeletal Muscle by near Infrared Spectroscopy during Tourniquet-Induced Ischemia in Maximal Voluntary Contraction. In Oxygen Transport to Tissue; Xiv, E.W., Bruley, D.F., Eds.; Springer: Boston, MA, USA, 1992; pp. 771–777. ISBN 978-1-4615-3428-0. [Google Scholar] [CrossRef]
- Hamaoka, T.; Iwane, H.; Shimomitsu, T.; Katsumura, T.; Murase, N.; Nishio, S.; Osada, T.; Kurosawa, Y.; Chance, B. Noninvasive Measures of Oxidative Metabolism on Working Human Muscles by Near-Infrared Spectroscopy. J. Appl. Physiol. 1996, 81, 1410–1417. [Google Scholar] [CrossRef]
- Chance, B.; Dait, M.T.; Zhang, C.; Hamaoka, T.; Hagerman, F. Recovery from Exercise-Induced Desaturation in the Quadriceps Muscles of Elite Competitive Rowers. Am. J. Physiol. 1992, 262, C766–C775. [Google Scholar] [CrossRef]
- McCully, K.K.; Iotti, S.; Kendrick, K.; Wang, Z.; Posner, J.D.; Leigh, J.; Chance, B. Simultaneous In Vivo Measurements of HbO2 Saturation and PCr Kinetics after Exercise in Normal Humans. J. Appl. Physiol. 1994, 77, 5–10. [Google Scholar] [CrossRef]
- Hamaoka, T.; Mizuno, M.; Katsumura, T.; Osada, T.; Shimomitsu, T.; Quistorff, B. Correlation between Indicators Determined by near Infrared Spectroscopy and Muscle Fiber Types in Humans. Jpn. J. Appl. Physiol. 1998, 28, 243–248. [Google Scholar]
- Hiroyuki, H.; Hamaoka, T.; Sako, T.; Nishio, S.; Kime, R.; Murakami, M.; Katsumura, T. Oxygenation in Vastus Lateralis and Lateral Head of Gastrocnemius during Treadmill Walking and Running in Humans. Eur. J. Appl. Physiol. 2002, 87, 343–349. [Google Scholar] [CrossRef]
- Hamaoka, T.; Katsumura, T.; Murase, N.; Sako, T.; Higuchi, H.; Murakami, M.; Esaki, K.; Kime, R.; Homma, T.; Sugeta, A.; et al. Muscle Oxygen Consumption at Onset of Exercise by near Infrared Spectroscopy in Humans. Adv. Exp. Med. Biol. 2003, 530, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Ishii, Y.; Deie, M.; Adachi, N.; Yasunaga, Y.; Sharman, P.; Miyanaga, Y.; Ochi, M. Hyperbaric oxygen as an adjuvant for athletes. Sports Med. 2005, 35, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Inaba, S.; Morikita, I.; Maejima, E.; Furuya, K.; Michizuka, K.; Nishikawa, Y.; Hashiguchi, S. A clinical report for the last 5 years at the Osaka University of Health and Sport Sciences Clinic. Bull. Osaka Univ. Health Sport Sci. 2021, 52, 119–125. [Google Scholar]
- Ishii, Y.; Miyanaga, Y.; Shimojo, H.; Shiraki, H. The Experience of Hyperbaric Oxygen Therapy for Soft Tissue Injuries of Sports Athletes. Jpn. J. Orthop. Sports Med. 1997, 17, 7–14. [Google Scholar]
- Furuyama, Y.; Inokoshi, T.; Kuboyama, K.; Inoue, Y.; Chikamori, K. The effect of change to the body surface temperature on mild hyperbaric oxygen therapy. Bull. Int. Pac. Univ. 2012, 6, 211–214. [Google Scholar]
- Tanaka, H.; Endo, T.; Yokoya, Y.; Tadakuma, S.; Ryushi, T. A Study about the Usefulness of Oxygen Chamber as Conditioning Equipment for Volleyball Players. J. Volleyb. Sci. 2013, 15, 23–27. [Google Scholar]
- Takemura, A.; Eda, N.; Saito, T.; Shimizu, K. Mild hyperbaric oxygen for the early improvement of mood disturbance induced by high-intensity exercise. J. Sports Med. Phys. Fit. 2022, 62, 250–257. [Google Scholar] [CrossRef]
- Ishihara, A. Mild hyperbaric oxygen: Mechanisms and effects. J. Physiol. Sci. 2019, 69, 573–580. [Google Scholar] [CrossRef]
- Niwayama, M.; Lin, L.; Shao, J.; Kudo, N.; Yamamoto, K. Quantitative Measurement of Muscle Hemoglobin Oxygenation Using Near-Infrared Spectroscopy with Correction for the Influence of a Subcutaneous Fat Layer. Rev. Sci. Instrum. 2000, 71, 4571–4575. [Google Scholar] [CrossRef]
- Niwayama, M.; Suzuki, H.; Yamashita, T.; Yasuda, Y. Error Factors in Oxygenation Measurement Using Continuous Wave and Spatially Resolved Near-Infrared Spectroscopy. J. Jpn. Coll. Angiol. 2012, 52, 211–215. [Google Scholar] [CrossRef]
- Eiken, O.; Hesser, C.M.; Lind, F.; Thorsson, A.; Tesch, P.A. Human Skeletal Muscle Function and Metabolism during Intense Exercise at High O2 and N2 Pressures. J. Appl. Physiol. 1987, 63, 571–575. [Google Scholar] [CrossRef]
- Cabríc, M.; Medved, R.; Denoble, P.; Živković, M.; Kovacević, H. Effect of Hyperbaric Oxygenation on Maximal Aerobic Performance in a Normobaric Environment. J. Sports Med. Phys. Fit. 1991, 31, 362–366. [Google Scholar]
- Pirnay, F.; Marechal, R.; Dujardin, R.; Lamy, M.; Deroanne, R.; Petit, J.M. Exercise during Hyperoxia and Hyperbaric Oxygenation. Int. Z. Angew. Physiol. 1973, 31, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Kaijser, L. Physical Exercise under Hyperbaric Oxygen Pressure. Life Sci. 1969, 8, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Kaijser, L. The Influence of Oxygen under Hyperbaric Pressure on the Physical Working Capacity. Life Sci. 1970, 9, 151–158. [Google Scholar] [CrossRef]
- Stewart, J.; Gosine, D.; Kaleel, M.; Kurtev, A. Hyperbaric Oxygen and Muscle Performance in Maximal Sustained Muscle Contraction. Undersea Hyperb. Med. 2011, 38, 483–491. [Google Scholar]
- Takezawa, T. Performance and Biological Response of Middle-Power under Hyperbaric Hyperoxic Conditions in Judo Athletes-Pilot Studies. Arch. Budo. 2021, 17, 43–50. [Google Scholar]
- Neubauer, B.; Tetzlaff, K.; Staschen, C.M.; Bettinghausen, E. Cardiac Output Changes during Hyperbaric Hyperoxia. Int. Arch. Occup. Environ. Health 2001, 74, 119–122. [Google Scholar] [CrossRef]
- Casey, D.P.; Joyner, M.J.; Claus, P.L.; Curry, T.B. Hyperbaric Hyperoxia Reduces Exercising Forearm Blood Flow in Humans. Am. J. Physiol. Heart Circ. Physiol. 2011, 300, H1892–H1897. [Google Scholar] [CrossRef]
- Casey, D.P.; Joyner, M.J.; Claus, P.L.; Curry, T.B. Vasoconstrictor Responsiveness during Hyperbaric Hyperoxia in Contracting Human Muscle. J. Appl. Physiol. 2013, 114, 217–224. [Google Scholar] [CrossRef]
- Reich, T.; Tuckman, J.; Naftchi, N.E.; Jacobson, J.H. Effect of Normo- and Hyperbaric Oxygenation on Resting and Postexercise Calf Blood Flow. J. Appl. Physiol. 1970, 28, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Lambertsen, C.J.; Owen, S.G.; Wendel, H.; Stroud, M.W.; Lurie, A.A.; Lochner, W.; Clark, G.F. Respiratory and Cerebral Circulatory Control during Exercise at.21 and 2.0 Atmospheres Inspired P02. J. Appl. Physiol. 1959, 14, 966–982. [Google Scholar] [CrossRef] [PubMed]
- Weglicki, W.B.; Whalen, R.E.; Thompson, H.K., Jr.; McIntosh, H.D. Effects of Hyperbaric Oxygenation on Excess Lactate Production in Exercising Dogs. Am. J. Physiol. 1966, 210, 473–477. [Google Scholar] [CrossRef]
- Šet, V.; Lenasi, H. Does Hyperbaric Oxygenation Improve Athletic Performance? J. Strength Cond. Res. 2023, 37, 482–493. [Google Scholar] [CrossRef] [PubMed]
- Banister, E.W.; Taunton, J.E.; Patrick, T.; Oforsagd, P.; Duncan, W.R. Effect of Oxygen at High Pressure at Rest and during Severe Exercise. Respir. Physiol. 1970, 10, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Taunton, J.E.; Banister, E.W.; Patrick, T.R.; Oforsagd, P.; Duncan, W.R. Physical Work Capacity in Hyperbaric Environments and Conditions of Hyperoxia. J. Appl. Physiol. 1970, 28, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Labanca, L.; Tedeschi, R.; Mosca, M.; Benedetti, M.G. Individuals with Chronic Ankle Instability Show Abnormalities in Maximal and Submaximal Isometric Strength of the Knee Extensor and Flexor Muscles. Am. J. Sports Med. 2024, 52, 1328–1335. [Google Scholar] [CrossRef]
- Moriguchi, T.; Tanaka, R.; Kajiwara, K.; Imamura, R.; Tachihara, M.; Goya, R.; Tanaka, M.; Shigemori, Y. A Case of Hyperbaric Therapy Interrupted Due to Ear Pain during Pressurization and Sudden Drop in Muscle Oxygen Saturation in Inactive Muscles. Adv. Prev. Med. Health Care 2024, 7, 1048. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, R.; Shigemori, Y.; Moriguchi, T. Non-Invasive Muscle Metabolism Assessment with Near-Infrared Spectroscopy and Electrical Muscle Stimulation. BioMed 2024, 4, 419-429. https://doi.org/10.3390/biomed4040033
Tanaka R, Shigemori Y, Moriguchi T. Non-Invasive Muscle Metabolism Assessment with Near-Infrared Spectroscopy and Electrical Muscle Stimulation. BioMed. 2024; 4(4):419-429. https://doi.org/10.3390/biomed4040033
Chicago/Turabian StyleTanaka, Riki, Yutaka Shigemori, and Tetsushi Moriguchi. 2024. "Non-Invasive Muscle Metabolism Assessment with Near-Infrared Spectroscopy and Electrical Muscle Stimulation" BioMed 4, no. 4: 419-429. https://doi.org/10.3390/biomed4040033
APA StyleTanaka, R., Shigemori, Y., & Moriguchi, T. (2024). Non-Invasive Muscle Metabolism Assessment with Near-Infrared Spectroscopy and Electrical Muscle Stimulation. BioMed, 4(4), 419-429. https://doi.org/10.3390/biomed4040033