Stress: Influences and Determinants of Psychopathology
Definition
:1. Stress Overview
2. Concepts
2.1. Stress Response System and Its Modulation
2.1.1. Circuits Involved
2.1.2. Neurochemistry
2.2. Determinants of the Stress Response: The Stressor
2.2.1. Origin, Repeatability, and Degree of Control over the Stressor
2.2.2. Severity and Timeframe of the Stressor
3. Impacts and Effects of Stress
3.1. Impact of Stress on the Brain
3.2. Pathophysiology of Stress-Related Disorders
Stress Protocols | Key Findings | Brain Areas Affected | Domains | Human Condition | References |
---|---|---|---|---|---|
Acute stress (single stressful episode) | Long-lasting changes in synaptic transmission and neural activation | Widespread in limbic structures LC | Psychiatric | Hypervigilance, impaired cognition, PTSD mood and anxiety disorders | [86,93,97] For a review, see [75]. |
Chronic variable stress Chronic vs. acute stress | Dysregulation HPA axis upregulation CRH mRNA expression. <cell proliferation | Hypothalamus (PVN) Hippocampus | Neurologic Psychiatric Cognitive | Increased vulnerability to later insults and neuropathology | [68,94]. |
Chronic stress Early-life stress | Dysregulation of HPA axis <mRNA expression in GRs Seizure precipitant factor | Hippocampus widespread | Neurologic | Epilepsy | [69] For a review, see [74]. |
Chronic stress Psychosocial stress | Dysregulation reward axis Changes in DAergic neuronal activity Plasticity changes in limbic areas | mPFC VTA NAc Insula | Neurologic | Metabolic disorder Substance abuse Alcohol use disorder | For a review, see [30,52,55]. |
Chronic stress Uncontrollable vs. controllable stress | GABAergic disinhibition Plasticity changes in limbic areas Impaired fear extinction | Amygdala Thalamus NAc Dorsal raphe nucleus mPFC | Psychiatric | PTSD/phobias Anxiety and panic Facilitated fear Generalization of memories | [39,47,57,63] For a review, see [38]. |
Chronic psychosocial stress (agonistic encounters) | <Cytokine mRNA levels <Cytokine Receptors <GR Receptors | Hippocampus NAc Pituitary | Psychiatric | Mood alterations | [101] |
Chronic psychosocial stress (isolation/crowding) + acute stress | Compromised HPA axis >catecholamines plasmatic levels <GR plasmatic levels <parvalbumin expression >vulnerability to neuronal injury | Hippocampus | Psychiatric | Major depression | [98,102] |
Early-life stress Maternal deprivation | Dysregulation HPA axis Brain development Resistance to interferon-β and neurodegeneration Neurogenesis | mPFC Hippocampus Amygdala | Cognitive | Alzheimer’s, dementia Impaired learning Impaired retrieval of memories | For a review, see [37,88]. |
Early-life stress + adult stress Chronic unpredictable stress | Dysregulation GABAergic system Volume cell loss of limbic structures <brain and body weight gain Learned helplessness | Hippocampus | Psychiatric | Major depression Memory disorders | [44,45,78]. |
Early-life stress + youth stress Early-life stress | <Dopamine receptor Signaling desensitization Altered DNA methylation | NAc Caudate nucleus mPFC | Psychiatric | Schizophrenia | [86,92] |
4. Vulnerability and Resilience to Stress
4.1. Genetic and Environmental Factors
4.2. Factors Contributing to Resilience to Stress
5. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Adrenocorticotropic hormone | ACTH |
Anterior cingulate cortex | ACC |
Autonomic nervous system | ANS |
Central nervous system | CNS |
Corticotropin-releasing hormone | CRH |
Glucocorticoids | GCs |
Glucocorticoid receptors | GRs |
Hypothalamic–pituitary–adrenocortical axis | HPA axis |
Locus coeruleus | LC |
Medial PFC | mPFC |
Mineralocorticoid receptors | MRs |
Nucleus accumbens | NAc |
Paraventricular nucleus of the hypothalamus | PVN |
Periaqueductal gray matter | PGM |
Post-traumatic stress disorder | PTSD |
Prefrontal cortex | PFC |
Sympathetic nervous system | SNS |
Ventral tegmental area | VTA |
References
- Esch, T.; Stefano, G.B. The neurobiology of stress management. Neuro Endocrinol. Lett. 2010, 31, 19–39. [Google Scholar] [PubMed]
- Karatsoreos, I.N. Stress: Common themes toward the next frontier. Front. Neuroendocr. 2018, 49, 3–7. [Google Scholar] [CrossRef] [PubMed]
- González, B.G.; Escobar, A. Neuroanatomía del estrés. Rev. Mex. Neuroci. 2002, 3, 273–282. [Google Scholar]
- Landis, C. Walter B. Cannon. Bodily Changes in Pain, Hunger, Fear and Rage. (2nd ed., revised and enlarged.) New York: Appleton, 1929. Pp. xvi+404. Pedagog. Semin. J. Genet. Psychol. 1930, 38, 527–531. [Google Scholar] [CrossRef]
- Cannon, W.B. Stresses and Strains of Homeostasis. Am. J. Med. Sci. 1935, 189, 13–14. [Google Scholar] [CrossRef]
- Selye, H. The Stress of Life; McGraw-Hill: New York, NY, USA, 1956. [Google Scholar]
- Pacak, K.; Palkovits, M.; Yadid, G.; Kvetnansky, R.; Kopin, I.J.; Goldstein, D.S. Heterogeneous neurochemical responses to different stressors: A test of Selye’s doctrine of nonspecificity. Am. J. Physiol. 1998, 275, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S.; Stellar, E. Stress and the individual. Mechanisms leading to disease. Arch. Intern. Med. 1993, 153, 2093–2101. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, R.S.; Folkman, S. Stress, Appraisal and Coping; Springer: New York, NY, USA, 1984. [Google Scholar]
- McEwen, B.S. Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. Eur. J. Pharmacol. 2008, 583, 174–185. [Google Scholar] [CrossRef]
- Goldstein, D.S.; Kopin, I.J. Evolution of concepts of stress. Stress 2007, 10, 109–120. [Google Scholar] [CrossRef]
- Guidi, J.; Lucente, M.; Sonino, N.; Fava, G.A. Allostatic Load and Its Impact on Health: A Systematic Review. Psychother. Psychosom. 2021, 90, 11–27. [Google Scholar] [CrossRef]
- World Health Organization. The World Health Report: 2001: Mental Health: New Understanding, New Hope; World Health Organization: Geneva, Switzerland, 2001; Available online: https://iris.who.int/handle/10665/42390 (accessed on 16 June 2024).
- Mustafa, M. Sources of Stress and Coping Strategies Among College Students in Ladakh. Int. J. Indian Psychol. 2024, 12, 1339–1349. [Google Scholar]
- Díez, M.; Jiménez-Iglesias, A.; Paniagua, C.; García-Moya, I. The Role of Perfectionism and Parental Expectations in the School Stress and Health Complaints of Secondary School Students. Youth Soc. 2023, 56, 885–906. [Google Scholar] [CrossRef]
- Salleh, M.R. Life event, stress and illness. Malays. J. Med. Sci. 2008, 15, 9–18. [Google Scholar] [PubMed]
- Kurtuluş, E.; Yıldırım Kurtuluş, H.; Birel, S.; Batmaz, H. The effect of social support on work-life balance: The role of psychological well-being. Int. J. Contemp. Educ. Res. 2023, 10, 239–249. [Google Scholar] [CrossRef]
- Limone, P.; Toto, G.A.; Messina, G. Impact of the COVID-19 pandemic and the Russia-Ukraine war on stress and anxiety in students: A systematic review. Front. Psychiatry 2022, 13, 1081013. [Google Scholar] [CrossRef] [PubMed]
- Pais-Ribeiro, J.; Ferreira-Valente, A.; Jarego, M.; Sánchez-Rodríguez, E.; Miró, J. COVID-19 Pandemic in Portugal: Psychosocial and Health-Related Factors Associated with Psychological Discomfort. Int. Environ. Res. Public. Health 2022, 19, 3494. [Google Scholar] [CrossRef] [PubMed]
- Vermetten, E.; Bremner, J.D. Circuits and systems in stress. I. Preclinical studies. Depress. Anxiety 2002, 15, 126–147. [Google Scholar] [CrossRef] [PubMed]
- Swaab, D.F.; Bao, A.M.; Lucassen, P.J. The stress system in the human brain in depression and neurodegeneration. Ageing Res. Rev. 2005, 4, 141–194. [Google Scholar] [CrossRef] [PubMed]
- Meaney, M.J.; Mitchell, J.B.; Aitken, D.H.; Bhatnagar, S.; Bodnoff, S.R.; Iny, L.J.; Sarrieau, A. The effects of neonatal handling on the development of the adrenocortical response to stress: Implications for neuropathology and cognitive deficits in later life. Psychoneuroendocrinology 1991, 16, 85–103. [Google Scholar] [CrossRef]
- Von Känel, R.; Kudielka, B.M.; Haeberli, A.; Stutz, M.; Fischer, J.E.; Patterson, S.M. Prothrombotic changes with acute psychological stress: Combined effect of hemoconcentration and genuine coagulation activation. Thromb. Res. 2009, 123, 622–630. [Google Scholar] [CrossRef]
- Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 2000, 21, 55–89. [Google Scholar] [CrossRef]
- Davis, M.T.; Holmes, S.E.; Pietrzak, R.H.; Esterlis, I. Neurobiology of Chronic Stress-Related Psychiatric Disorders: Evidence from Molecular Imaging Studies. Chronic Stress 2017, 1, 2470547017710916. [Google Scholar] [CrossRef]
- Fumagalli, F.; Molteni, R.; Racagni, G.; Riva, M.A. Stress during development: Impact on neuroplasticity and relevance to psychopathology. Prog. Neurobiol. 2007, 81, 197–217. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C. Brain-Derived Neurotrophic Factor, Depression, and Physical Activity: Making the Neuroplastic Connection. Neural Plast. 2017, 2017, 7260130. [Google Scholar] [CrossRef] [PubMed]
- Godoy, L.D.; Rossignoli, M.T.; Delfino-Pereira, P.; Garcia-Cairasco, N.; Umeoka, E.H.d.L. A comprehensive overview on stress neurobiology: Basic concepts and clinical implications. Front. Behav. Neurosci. 2018, 12, 127. [Google Scholar] [CrossRef]
- Umeoka, E.H.L.; van Leeuwen, J.M.C.; Vinkers, C.H.; Joëls, M. The Role of Stress in Bipolar Disorder. Curr. Top. Behav. Neurosci. 2021, 48, 21–39. [Google Scholar] [CrossRef] [PubMed]
- Al’absi, M.; Ginty, A.T.; Lovallo, W.R. Neurobiological mechanisms of early life adversity, blunted stress reactivity and risk for addiction. Neuropharmacology 2021, 188, 108519. [Google Scholar] [CrossRef]
- Namkung, H.; Kim, S.H.; Sawa, A. The Insula: An Underestimated Brain Area in Clinical Neuroscience, Psychiatry, and Neurology. Trends Neurosci. 2017, 40, 200–207. [Google Scholar] [CrossRef]
- Sapolsky, R.M. Stress and plasticity in the limbic system. Neurochem. Res. 2003, 28, 1735–1742. [Google Scholar] [CrossRef]
- Leonard, B.E. HPA and immune axes in stress: Involvement of the serotonergic system. Neuroimmunomodulation 2006, 13, 268–276. [Google Scholar] [CrossRef]
- Sotres-Bayon, F.; Cain, C.K.; LeDoux, J.E. Brain mechanisms of fear extinction: Historical perspectives on the contribution of prefrontal cortex. Biol. Psychiatry 2006, 60, 329–336. [Google Scholar] [CrossRef]
- Averill, L.A.; Averill, C.L.; Kelmendi, B.; Abdallah, C.G.; Southwick, S.M. Stress Response Modulation Underlying the Psychobiology of Resilience. Curr. Psychiatry Rep. 2018, 20, 27. [Google Scholar] [CrossRef]
- Jaferi, A.; Bhatnagar, S. Corticosterone can act at the posterior paraventricular thalamus to inhibit hypothalamic-pituitary-adrenal activity in animals that habituate to repeated stress. Endocrinology 2006, 147, 4917–4930. [Google Scholar] [CrossRef]
- Caruso, A.; Nicoletti, F.; Mango, D.; Saidi, A.; Orlando, R.; Scaccianoce, S. Stress as risk factor for Alzheimer’s disease. Pharmacol. Res. 2018, 132, 130–134. [Google Scholar] [CrossRef]
- Merz, C.J.; Wolf, O.T. How stress hormones shape memories of fear and anxiety in humans. Neurosci. Biobehav. Rev. 2022, 142, 1049012022. [Google Scholar]
- Yamashita, P.S.; Spiacci , A.; Hassel, J.E., Jr.; Lowry, C.A.; Zangrossi, H., Jr. Disinhibition of the rat prelimbic cortex promotes serotonergic activation of the dorsal raphe nucleus and panicolytic-like behavioral effects. J. Psychopharmacol. 2017, 31, 704–714. [Google Scholar] [CrossRef]
- Robbins, T.W. Chemistry of the mind: Neurochemical modulation of prefrontal cortical function. J. Comp. Neurol. 2005, 493, 140–146. [Google Scholar] [CrossRef]
- Baratta, M.V.; Christianson, J.P.; Gomez, D.M.; Zarza, C.; Amat, J.; Masini, C.; Watkins, L.; Maier, S. Controllable versus uncontrollable stressors bi-directionally modulate conditioned but not innate fear. Neuroscience 2007, 146, 1495–1503. [Google Scholar] [CrossRef]
- Maier, S.F.; Watkins, L.R. Role of the medial prefrontal cortex in coping and resilience. Brain Res. 2010, 1355, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, S.M.; Wang, Y.; Msghina, M. Behavioral, cortical and autonomic effects of single-dose escitalopram on the induction and regulation of fear and disgust: Comparison with single-session psychological emotion regulation with reappraisal. Front. Psychiatry 2023, 13, 988893. [Google Scholar] [CrossRef] [PubMed]
- Czeh, B.; Simon, M.; van der Hart, M.G.; Schmelting, B.; Hesselink, M.B.; Fuchs, E. Chronic stress decreases the number of parvalbumin-immunoreactive interneurons in the hippocampus: Prevention by treatment with a substance P receptor (NK1) antagonist. Neuropsychopharmacology 2005, 30, 67–79. [Google Scholar] [CrossRef]
- Shin, H.S.; Lee, S.H.; Moon, H.J.; So, Y.H.; Jang, H.; Lee, K.-H.; Ahn, C.; Jung, E.-M. Prolonged stress response induced by chronic stress and corticosterone exposure causes adult neurogenesis inhibition and astrocyte loss in mouse hippocampus. Brain Res. Bull. 2024, 208, 110903. [Google Scholar] [CrossRef]
- Sanders, M.J.; Wiltgen, B.J.; Fanselow, M.S. The place of the hippocampus in fear conditioning. Eur. J. Pharmacol. 2003, 463, 217–223. [Google Scholar] [CrossRef]
- Vyas, A.; Jadhav, S.; Chattarji, S. Prolonged behavioral stress enhances synaptic connectivity in the basolateral amygdala. Neuroscience 2006, 143, 387–393. [Google Scholar] [CrossRef]
- Rosen, J.B.; Donley, M.P. Animal studies of amygdala function in fear and uncertainty: Relevance to human research. Biol. Psychol. 2006, 73, 49–60. [Google Scholar] [CrossRef]
- Ross, J.A.; Van Bockstaele, E.J. The Locus Coeruleus- Norepinephrine System in Stress and Arousal: Unraveling Historical, Current, and Future Perspectives. Front. Psychiatry 2021, 11, 601519. [Google Scholar] [CrossRef]
- Kitayama, N.; Quinn, S.; Bremner, J.D. Smaller volume of anterior cingulate cortex in abuse-related posttraumatic stress disorder. J. Affect. Disord. 2006, 90, 171–174. [Google Scholar] [CrossRef]
- Strasser, A.; Xin, L.; Gruetter, R.; Sandi, C. Nucleus accumbens neurochemistry in human anxiety: A 7 T1 H-MRS study. Eur. Neuropsychopharmacol. 2019, 29, 365–375. [Google Scholar] [CrossRef]
- Ironside, M.; Kumar, P.; Kang, M.S.; Pizzagalli, D.A. Brain mechanisms mediating effects of stress on reward sensitivity. Curr. Opin. Behav. Sci. 2018, 22, 106–113. [Google Scholar] [CrossRef]
- Ravindran, L.N.; Stein, M.B. Pharmacotherapy of PTSD: Premises, principles, and priorities. Brain Res. 2009, 1293, 24–39. [Google Scholar] [CrossRef] [PubMed]
- Morales-Medina, J.C.; Sanchez, F.; Flores, G.; Dumont, Y.; Quirion, R. Morphological reorganization after repeated corticosterone administration in the hippocampus, nucleus accumbens and amygdala in the rat. J. Chem. Neuroanat. 2009, 38, 266–272. [Google Scholar] [CrossRef]
- Baik, J.H. Stress and the dopaminergic reward system. Exp. Mol. Med. 2020, 52, 1879–1890. [Google Scholar] [CrossRef]
- Graeff, F.G. Serotonin, the periaqueductal gray and panic. Neurosci. Biobehav. Rev. 2004, 28, 239–259. [Google Scholar] [CrossRef]
- Ronan, P.; Korzan, W.; Johnson, P.; Lowry, C.; Renner, K.J.; Summers, C.H. Prior stress and vasopressin promote corticotropin-releasing factor inhibition of serotonin release in the central nucleus of the amygdala. Front. Behav. Neurosci. 2023, 17, 1148292. [Google Scholar] [CrossRef]
- Goncharova, N.D.; Vaudry, H.; Carr, J.A. Stress responsiveness of the hypothalamic-pituitary-adrenal axis: Age-related features of the vasopressinergic regulation. Front. Endocrinol. 2013, 4, 37513. [Google Scholar] [CrossRef]
- Yoshii, T. The Role of the Thalamus in Post-Traumatic Stress Disorder. Int. J. Mol. Sci. 2021, 22, 1730. [Google Scholar] [CrossRef]
- De Kloet, E.R.; Joëls, M.; Holsboer, F. Stress and the brain: From adaptation to disease. Nat. Rev. Neurosci. 2005, 6, 463–475. [Google Scholar] [CrossRef]
- Kropp, D.; Hodes, G. Sex Differences in Depression: An Immunological Perspective. Brain Res. Bull. 2023, 196, 34–45. [Google Scholar] [CrossRef]
- Bierhaus, A.; Humpert, P.M.; Nawroth, P.P. Linking stress to inflammation. Anesth. Clin. 2006, 24, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Figueiredo, I.; Sancho, C.; Carro, J.; Castellano, O.; López, D.E. The effects of sertraline administration from adolescence to adulthood on physiological and emotional development in prenatally stressed rats of both sexes. Front. Behav. Neurosci. 2014, 8, 260. [Google Scholar] [CrossRef] [PubMed]
- Oka, T. Psychogenic fever: How psychological stress affects body temperature in the clinical population. Temp. Multidiscip. Biomed. J. 2015, 2, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Lupien, S.J.; Maheu, F.; Tu, M.; Fiocco, A.; Schramek, T.E. The effects of stress and stress hormones on human cognition: Implications for the field of brain and cognition. Brain Cogn. 2007, 65, 209–237. [Google Scholar] [CrossRef]
- Schneiderman, N.; Ironson, G.; Siegel, S.D. Stress and health: Psychological, behavioral, and biological determinants. Annu. Rev. Clin. Psychol. 2005, 1, 607–628. [Google Scholar] [CrossRef]
- Gorman, J.M.; Hirschfeld, R.M.; Ninan, P.T. New developments in the neurobiological basis of anxiety disorders. Psychopharmacol. Bull. 2002, 36 (Suppl. S2), 49–67. [Google Scholar]
- Ostrander, M.M.; Ulrich-Lai, Y.M.; Choi, D.C.; Richtand, N.M.; Herman, J.P. Hypoactivity of the hypothalamo-pituitary-adrenocortical axis during recovery from chronic variable stress. Endocrinology 2006, 147, 2008–2017. [Google Scholar] [CrossRef]
- Umeoka, E.H.L.; Robinson, E.J.; Turimella, S.L.; van Campen, J.S.; Motta-Teixeira, L.C.; Sarabdjitsingh, R.A.; Garcia-Cairasco, N.; Braun, K.; Graan, P.N.; Joëls, M. Hyperthermia-induced seizures followed by repetitive stress are associated with age-dependent changes in specific aspects of the mouse stress system. J. Neuroendocrinol. 2019, 31, 12697. [Google Scholar] [CrossRef]
- Meir Drexler, S.; Merz, C.J.; Jentsch, V.L.; Wolf, O.T. Stress modulation of fear and extinction in psychopathology and treatment. Neuroforum 2020, 26, 133–141. [Google Scholar] [CrossRef]
- Grissom, N.; Bhatnagar, S. Habituation to repeated stress: Get used to it. Neurobiol. Learn. Mem. 2009, 92, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Simpkiss, J.L.; Devine, D.P. Responses of the HPA axis after chronic variable stress: Effects of novel and familiar stressors. Neuro Endocrinol. Lett. 2003, 24, 97–103. [Google Scholar] [PubMed]
- Han, K.S.; Kim, L.; Shim, I. Stress and sleep disorder. Exp. Neurobiol. 2012, 21, 141–150. [Google Scholar] [CrossRef]
- van Campen, J.S.; Jansen, F.E.; de Graan, P.N.E.; Braun , K.P.J.; Joels, M. Early life stress in epilepsy: A seizure precipitant and risk factor for epileptogenesis. Epilepsy Behav. 2014, 38, 160–171. [Google Scholar] [CrossRef]
- Lupien, S.J.; Juster, R.-P.; Raymond, C.; Marin, M.-F. The effects of chronic stress on the human brain: From neurotoxicity, to vulnerability, to opportunity. Front. Neuroendocrin. 2018, 49, 91–105. [Google Scholar] [CrossRef]
- Alloy, L.B.; Seligman, M.E.P. On the Cognitive Component of Learned Helplessness and Depression. Psychol. Learn. Motiv. 1979, 13, 219–276. [Google Scholar] [CrossRef]
- Fowden, A.L.; Li, J.; Forhead, A.J. Glucocorticoids and the preparation for life after birth: Are there long-term consequences of the life insurance? Proc. Nutr. Soc. 1998, 57, 113–122. [Google Scholar] [CrossRef]
- Yerkes, R.M.; Dodson, J.D. The relation of strength of stimulus to rapidity of habit-formation. J. Comp. Neurol. 1908, 18, 459–482. [Google Scholar] [CrossRef]
- Stuart, M.J.; Baune, B.T. Depression and type 2 diabetes: Inflammatory mechanisms of a psychoneuroendocrine co-morbidity. Neurosci. Biobehav. Rev. 2012, 36, 658–676. [Google Scholar] [CrossRef]
- Harris, A.; Seckl, J. Glucocorticoids, prenatal stress and the programming of disease. Horm. Behav. 2011, 59, 279–289. [Google Scholar] [CrossRef]
- Folkman, S. Stress: Appraisal and Coping. In Encyclopedia of Behavioral Medicine; Gellman, M.D., Ed.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Castagné, R.; Garès, V.; Karimi, M.; ChadeauHyam, M.; Vineis, P.; Delpierre, C.; Kelly-Irving, M. Lifepath Consortium. Allostatic load and subsequent all-cause mortality: Which biological markers drive the relationship? Findings from a UK birth cohort. Eur. J. Epidemiol. 2018, 33, 441–458. [Google Scholar] [CrossRef]
- Mikołajewski, D.; Masiak, J.; Mikołajewska, E. Neurophysiological Determinants of Occupational Stress and Burnout. J. Educ. Health Sport. 2023, 21, 33–46. [Google Scholar] [CrossRef]
- Lekander, M.; Elofsson, S.; Neve, I.M.; Hansson, L.O.; Undén, A.L. Self-rated health is related to levels of circulating cytokines. Psychosom. Med. 2004, 66, 559–563. [Google Scholar] [CrossRef]
- Slavich, G.M.; Way, B.M.; Eisenberger, N.I.; Taylor, S.E. Neural sensitivity to social rejection is associated with inflammatory responses to social stress. Proc. Natl. Acad. Sci. USA 2010, 107, 14817–14822. [Google Scholar] [CrossRef]
- Bahari-Javan, S.; Varbanov, H.; Halder, R.; Benito, E.; Kaurani, L.; Burkhardt, S.; Anderson-Schmidt, H.; Anghelescu, I.; Budde, M.; Stilling, R.M.; et al. HDAC1 links early life stress to schizophrenia-like phenotypes. Proc. Natl. Acad. Sci. USA 2017, 114, E4686–E4694. [Google Scholar] [CrossRef]
- Popovic, D.; Schmitt, A.; Kaurani, L.; Senner, F.; Papiol, S.; Malchow, B.; Fischer, A.; Schulze, T.G.; Koutsouleris, N.; Falkai, P. Childhood Trauma in Schizophrenia: Current Findings and Research Perspectives. Front. Neurosci. 2019, 13, 274. [Google Scholar] [CrossRef]
- Schulz, M.A.; Hetzer, S.; Eitel, F.; Asseyer, S.; Meyer-Arndt, L.; Schmitz-Hübsch, T.; Bellmann-Strobl, J.; Cole, J.H.; Gold, S.M.; Paul, F.; et al. Similar neural pathways link psychological stress and brain-age in health and multiple sclerosis. iScience 2023, 26, 107679. [Google Scholar] [CrossRef]
- ter Horst, J.P.; van der Mark, M.H.; Arp, M.; Berger, S.; de Kloet, E.R.; Oitzl, M. Stress or no stress: Mineralocorticoid receptors in the forebrain regulate behavioral adaptation. Neurobiol. Learn. Mem. 2012, 98, 33–40. [Google Scholar] [CrossRef]
- Nederhof, E.; Schmidt, M.V. Mismatch or cumulative stress: Toward an integrated hypothesis of programming effects. Physiol. Behav. 2012, 106, 691–700. [Google Scholar] [CrossRef]
- Romeo, R.D.; Tang, A.C.; Sullivan, R.M. Early-Life Experiences: Enduring Behavioral, Neurological, and Endocrinological Consequences. Horm. Brain Behav. 2009, 62, 1975–2006. [Google Scholar]
- Choy, K.H.; de Visser, Y.P.; van den Buusem, M. The effect of ‘two hit’ neonatal and young-adult stress on dopaminergic modulation of prepulse inhibition and dopamine receptor density. Br. J. Pharmacol. 2009, 156, 388–396. [Google Scholar] [CrossRef]
- Sood, A.; Chaudhari, K.; Vaidya, V.A. Acute stress evokes sexually dimorphic, stressor-specific patterns of neural activation across multiple limbic brain regions in adult rats. Stress 2018, 21, 136–150. [Google Scholar] [CrossRef] [PubMed]
- Dagyte, G.; Van der Zee, E.A.; Postema, F.; Luiten, P.G.M.; Boer, J.D.; Trentani, A.; Meerlo, P. Chronic but not acute foot-shock stress leads to temporary suppression of cell proliferation in rat hippocampus. Neuroscience 2009, 162, 904–913. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, C.F.; Phifer, J.; Bradley, B.; Ressler, K.J. Risk and resilience: Genetic and environmental influences on development of the stress response. Depress. Anxiety 2009, 26, 984–992. [Google Scholar] [CrossRef] [PubMed]
- Godoy, D.L.; Umeoka, E.H.L.; Ribeiro, E.; Santos, V.R.; Antunes-Rodrigues, J.; Joca, S.R.L.; Garcia-Cairasco, N. Multimodal early-life stress induces biological changes associated to psychopathologies. Horm. Behav. 2018, 100, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Alleva, E.; Francia, N. Psychiatric vulnerability: Suggestions from animal models and role of neurotrophins. Neurosci. Biobehav. Rev. 2009, 33, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Filipović, D.; Zlatković, J.; Gass, P.; Inta, D. The differential effects of acute vs. chronic stress and their combination on hippocampal parvalbumin and inducible heat shock protein 70 expression. Neuroscience 2013, 236, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Zaiser, J.; Zimmermann, S.; Gessner, T.; Hoffmann, S.; Gerhardt, S.; Berhe, O.; Bekier, N.K.; Abel, M.; Radler, P.; Langejürgen, J.; et al. Stress-Induced Sensitization of Insula Activation Predicts Alcohol Craving and Alcohol Use in Alcohol Use Disorder. Biol. Psychiatry 2024, 95, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Lavretsky, H.; Newhouse, P.A. Stress, inflammation, and aging. Am. J. Geriatr. Psychiatry 2012, 20, 729–733. [Google Scholar] [CrossRef] [PubMed]
- Bartolomucci, A.; Palanza, P.; Parmigiani, S.; Pederzani, T.; Merlot, E.; Neveu, P.J.; Dantzer, R. Chronic psychosocial stress down-regulates central cytokines mRNA. Brain Res. Bull. 2003, 62, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Dronjak, S.; Gavrilović, L.; Dragana, G.; Filipović, F.; Radojčicradojčić, M.B. Immobilization and cold stress affect sympatho-adrenomedullary system and pituitary-adrenocortical axis of rats exposed to long-term isolation and crowding. Physiol. Behav. 2004, 81, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Almutabagani, L.F.; Almanqour, R.A.; Alsabhan, J.F.; Alhossan, A.M.; Alamin, M.A.; Alrajeh, H.M.; Alonazi, A.S.; El-Malky, A.M.; Alrasheed, N.M. Inflammation and Treatment-Resistant Depression from Clinical to Animal Study: A Possible Link? Neurol. Int. 2023, 15, 100–120. [Google Scholar] [CrossRef]
- Altamura, A.C.; Pozzoli, S.; Fiorentini, A.; Dell’osso, B. Neurodevelopment and inflammatory patterns in schizophrenia in relation to pathophysiology. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 42, 63–70. [Google Scholar] [CrossRef]
- Pariante, C.M.; Pearce, B.D.; Pisell, T.L.; Sanchez, C.I.; Po, C.; Su, C.; Miller, A.H. The Proinflammatory Cytokine, Interleukin-1α, Reduces Glucocorticoid Receptor Translocation and Function. Endocrinology 1999, 140, 4359–4366. [Google Scholar] [CrossRef] [PubMed]
- Niitsu, K.; Rice, M.J.; Houfek, J.F.; Stoltenberg, S.F.; Kupzyk, K.A.; Barron, C.R. A Systematic Review of Genetic Influence on Psychological Resilience. Biol. Res. Nurs. 2019, 21, 61–71. [Google Scholar] [CrossRef] [PubMed]
- de Kloet, E.R.; Joëls, M. The cortisol switch between vulnerability and resilience. Mol. Psychiatry 2023, 29, 20–34. [Google Scholar] [CrossRef] [PubMed]
- Daskalakis, N.P.; Meijer, O.C.; Ron De Kloet, E. Mineralocorticoid receptor and glucocorticoid receptor work alone and together in cell-type-specific manner: Implications for resilience prediction and targeted therapy. Neurobiol. Stress 2022, 18, 100455. [Google Scholar] [CrossRef] [PubMed]
- Masten, A.S.; Narayan, A.J. Child development in the context of disaster, war, and terrorism: Pathways of risk and resilience. Annu. Rev. Psychol. 2012, 63, 227–257. [Google Scholar] [CrossRef] [PubMed]
- Musillo, C.; Berry, A.; Cirulli, F. Prenatal exposure to psychological or metabolic stress increases the risk for psychiatric disorders: The “funnel effect” model. Neurosci. Biobehav. Rev. 2022, 136, 104624. [Google Scholar] [CrossRef]
- Imanaka, A.; Morinobu, S.; Toki, S.; Yamawaki, S. Importance of early environment in the development of post-traumatic stress disorder-like behaviors. Behav. Brain Res. 2006, 173, 129–137. [Google Scholar] [CrossRef]
- Bale, T.; Epperson, C. Sex differences and stress across the lifespan. Nat. Neurosci. 2015, 18, 1413–1420. [Google Scholar] [CrossRef]
- Stadtler, H.; Neigh, G.N. Sex Differences in the Neurobiology of Stress. Psychiatr. Clin. N. Am. 2023, 46, 427–446. [Google Scholar] [CrossRef]
- Schneider, K.M.; Blank, N.; Alvarez, Y.; Thum, K.; Lundgren, P.; Litichevskiy, L.; Sleeman, M.; Bahnsen, K.; Kim, J.; Kardo, S.; et al. The enteric nervous system relays psychological stress to intestinal inflammation. Cell 2023, 186, 2823–2838.e20. [Google Scholar] [CrossRef]
- Baratta, M.V.; Rozeske, R.R.; Maier, S.F. Understanding stress resilience. Front. Behav. Neurosci. 2013, 7, 158. [Google Scholar] [CrossRef] [PubMed]
- Duman, R.S.; Shinohara, R.; Fogaça, M.V.; Hare, B. Neurobiology of rapid-acting antidepressants: Convergent effects on GluA1-synaptic function. Mol. Psychiatry 2019, 24, 1816–1832. [Google Scholar] [CrossRef]
- Pereira-Figueiredo, I.; Castellano, O.; Riolobos, A.S.; Ferreira-Dias, G.; López, D.E.; Sancho, C. Long-term sertraline intake reverses the behavioral changes induced by prenatal stress in rats in a sex-dependent way. Front. Behav. Neurosci. 2017, 11, 99. [Google Scholar] [CrossRef] [PubMed]
- Ulloa, J.L.; Castañeda, P.; Berríos, C.; Díaz-Veliz, G.; Mora, S.; Bravo, J.; Araneda, K.; Menares, C.; Morales, P.; Fiedler, J. Comparison of the antidepressant sertraline on differential depression-like behaviors elicited by restraint stress and repeated corticosterone administration. Pharmacol. Biochem. Behav. 2010, 97, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Hirooka, N.; Kusano, T.; Kinoshita, S.; Nakamoto, H. Influence of Perceived Stress and Stress Coping Adequacy on Multiple Health-Related Lifestyle Behaviors. Int. J. Environ. Res. Public Health 2022, 19, 284. [Google Scholar] [CrossRef]
- Ingledew, D.K.; McDonagh, G. What Coping Functions are Served when Health Behaviours are Used as Coping Strategies? J. Health Psychol. 1998, 3, 195–213. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira-Figueiredo, I.; Umeoka, E.H.L. Stress: Influences and Determinants of Psychopathology. Encyclopedia 2024, 4, 1026-1043. https://doi.org/10.3390/encyclopedia4020066
Pereira-Figueiredo I, Umeoka EHL. Stress: Influences and Determinants of Psychopathology. Encyclopedia. 2024; 4(2):1026-1043. https://doi.org/10.3390/encyclopedia4020066
Chicago/Turabian StylePereira-Figueiredo, Inês, and Eduardo H. L. Umeoka. 2024. "Stress: Influences and Determinants of Psychopathology" Encyclopedia 4, no. 2: 1026-1043. https://doi.org/10.3390/encyclopedia4020066
APA StylePereira-Figueiredo, I., & Umeoka, E. H. L. (2024). Stress: Influences and Determinants of Psychopathology. Encyclopedia, 4(2), 1026-1043. https://doi.org/10.3390/encyclopedia4020066