Cushion Gas Consideration for Underground Hydrogen Storage
Abstract
:1. Introduction
2. Overview of Underground Hydrogen Storage
2.1. Porous Media
2.2. Salt Caverns
3. Cushion Gas in UHS
4. Different Types of Cushion Gas for UHS
4.1. Carbon Dioxide (CO2)
4.2. Nitrogen (N2)
4.3. Methane (CH4)
5. Challenges and Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Okolie, J.A.; Patra, B.R.; Mukherjee, A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Futuristic applications of hydrogen in energy, biorefining, aerospace, pharmaceuticals and metallurgy. Int. J. Hydrogen Energy 2021, 46, 8885–8905. [Google Scholar] [CrossRef]
- Okolie, J.A.; Nanda, S.; Dalai, A.K.; Berruti, F.; Kozinski, J.A. A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas. Renew. Sustain. Energy Rev. 2020, 119, 109546. [Google Scholar] [CrossRef]
- Tarhan, C.; Çil, M.A. A study on hydrogen, the clean energy of the future: Hydrogen storage methods. J. Energy Storage 2021, 40, 102676. [Google Scholar] [CrossRef]
- Laban, M.P. Hydrogen Storage in Salt Caverns: Chemical Modelling and Analysis of Large-Scale Hydrogen Storage in Underground Salt Caverns. 2020. Available online: https://repository.tudelft.nl/islandora/object/uuid%3Ad647e9a5-cb5c-47a4-b02f-10bc48398af4 (accessed on 1 April 2023).
- Wittich, K.; Kraemer, M.; Bottke, N.; Schunk, S.A. Catalytic Dry Reforming of Methane: Insights from Model Systems. ChemCatChem 2020, 12, 2130–2147. [Google Scholar] [CrossRef]
- Lepage, T.; Kammoun, M.; Schmetz, Q.; Richel, A. Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment. Biomass Bioenergy 2021, 144, 105920. [Google Scholar] [CrossRef]
- Yates, J.; Daiyan, R.; Patterson, R.; Egan, R.; Amal, R.; Ho-Baille, A.; Chang, N.L. Techno-economic Analysis of Hydrogen Electrolysis from Off-Grid Stand-Alone Photovoltaics Incorporating Uncertainty Analysis. Cell Rep. Phys. Sci. 2020, 1, 100209. [Google Scholar] [CrossRef]
- Michalski, J.; Bünger, U.; Crotogino, F.; Donadei, S.; Schneider, G.-S.; Pregger, T.; Cao, K.-K.; Heide, D. Hydrogen generation by electrolysis and storage in salt caverns: Potentials, economics and systems aspects with regard to the German energy transition. Int. J. Hydrogen Energy 2017, 42, 13427–13443. [Google Scholar] [CrossRef]
- Møller, K.T.; Sheppard, D.; Ravnsbæk, D.B.; Buckley, C.E.; Akiba, E.; Li, H.-W.; Jensen, T.R. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage. Energies 2017, 10, 1645. [Google Scholar] [CrossRef]
- Ennis-King, J.; Michael, K.; Strand, J.; Sander, R.; Green, C. Underground Storage of Hydrogen: Mapping Out the Options for Australia; Future Fuel CRC: Wollongong, Australia, 2021. [Google Scholar]
- Ahluwalia, R.; Peng, J. Dynamics of cryogenic hydrogen storage in insulated pressure vessels for automotive applications. Int. J. Hydrogen Energy 2008, 33, 4622–4633. [Google Scholar] [CrossRef]
- Kanaani, M.; Sedaee, B.; Asadian-Pakfar, M. Role of Cushion Gas on Underground Hydrogen Storage in Depleted Oil Reservoirs. J. Energy Storage 2021, 45, 103783. [Google Scholar] [CrossRef]
- Epelle, E.I.; Obande, W.; Udourioh, G.A.; Afolabi, I.C.; Desongu, K.S.; Orivri, U.; Gunes, B.; Okolie, J.A. Perspectives and prospects of underground hydrogen storage and natural hydrogen. Sustain. Energy Fuels 2022, 6, 3324–3343. [Google Scholar] [CrossRef]
- Duggal, R.; Rayudu, R.; Hinkley, J.; Burnell, J.; Wieland, C.; Keim, M. A comprehensive review of energy extraction from low-temperature geothermal resources in hydrocarbon fields. Renew. Sustain. Energy Rev. 2021, 154, 111865. [Google Scholar] [CrossRef]
- Iloejesi, C.O.; Beckingham, L.E. Assessment of Geochemical Limitations to Utilizing CO2 as a Cushion Gas in Compressed Energy Storage Systems. Environ. Eng. Sci. 2021, 38, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Tarkowski, R.; Uliasz-Misiak, B. Towards underground hydrogen storage: A review of barriers. Renew. Sustain. Energy Rev. 2022, 162, 112451. [Google Scholar] [CrossRef]
- Sadeghi, S.; Sedaee, B. Mechanistic simulation of cushion gas and working gas mixing during underground natural gas storage. J. Energy Storage 2021, 46, 103885. [Google Scholar] [CrossRef]
- Hunt, J.M.; Jamieson, G.W. Oil and Organic Matter in Source Rocks of Petroleum. AAPG Bull. 1956, 40, 477–488. [Google Scholar] [CrossRef]
- WG, P.K.; Ranjith, P.G. An overview of underground hydrogen storage with prospects and challenges for the Australian context. Geoenergy Sci. Eng. 2023, 231, 212354. [Google Scholar] [CrossRef]
- Miocic, J.; Heinemann, N.; Edlmann, K.; Scafidi, J.; Molaei, F.; Alcalde, J. Underground hydrogen storage: A review. Geol. Soc. Lond. Spéc. Publ. 2022, 528, 73–86. [Google Scholar] [CrossRef]
- Gbadamosi, A.O.; Muhammed, N.S.; Patil, S.; Al Shehri, D.; Haq, B.; Epelle, E.I.; Mahmoud, M.; Kamal, M.S. Underground hydrogen storage: A critical assessment of fluid-fluid and fluid-rock interactions. J. Energy Storage 2023, 72, 108473. [Google Scholar] [CrossRef]
- Bin Navaid, H.; Emadi, H.; Watson, M. A comprehensive literature review on the challenges associated with underground hydrogen storage. Int. J. Hydrogen Energy 2023, 48, 10603–10635. [Google Scholar] [CrossRef]
- Bünger, U.; Michalski, J.; Crotogino, F.; Kruck, O. Large-scale underground storage of hydrogen for the grid integration of renewable energy and other applications. Compend. Hydrog. Energy 2016, 4, 133–163. [Google Scholar] [CrossRef]
- Małachowska, A.; Łukasik, N.; Mioduska, J.; Gębicki, J. Hydrogen Storage in Geological Formations—The Potential of Salt Caverns. Energies 2022, 15, 5038. [Google Scholar] [CrossRef]
- Liu, W.; Li, Q.; Yang, C.; Shi, X.; Wan, J.; Jurado, M.J.; Li, Y.; Jiang, D.; Chen, J.; Qiao, W.; et al. The role of underground salt caverns for large-scale energy storage: A review and prospects. Energy Storage Mater. 2023, 63, 103045. [Google Scholar] [CrossRef]
- Minougou, J.D.; Gholami, R.; Andersen, P. Underground hydrogen storage in caverns: Challenges of impure salt structures. Earth-Sci. Rev. 2023, 247, 104599. [Google Scholar] [CrossRef]
- Dwivedi, S.K.; Vishwakarma, M. Hydrogen embrittlement in different materials: A review. Int. J. Hydrogen Energy 2018, 43, 21603–21616. [Google Scholar] [CrossRef]
- Heinemann, N.; Scafidi, J.; Pickup, G.; Thaysen, E.M.; Hassanpouryouzband, A.; Wilkinson, M.; Satterley, A.K.; Booth, M.G.; Edlmann, K.; Haszeldine, R.S. Hydrogen storage in saline aquifers: The role of cushion gas for injection and production. Int. J. Hydrogen Energy 2021, 46, 39284–39296. [Google Scholar] [CrossRef]
- Abdellatif, M.; Hashemi, M.; Azizmohammadi, S. Large-scale underground hydrogen storage: Integrated modeling of res-ervoir-wellbore system. Int. J. Hydrogen Energy 2023, 48, 19160–19171. [Google Scholar] [CrossRef]
- Huang, T.; Moridis, G.J.; Blasingame, T.A.; Afifi, A.M.; Yan, B. Feasibility Analysis of Hydrogen Storage in Depleted Natural Reservoirs Through a Multi-Phase Reservoir Simulator. In Proceedings of the SPE Reservoir Characterisation and Simulation Conference and Exhibition, Abu Dhabi, United Arab Emirates, 24–26 January 2023; p. D031S017R001. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, Y.; Chen, C. Numerical simulation of the impact of different cushion gases on underground hydrogen storage in aquifers based on an experimentally-benchmarked equation-of-state. Int. J. Hydrogen Energy 2024, 50, 495–511. [Google Scholar] [CrossRef]
- Zamehrian, M.; Sedaee, B. A comparative analysis of gas mixing during the underground hydrogen storage in a conventional and fractured reservoir. Gas Sci. Eng. 2024, 122, 205217. [Google Scholar] [CrossRef]
- Jahanbakhsh, A.; Potapov-Crighton, A.L.; Mosallanezhad, A.; Kaloorazi, N.T.; Maroto-Valer, M.M. Underground hydrogen storage: A UK perspective. Renew. Sustain. Energy Rev. 2024, 189, 114001. [Google Scholar] [CrossRef]
- Wang, G.; Pickup, G.E.; Sorbie, K.S.; Mackay, E.J. Driving Factors for Purity of Withdrawn Hydrogen: A Numerical Study of Underground Hydrogen Storage with Various Cushion Gases. In Proceedings of the Society of Petroleum Engineers—SPE EuropEC—Europe Energy Conference featured at the 83rd EAGE Annual Conference and Exhibition, EURO 2022, Madrid, Spain, 6–9 June 2022. [Google Scholar] [CrossRef]
- Tarkowski, R. Underground hydrogen storage: Characteristics and prospects. Renew. Sustain. Energy Rev. 2019, 105, 86–94. [Google Scholar] [CrossRef]
- Hydrocarbon|Definition, Types, & Facts|Britannica. Available online: https://www.britannica.com/science/hydrocarbon (accessed on 1 April 2023).
- Welge, H.J.; Johnson, E.F.; Ewing, S.P., Jr.; Brinkman, F.H. The Linear Displacement of Oil from Porous Media by Enriched Gas. onepetro.org. 1961. Available online: https://onepetro.org/JPT/article-abstract/13/08/787/162253 (accessed on 1 April 2023).
- Muhammed, N.S.; Haq, B.; Al Shehri, D.; Al-Ahmed, A.; Rahman, M.M.; Zaman, E. A review on underground hydrogen storage: Insight into geological sites, influencing factors and future outlook. Energy Rep. 2021, 8, 461–499. [Google Scholar] [CrossRef]
- Van Der Meer, L.G.H.; Assignor, A.O. Is Carbon Dioxide in Case of Natural Gas Storage a Feasible Cushion Gas? Classification Report Title Abstract Report Text Appendices Number of Pages 17 (incl. appendices) Number of Appendices. 2008. Available online: www.tno.nl (accessed on 27 April 2024).
- Oldenburg, C.M. Carbon Dioxide as Cushion Gas for Natural Gas Storage. Energy Fuels 2002, 17, 240–246. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Y.; Pan, B.; Liu, Z.; Jin, Z.; Iglauer, S. Molecular simulation on H2 adsorption in nanopores and effects of cushion gas: Implications for underground hydrogen storage in shale reservoirs. Fuel 2024, 361, 130621. [Google Scholar] [CrossRef]
- Lal, R. Carbon sequestration. Philos. Trans. R. Soc. B Biol. Sci. 2007, 363, 815–830. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.; Jadhawar, P. Optimizing underground hydrogen storage in aquifers: The impact of cushion gas type. Int. J. Hydrogen Energy 2024, 52, 1537–1549. [Google Scholar] [CrossRef]
- Zamehrian, M.; Sedaee, B. Underground hydrogen storage in a partially depleted gas condensate reservoir: Influence of cushion gas. J. Pet. Sci. Eng. 2022, 212, 110304. [Google Scholar] [CrossRef]
- Jiang, G.; Li, Y.; Zhang, M. Evaluation of gas wettability and its effects on fluid distribution and fluid flow in porous media. Pet. Sci. 2013, 10, 515–527. [Google Scholar] [CrossRef]
- Muhammed, N.S.; Haq, B.; Al Shehri, D.A. Hydrogen storage in depleted gas reservoirs using nitrogen cushion gas: A contact angle and surface tension study. Int. J. Hydrogen Energy 2023, 48, 38782–38807. [Google Scholar] [CrossRef]
- Khalaf, M.H.; Mansoori, G. Asphaltenes aggregation during petroleum reservoir air and nitrogen flooding. J. Pet. Sci. Eng. 2019, 173, 1121–1129. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Chen, X.; Sun, Y.; Zhao, L.; Han, T.; Li, T.; Weng, L.; Li, Y. A nitrogen supplement to regulate the degradation of petroleum hydrocarbons in soil microbial electrochemical remediation. Chem. Eng. J. 2021, 426, 131202. [Google Scholar] [CrossRef]
- Namdar, H.; Khodapanah, E.; Tabatabaei-Nejad, S.A. Comparison of base gas replacement using nitrogen, flue gas and air during underground natural gas storage in a depleted gas reservoir. Energy Sources Part. A Recover. Util. Environ. Eff. 2019, 42, 2778–2793. [Google Scholar] [CrossRef]
- Doan, Q.T.; Keshavarz, A.; Miranda, C.R.; Behrenbruch, P.; Iglauer, S. A prediction of interfacial tension by using molecular dynamics simulation: A study on effects of cushion gas (CO2, N2 and CH4) for Underground Hydrogen Storage. Int. J. Hydrogen Energy 2024, 50, 1607–1615. [Google Scholar] [CrossRef]
- Methane and Climate Change—Methane Tracker 2021—Analysis—IEA. Available online: https://www.iea.org/reports/methane-tracker-2021/methane-and-climate-change (accessed on 19 April 2023).
- Kim, J.; Maiti, A.; Lin, L.-C.; Stolaroff, J.K.; Smit, B.; Aines, R.D. New materials for methane capture from dilute and medium-concentration sources. Nat. Commun. 2013, 4, 1694. [Google Scholar] [CrossRef]
- Muhammed, N.S.; Haq, B.; Al Shehri, D. Role of methane as a cushion gas for hydrogen storage in depleted gas reservoirs. Int. J. Hydrogen Energy 2023, 48, 29663–29681. [Google Scholar] [CrossRef]
- Mirchi, V.; Dejam, M.; Alvarado, V.; Akbarabadi, M. Effect of Cushion Gas on Hydrogen/Brine Flow Behavior in Oil-Wet Rocks with Application to Hydrogen Storage in Depleted Oil and Gas Reservoirs. Energy Fuels 2023, 37, 15231–15243. [Google Scholar] [CrossRef]
- Zeng, L.; Sander, R.; Chen, Y.; Xie, Q. Hydrogen Storage Performance During Underground Hydrogen Storage in Depleted Gas Reservoirs: A Review. Engineering 2024, in press. [Google Scholar] [CrossRef]
- Zivar, D.; Kumar, S.; Foroozesh, J. Underground hydrogen storage: A comprehensive review. Int. J. Hydrogen Energy 2021, 46, 23436–23462. [Google Scholar] [CrossRef]
- Amo, W.A. Costs of Storing and Transporting Hydrogen; National Renewable Energy Laboratory: Golden, CO, USA, 1999.
- Kobos, P.H.; Lord, A.S.; Borns, D.J.; Klise, G.T. A Life Cycle Cost Analysis Framework for Geologic Storage of Hydrogen: A User’s Tool (No. SAND2011-6221); Sandia National Laboratories (SNL): Albuquerque, NM, USA; Livermore, CA, USA, 2011.
- Lord, A.S.; Kobos, P.H.; Borns, D.J. Geologic storage of hydrogen: Scaling up to meet city transportation demands. Int. J. Hydrogen Energy 2014, 39, 15570–15582. [Google Scholar] [CrossRef]
- Sambo, C.; Dudun, A.; Samuel, S.A.; Esenenjor, P.; Muhammed, N.S.; Haq, B. A review on worldwide underground hydrogen storage operating and potential fields. Int. J. Hydrogen Energy 2022, 47, 22840–22880. [Google Scholar] [CrossRef]
- Song, Y.; Song, R.; Liu, J. Hydrogen tightness evaluation in bedded salt rock cavern: A case study of Jintan, China. Int. J. Hydrogen Energy 2023, 48, 30489–30506. [Google Scholar] [CrossRef]
- Kentish, S.E.; Scholes, C.A.; Stevens, G.W. Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Pat. Chem. Eng. 2008, 1, 52–66. [Google Scholar] [CrossRef]
- Available online: https://www.engineeringtoolbox.com/ (accessed on 27 April 2024).
- Available online: http://www.peacesoftware.de/einigewerte/stickstoff_e.html (accessed on 27 April 2024).
- Smith, E.K.; Barakat, S.M.; Akande, O.; Ogbaga, C.C.; Okoye, P.U.; Okolie, J.A. Subsurface combustion and gasification for hydrogen production: Reaction mechanism, techno-economic and lifecycle assessment. Chem. Eng. J. 2024, 480, 148095. [Google Scholar] [CrossRef]
- Amiri, I.I.; Zivar, D.; Ayatollahi, S.; Mahani, H. The effect of gas solubility on the selection of cushion gas for underground hydrogen storage in aquifers. J. Energy Storage 2024, 80, 110264. [Google Scholar] [CrossRef]
- Aslannezhad, M.; Ali, M.; Kalantariasl, A.; Sayyafzadeh, M.; You, Z.; Iglauer, S.; Keshavarz, A. A review of hydrogen/rock/brine interaction: Implications for Hydrogen Geo-storage. Prog. Energy Combust. Sci. 2023, 95, 101066. [Google Scholar] [CrossRef]
- Thiyagarajan, S.R.; Emadi, H.; Hussain, A.; Patange, P.; Watson, M. A comprehensive review of the mechanisms and efficiency of underground hydrogen storage. J. Energy Storage 2022, 51, 104490. [Google Scholar] [CrossRef]
Study Focus and Key Issues Addressed | References |
---|---|
| [13] |
| [16] |
| [17] |
| [18] |
| [19] |
| [20] |
| [21] |
| [22] |
| This study |
Cushion Gas | Advantages | Limitations |
---|---|---|
CO2 |
|
|
N2 |
|
|
Methane/Natural gas |
|
|
Physical Properties | CH4 | CO2 | N2 | H2 |
---|---|---|---|---|
Density (kg/m3) | 0.657 | 1.795 | 1.251 | 0.08375 |
Water solubility (g/L) | 0.022 | 1.48 | 0.0016 | |
Dynamic viscosity (mPa.s) | 0.011 | 1.495 | 17.83 | 0.009 |
Molecular weight | 16.042 | 44.009 | 28.02 | 2.016 |
Critical pressure and temperature in MPa and °C respectively. | 4.60 for pressure and −82.59 for temperature | 7.38 for pressure and 30.98 for temperature | 3.39 for pressure and −146.9 for temperature | 1.30 for pressure and −240.0 for temperature |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prigmore, S.; Okon-Akan, O.A.; Egharevba, I.P.; Ogbaga, C.C.; Okoye, P.U.; Epelle, E.; Okolie, J.A. Cushion Gas Consideration for Underground Hydrogen Storage. Encyclopedia 2024, 4, 847-863. https://doi.org/10.3390/encyclopedia4020054
Prigmore S, Okon-Akan OA, Egharevba IP, Ogbaga CC, Okoye PU, Epelle E, Okolie JA. Cushion Gas Consideration for Underground Hydrogen Storage. Encyclopedia. 2024; 4(2):847-863. https://doi.org/10.3390/encyclopedia4020054
Chicago/Turabian StylePrigmore, Sadie, Omolabake Abiodun Okon-Akan, Imuentinyan P. Egharevba, Chukwuma C. Ogbaga, Patrick U. Okoye, Emmanuel Epelle, and Jude A. Okolie. 2024. "Cushion Gas Consideration for Underground Hydrogen Storage" Encyclopedia 4, no. 2: 847-863. https://doi.org/10.3390/encyclopedia4020054
APA StylePrigmore, S., Okon-Akan, O. A., Egharevba, I. P., Ogbaga, C. C., Okoye, P. U., Epelle, E., & Okolie, J. A. (2024). Cushion Gas Consideration for Underground Hydrogen Storage. Encyclopedia, 4(2), 847-863. https://doi.org/10.3390/encyclopedia4020054