Brainstem fMRI
Definition
:1. Introduction
2. Technical Challenges of Brainstem fMRI
2.1. Motion Artifacts
2.2. Physiological Noise
2.3. Susceptibility-Induced BOLD Signal Losses/Distortions
2.4. Thermal Noise and Low-Frequency Drift
2.5. Localizing Brainstem Nuclei
3. Advances in Brainstem fMRI
4. Further Directions
Funding
Conflicts of Interest
Entry Link on the Encyclopedia Platform
References
- Beissner, F.; Baudrexel, S. Investigating the human brainstem with structural and functional MRI. Front. Hum. Neurosci. 2014, 8, 116. [Google Scholar] [CrossRef]
- Ramachandran, V.S. (Ed.) Encyclopedia of the Human Brain, 1st ed.; Academic Press: San Diego, CA, USA, 2002; Volume 4, pp. 543–906. [Google Scholar]
- Standring, S. Gray’s Anatomy; Churchill Livingstone: London, UK, 2004; pp. 441–724. [Google Scholar]
- Sclocco, R.; Beissner, F.; Bianciardi, M.; Polimeni, J.R.; Napadow, V. Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI. Neuroimage 2018, 168, 412–426. [Google Scholar] [CrossRef]
- Oakes, T.R.; Johnstone, T.; Walsh, K.O.; Greischar, L.L.; Alexander, A.L.; Fox, A.S.; Davidson, R.J. Comparison of fMRI motion correction software tools. Neuroimage 2005, 28, 529–543. [Google Scholar] [CrossRef]
- Wei, P.; Li, J.; Gao, F.; Ye, D.; Zhong, Q.; Liu, S. Resting state networks in human cervical spinal cord observed with fMRI. Eur. J. Appl. Physiol. 2010, 108, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Beissner, F.; Deichmann, R.; Baudrexel, S. fMRI of the brainstem using dual-echo EPI. Neuroimage 2011, 55, 1593–1599. [Google Scholar] [CrossRef] [PubMed]
- Whedon, J.M.; Glassey, D. Cerebrospinal fluid stasis and its clinical significance. Altern. Ther. Health Med. 2009, 15, 54–60. [Google Scholar] [PubMed]
- Budgell, B.S.; Bolton, P.S. Cerebrospinal fluid pressure in the anesthetized rat. J. Manip. Physiol. Ther. 2007, 30, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Maier, S.E.; Hardy, C.J.; Jolesz, F.A. Brain and cerebrospinal fluid motion: Real-time quantification with M-mode MR imaging. Radiology 1994, 193, 477–483. [Google Scholar] [CrossRef]
- Enzmann, D.R.; Pelc, N.J. Brain motion: Measurement with phase-contrast MR imaging. Radiology 1992, 185, 653–660. [Google Scholar] [CrossRef]
- Brooks, J.C.; Faull, O.K.; Pattinson, K.T.; Jenkinson, M. Physiological noise in brainstem FMRI. Front. Hum. Neurosci. 2013, 7, 623. [Google Scholar] [CrossRef]
- Petersch, B.; Bogner, J.; Fransson, A.; Lorang, T.; Pötter, R. Effects of geometric distortion in 0.2T MRI on radiotherapy treatment planning of prostate cancer. Radiother. Oncol. 2004, 71, 55–64. [Google Scholar] [CrossRef]
- Schenck, J.F. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med. Phys. 1996, 23, 815–850. [Google Scholar] [CrossRef]
- Cordes, D.; Turski, P.A.; Sorenson, J.A. Compensation of susceptibility-induced signal loss in echo-planar imaging for functional applications. Magn. Reson. Imaging 2000, 18, 1055–1068. [Google Scholar] [CrossRef]
- Lima Cardoso, P.; Dymerska, B.; Bachratá, B.; Fischmeister, F.P.S.; Mahr, N.; Matt, E.; Trattnig, S.; Beisteiner, R.; Robinson, S.D. The clinical relevance of distortion correction in presurgical fMRI at 7T. Neuroimage 2018, 168, 490–498. [Google Scholar] [CrossRef]
- Weiskopf, N.; Hutton, C.; Josephs, O.; Deichmann, R. Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: A whole-brain analysis at 3 T and 1.5 T. Neuroimage 2006, 33, 493–504. [Google Scholar] [CrossRef]
- Wei, P.; Zou, T.; Lv, Z.; Fan, Y. Functional MRI Reveals Locomotion-Control Neural Circuits in Human Brainstem. Brain Sci. 2020, 10, 757. [Google Scholar] [CrossRef]
- Bodurka, J.; Ye, F.; Petridou, N.; Murphy, K.; Bandettini, P.A. Mapping the MRI voxel volume in which thermal noise matches physiological noise--implications for fMRI. Neuroimage 2007, 34, 542–549. [Google Scholar] [CrossRef]
- Evans, J.W.; Kundu, P.; Horovitz, S.G.; Bandettini, P.A. Separating slow BOLD from non-BOLD baseline drifts using multi-echo fMRI. Neuroimage 2015, 105, 189–197. [Google Scholar] [CrossRef]
- Yan, L.; Zhuo, Y.; Ye, Y.; Xie, S.X.; An, J.; Aguirre, G.K.; Wang, J. Physiological origin of low-frequency drift in blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI). Magn. Reson. Med. 2009, 61, 819–827. [Google Scholar] [CrossRef]
- Klein, A.; Andersson, J.; Ardekani, B.A.; Ashburner, J.; Avants, B.; Chiang, M.-C.; Christensen, G.E.; Collins, D.L.; Gee, J.; Hellier, P.; et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 2009, 46, 786–802. [Google Scholar] [CrossRef]
- Dadar, M.; Fonov, V.S.; Collins, D.L. Alzheimer’s Disease Neuroimaging Initiative. A comparison of publicly available linear MRI stereotaxic registration techniques. Neuroimage 2018, 174, 191–200. [Google Scholar] [CrossRef]
- Napadow, V.; Dhond, R.; Kennedy, D.; Hui, K.K.; Makris, N. Automated brainstem co-registration (ABC) for MRI. Neuroimage 2006, 32, 1113–1119. [Google Scholar] [CrossRef]
- Paxinos, G.; Huang, X.F. Atlas of the Human Brainstem, 1st ed.; Academic Press: San Diego, CA, USA, 1995. [Google Scholar]
- Eickhoff, S.B.; Stephan, K.E.; Mohlberg, H.; Grefkes, C.; Fink, G.R.; Amunts, K.; Zilles, K. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 2005, 25, 1325–1335. [Google Scholar] [CrossRef]
- Oliva, V.; Gregory, R.; Davies, W.E.; Harrison, L.; Moran, R.; Pickering, A.E.; Brooks, J.C. Parallel cortical-brainstem pathways to attentional analgesia. Neuroimage 2020, 226, 117548. [Google Scholar] [CrossRef]
- Brooks, J.C.; Beckmann, C.F.; Miller, K.L.; Wise, R.G.; Porro, C.A.; Tracey, I.; Jenkinson, M. Physiological noise modelling for spinal functional magnetic resonance imaging studies. Neuroimage 2008, 39, 680–692. [Google Scholar] [CrossRef]
- Beissner, F.; Schumann, A.; Brunn, F.; Eisentrager, D.; Bar, K.J. Advances in functional magnetic resonance imaging of the human brainstem. Neuroimage 2014, 86, 91–98. [Google Scholar] [CrossRef]
- Matt, E.; Fischmeister, F.P.S.; Amini, A.; Robinson, S.D.; Weber, A.; Foki, T.; Gizewski, E.R.; Beisteiner, R. Improving sensitivity, specificity, and reproducibility of individual brainstem activation. Brain Struct. Funct. 2019, 224, 2823–2838. [Google Scholar] [CrossRef]
- Bao, R.; Wei, P.; Li, K.; Lu, J.; Zhao, C.; Wang, Y.; Zhang, T. Within-limb somatotopic organization in human SI and parietal operculum for the leg: An fMRI study. Brain Res. 2012, 1445, 30–39. [Google Scholar] [CrossRef]
- Lambert, C.; Lutti, A.; Helms, G.; Frackowiak, R.; Ashburner, J. Multiparametric brainstem segmentation using a modified multivariate mixture of Gaussians. Neuroimage Clin. 2013, 2, 684–694. [Google Scholar] [CrossRef]
- Lambert, C.; Chowdhury, R.; Fitzgerald, T.H.B.; Fleming, S.M.; Lutti, A.; Hutton, C.; Draganski, B.; Frackowiak, R.S.; Ashburner, J. Characterizing aging in the human brainstem using quantitative multimodal MRI analysis. Front. Hum. Neurosci. 2013, 7, 462. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, J.; Xu, C.; Zhang, X.; Qiao, L.; Wang, X.; Zhang, X.; Yan, X.; Ni, D.; Yu, T.; et al. The functional connectivity study on the brainstem-cortical/subcortical structures in responders following cervical vagus nerve stimulation. Int. J. Dev. Neurosci. 2020, 80, 679–686. [Google Scholar] [CrossRef]
- Mills, E.P.; Akhter, R.; Di Pietro, F.; Murray, G.M.; Peck, C.C.; Macey, P.M.; Henderson, L.A. Altered Brainstem Pain Modulating Circuitry Functional Connectivity in Chronic Painful Temporomandibular Disorder. J. Pain. 2020. [Google Scholar] [CrossRef]
- Mills, E.P.; Alshelh, Z.; Kosanovic, D.; Di Pietro, F.; Vickers, E.R.; Macey, P.M.; Henderson, L.A. Altered Brainstem Pain-Modulation Circuitry Connectivity during Spontaneous Pain Intensity Fluctuations. J. Pain Res. 2020, 13, 2223–2235. [Google Scholar] [CrossRef]
- Caggiano, V.; Leiras, R.; Goñi-Erro, H.; Masini, D.; Bellardita, C.; Bouvier, J.; Caldeira, V.; Fisone, G.; Kiehn, O. Midbrain circuits that set locomotor speed and gait selection. Nature 2018, 553, 455–460. [Google Scholar] [CrossRef]
- Ferreira-Pinto, M.J.; Ruder, L.; Capelli, P.; Arber, S. Connecting Circuits for Supraspinal Control of Locomotion. Neuron 2018, 100, 361–374. [Google Scholar] [CrossRef]
- Li, X.; Chen, L.; Kutten, K.; Ceritoglu, C.; Li, Y.; Kang, N.; Hsu, J.T.; Qiao, Y.; Wei, H.; Liu, C.; et al. Multi-atlas tool for automated segmentation of brain gray matter nuclei and quantification of their magnetic susceptibility. Neuroimage 2019, 191, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Frangos, E.; Ellrich, J.; Komisaruk, B.R. Non-invasive Access to the Vagus Nerve Central Projections via Electrical Stimulation of the External Ear: fMRI Evidence in Humans. Brain Stimul. 2015, 8, 624–636. [Google Scholar] [CrossRef]
- Sclocco, R.; Garcia, R.G.; Kettner, N.W.; Isenburg, K.; Fisher, H.P.; Hubbard, C.S.; Ay, I.; Polimeni, J.R.; Goldstein, J.; Makris, N.; et al. The influence of respiration on brainstem and cardiovagal response to auricular vagus nerve stimulation: A multimodal ultrahigh-field (7T) fMRI study. Brain Stimul. 2019, 12, 911–921. [Google Scholar] [CrossRef]
- Cox, R.W.; Jesmanowicz, A. Real-time 3D image registration for functional MRI. Magn. Reson. Med. 1999, 42, 1014–1018. [Google Scholar] [CrossRef]
- Eippert, F.; Kong, Y.; Winkler, A.M.; Andersson, J.L.; Finsterbusch, J.; Büchel, C.; Brooks, J.C.; Tracey, I. Investigating resting-state functional connectivity in the cervical spinal cord at 3T. Neuroimage 2017, 147, 589–601. [Google Scholar] [CrossRef]
- Woods, R.P.; Grafton, S.T.; Holmes, C.J.; Cherry, S.R.; Mazziotta, J.C. Automated image registration: I. General methods and intrasubject, intramodality validation. J. Comput. Assist. Tomogr. 1998, 22, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Eickhoff, S.B.; Paus, T.; Caspers, S.; Grosbras, M.-H.; Evans, A.C.; Zilles, K.; Amunts, K. Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. Neuroimage 2007, 36, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Fonov, V.; Le Troter, A.; Taso, M.; De Leener, B.; Lévêque, G.; Benhamou, M.; Sdika, M.; Benali, H.; Pradat, P.-F.; Collins, D.L.; et al. Framework for integrated MRI average of the spinal cord white and gray matter: The MNI-Poly-AMU template. Neuroimage 2014, 102, 817–827. [Google Scholar] [CrossRef] [PubMed]
- De Leener, B.; Lévy, S.; Dupont, S.M.; Fonov, V.S.; Stikov, N.; Collins, D.L.; Callot, V.; Cohen-Adad, J. SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage 2017, 145, 24–43. [Google Scholar] [CrossRef]
- Naidich, T.P.; Duvernoy, H.M.; Delman, B.N.; Sorensen, A.G.; Kollias, S.S.; Haacke, E.M. Duvernoy’s Atlas of the Human Brain Stem and Cerebellum, 1st ed.; Springer-Verlag/Wien: Vienna, Austria, 2009; pp. 63–89. [Google Scholar]
- Yang, G.; Zhou, S.; Bozek, J.; Dong, H.-M.; Han, M.; Zuo, X.-N.; Liu, H.; Gao, J.-H. Sample sizes and population differences in brain template construction. Neuroimage 2020, 206, 116318. [Google Scholar] [CrossRef]
- Li, M.; Wang, D.; Ren, J.; Langs, G.; Stoecklein, S.; Brennan, B.P.; Lu, J.; Chen, H.; Liu, H. Performing group-level functional image analyses based on homologous functional regions mapped in individuals. PLoS Biol. 2019, 17, e2007032. [Google Scholar] [CrossRef]
- Kong, R.; Li, J.; Orban, C.; Sabuncu, M.R.; Liu, H.; Schaefer, A.; Sun, N.; Zuo, X.-N.; Holmes, A.J.; Eickhoff, S.B.; et al. Spatial Topography of Individual-Specific Cortical Networks Predicts Human Cognition, Personality, and Emotion. Cereb. Cortex 2019, 29, 2533–2551. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, P.; Lan, Z.; Lv, Z.; Fan, Y. Brainstem fMRI. Encyclopedia 2021, 1, 4-11. https://doi.org/10.3390/encyclopedia1010003
Wei P, Lan Z, Lv Z, Fan Y. Brainstem fMRI. Encyclopedia. 2021; 1(1):4-11. https://doi.org/10.3390/encyclopedia1010003
Chicago/Turabian StyleWei, Pengxu, Zhi Lan, Zeping Lv, and Yubo Fan. 2021. "Brainstem fMRI" Encyclopedia 1, no. 1: 4-11. https://doi.org/10.3390/encyclopedia1010003
APA StyleWei, P., Lan, Z., Lv, Z., & Fan, Y. (2021). Brainstem fMRI. Encyclopedia, 1(1), 4-11. https://doi.org/10.3390/encyclopedia1010003