The Relationship of Macro–Micronutrient Intake with Incidence and Progressivity of Hypertension and Microalbuminuria
Abstract
1. Introduction
2. A Glimpse of Hypertension (HTN) and Microalbuminuria (MA)
3. Core Nutrients with Strong Clinical Evidence and Consensus
3.1. Sodium and Potassium
3.2. Protein
3.3. Carbohydrates
3.4. Established Dietary Patterns
4. Nutrients with Promising but Inconsistent Evidence
4.1. Antioxidant Vitamins: Vitamin C and E
4.2. B Vitamins and Homocysteine
4.3. Vitamin D
4.4. Minerals: Magnesium and Calcium
5. Nutrients with Emerging or Highly Controversial Roles
5.1. Iron
5.2. Zinc
5.3. Selenium
5.4. Phosphorus
6. Considerations and Future Perspectives
7. Conclusions and Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lien, C.-W.; Lee, Y.-H.; Lu, C.-W.; Chang, Y.-C.; Lin, Y.-S.; Cheng, H.-M.; Yu-Chih Chen, M.; Lee, L.-T.; Huang, C.-K.; Lin, Y.-H.; et al. Definition, Prevalence, and Economic Impacts of Hypertension on the Elderly Population. J. Formos. Med. Assoc. 2025, 124 (Suppl. S1), S4–S9. [Google Scholar] [CrossRef]
- Yani, M.V.W.; Dewi, N.N.G.K.; Antara, I.M.P.S.; Supadmanaba, I.G.P.; Widyakania, P.N.; Jelita, N.D.; Dewi, C.I.A.L.; Utari, N.L.A. Prevalence and Risk Factors of the Hypertension of Trunyan Village, Bali in 2019. Indones. J. Public Heal. 2022, 17, 73–81. [Google Scholar] [CrossRef]
- Nonasri, F. Karakteristik Dan Perilaku Mencari Pengobatan Pada Penderita Hipertensi. Indones. J. Nurs. Heal. Sci. 2021, 2, 25–34. [Google Scholar] [CrossRef]
- Kementerian Kesehatan Republik Indonesia. Laporan Nasional RISKESDAS 2018; Kementerian Kesehatan RI: Jakarta, Indonesia, 2018. [Google Scholar]
- Chin’ombe, N.; Msengezi, O.; Matarira, H. Microalbuminuria in Patients with Chronic Kidney Disease at Parirenyatwa Hospital in Zimbabwe. Pan Afr. Med. J. 2013, 14, 39. [Google Scholar] [CrossRef]
- Matjuda, E.N.; Sewani-Rusike, C.R.; Anye, S.N.; Engwa, G.A.; Nkeh-Chungag, B.N. Relationship between High Blood Pressure and Microalbuminuria in Children Aged 6–9 Years in a South African Population. Children 2020, 7, 131. [Google Scholar] [CrossRef] [PubMed]
- Asghar, S.; Asghar, S.; Mahmood, T.; Bukhari, S.M.H.; Mumtaz, M.H.; Rasheed, A. Microalbuminuria as the Tip of Iceberg in Type 2 Diabetes Mellitus: Prevalence, Risk Factors, and Associated Diabetic Complications. Cureus 2023, 15, e43190. [Google Scholar] [CrossRef]
- Velasquez, M.T.; Bhathena, S.J.; Striffler, J.S.; Thibault, N.; Scalbert, E. Role of Angiotensin-Converting Enzyme Inhibition in Glucose Metabolism and Renal Injury in Diabetes. Metabolism 1998, 47, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Taj, A.; Amin, M.J.; Iqbal, F.; Iqbal, Z. Correlation between Microalbuminuria and Hypertension in Type 2 Diabetic Patients. Pakistan J. Med. Sci. 2014, 30, 511–514. [Google Scholar] [CrossRef]
- Matsumoto, C. Nutrition and Hypertension Researches in 2023: Focus on Salt Intake and Blood Pressure. Hypertens. Res. 2025, 48, 1471–1476. [Google Scholar] [CrossRef]
- Lin, J.; Hu, F.B.; Curhan, G.C. Associations of Diet with Albuminuria and Kidney Function Decline. Clin. J. Am. Soc. Nephrol. 2010, 5, 836–843. [Google Scholar] [CrossRef]
- Aljuraiban, G.S.; Gibson, R.; Chan, D.S.M.; Van Horn, L.; Chan, Q. The Role of Diet in the Prevention of Hypertension and Management of Blood Pressure: An Umbrella Review of Meta-Analyses of Interventional and Observational Studies. Adv. Nutr. 2024, 15, 100123. [Google Scholar] [CrossRef]
- Ndanuko, R.N.; Tapsell, L.C.; Charlton, K.E.; Neale, E.P.; Batterham, M.J. Dietary Patterns and Blood Pressure in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2016, 7, 76–89. [Google Scholar] [CrossRef]
- Daviglus, M.L.; Greenland, P.; Stamler, J.; Elliott, P.; Appel, L.J.; Carnethon, M.R.; Chan, Q.; Claeys, G.; Kesteloot, H.; Miura, K.; et al. Relation of Nutrient Intake to Microalbuminuria in Nondiabetic Middle-Aged Men and Women: International Population Study on Macronutrients and Blood Pressure (INTERMAP). Am. J. kidney Dis. Off. J. Natl. Kidney Found. 2005, 45, 256–266. [Google Scholar] [CrossRef]
- Grassi, G.; Cifkova, R.; Laurent, S.; Narkiewicz, K.; Redon, J.; Farsang, C.; Viigimaa, M.; Erdine, S.; Brambilla, G.; Bombelli, M.; et al. Blood Pressure Control and Cardiovascular Risk Profile in Hypertensive Patients from Central and Eastern European Countries: Results of the BP-CARE Study. Eur. Heart J. 2011. [Google Scholar] [CrossRef] [PubMed]
- James, P.A.; Oparil, S.; Carter, B.L.; Cushman, W.C.; Dennison-Himmelfarb, C.; Handler, J.; Lackland, D.T.; LeFevre, M.L.; MacKenzie, T.D.; Ogedegbe, O.; et al. 2014 Evidence-Based Guideline for the Management of High Blood Pressure in Adults: Report From the Panel Members Appointed to the Eighth Joint National Committee (JNC 8). JAMA 2014, 311, 507–520. [Google Scholar] [CrossRef] [PubMed]
- Writing Committee Members; Jones, D.W.; Ferdinand, K.C.; Taler, S.J.; Johnson, H.M.; Shimbo, D.; Abdalla, M.; Altieri, M.M.; Bansal, N.; Bello, N.A.; et al. 2025 AHA/ACC/AANP/AAPA/ABC/ACCP/ACPM/AGS/AMA/ASPC/NMA/PCNA/SGIM Guideline for the Prevention, Detection, Evaluation and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2025, 152, e114–e218. [Google Scholar] [CrossRef]
- Kuritzky, L.; Toto, R.; Van Buren, P. Identification and Management of Albuminuria in the Primary Care Setting. J. Clin. Hypertens. 2011, 13, 438–449. [Google Scholar] [CrossRef]
- Chugh, A.; Bakris, G.L. Microalbuminuria: What Is It? Why Is It Important? What Should Be Done about It? An Update. J. Clin. Hypertens. 2007, 9, 196–200. [Google Scholar] [CrossRef]
- Wrone, E.M.; Carnethon, M.R.; Palaniappan, L.; Fortmann, S.P. Association of Dietary Protein Intake and Microalbuminuria in Healthy Adults: Third National Health and Nutrition Examination Survey. Am. J. kidney Dis. Off. J. Natl. Kidney Found. 2003, 41, 580–587. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, D.H.; Kim, Y.-H.; Roh, Y.K.; Ju, S.Y.; Nam, H.-Y.; Nam, G.-E.; Choi, J.-S.; Lee, J.-E.; Sang, J.-E.; et al. Relationship Between Dyslipidemia and Albuminuria in Hypertensive Adults: A Nationwide Population-Based Study. Medicine 2016, 95, e3224. [Google Scholar] [CrossRef]
- Satchell, S.C.; Tooke, J.E. What Is the Mechanism of Microalbuminuria in Diabetes: A Role for the Glomerular Endothelium? Diabetologia 2008, 51, 714–725. [Google Scholar] [CrossRef]
- Kwon, Y.-J.; Lee, H.S.; Park, G.; Lee, J.-W. Association between Dietary Sodium, Potassium, and the Sodium-to-Potassium Ratio and Mortality: A 10-Year Analysis. Front. Nutr. 2022, 9, 1053585. [Google Scholar] [CrossRef]
- Kazi, R.N.A. Silent Effects of High Salt: Risks Beyond Hypertension and Body’s Adaptation to High Salt. Biomedicines 2025, 13, 746. [Google Scholar] [CrossRef]
- Grillo, A.; Salvi, L.; Coruzzi, P.; Salvi, P.; Parati, G. Sodium Intake and Hypertension. Nutrients 2019, 11, 1970. [Google Scholar] [CrossRef]
- Demirci, M.; Afolabi, J.M.; Kirabo, A. Aging and Sex Differences in Salt Sensitivity of Blood Pressure. Clin. Sci. 2025, 139, 199–212. [Google Scholar] [CrossRef]
- Elijovich, F.; Kirabo, A.; Laffer, C.L. Salt Sensitivity of Blood Pressure in Black People: The Need to Sort Out Ancestry Versus Epigenetic Versus Social Determinants of Its Causation. Hypertens. (Dallas, Tex. 1979) 2024, 81, 456–467. [Google Scholar] [CrossRef]
- McMillan, R.K.; Stock, J.M.; Romberger, N.T.; Wenner, M.M.; Chai, S.C.; Farquhar, W.B. The Impact of Dietary Sodium and Fructose on Renal Sodium Handling and Blood Pressure in Healthy Adults. Physiol. Rep. 2025, 13, e70284. [Google Scholar] [CrossRef]
- Engelen, L.; Soedamah-Muthu, S.S.; Geleijnse, J.M.; Toeller, M.; Chaturvedi, N.; Fuller, J.H.; Schalkwijk, C.G.; Stehouwer, C.D.A. Higher Dietary Salt Intake Is Associated with Microalbuminuria, but Not with Retinopathy in Individuals with Type 1 Diabetes: The EURODIAB Prospective Complications Study. Diabetologia 2014, 57, 2315–2323. [Google Scholar] [CrossRef] [PubMed]
- Verhave, J.C.; Hillege, H.L.; Burgerhof, J.G.M.; Janssen, W.M.T.; Gansevoort, R.T.; Navis, G.J.; de Zeeuw, D.; de Jong, P.E. Sodium Intake Affects Urinary Albumin Excretion Especially in Overweight Subjects. J. Intern. Med. 2004, 256, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Weir, M.R. Dietary Salt, Blood Pressure, and Microalbuminuria. J. Clin. Hypertens. 2004, 6, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Vignesh, A.; Amal, T.C.; Shanmugam, A.; Vasanth, K.; Selvakumar, S. Effects of Dietary Approaches to Prevent Hypertension and Enhance Cardiovascular Health. Discov. Food 2025, 5, 9. [Google Scholar] [CrossRef]
- Yuan, W.; Wang, T.; Yue, W. The Potassium Puzzle: Exploring the Intriguing Connection to Albuminuria. Front. Nutr. 2024, 11, 1375010. [Google Scholar] [CrossRef]
- Morales, E.; Cravedi, P.; Manrique, J. Management of Chronic Hyperkalemia in Patients With Chronic Kidney Disease: An Old Problem With News Options. Front. Med. 2021, 8, 653634. [Google Scholar] [CrossRef]
- Food and Drug Administration HHS. Food Labeling: Revision of the Nutrition and Supplement Facts Labels. Final Rule. Fed. Regist. 2016, 81, 33741–33999. [Google Scholar]
- Drewnowski, A.; Rehm, C.D.; Maillot, M.; Mendoza, A.; Monsivais, P. The Feasibility of Meeting the WHO Guidelines for Sodium and Potassium: A Cross-National Comparison Study. BMJ Open 2015, 5, e006625. [Google Scholar] [CrossRef]
- World Health Organization Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint FAO/WHO/UNU Expert Consultation; World Health Organization: Geneva, Switzerland, 2002.
- Courand, P.-Y.; Lesiuk, C.; Milon, H.; Defforges, A.; Fouque, D.; Harbaoui, B.; Lantelme, P. Association Between Protein Intake and Mortality in Hypertensive Patients Without Chronic Kidney Disease in the OLD-HTA Cohort. Hypertension 2016, 67, 1142–1149. [Google Scholar] [CrossRef]
- Cao, J.J.; Nielsen, F.H. Acid Diet (High-Meat Protein) Effects on Calcium Metabolism and Bone Health. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 698–702. [Google Scholar] [CrossRef] [PubMed]
- Villa-Etchegoyen, C.; Lombarte, M.; Matamoros, N.; Belizán, J.M.; Cormick, G. Mechanisms Involved in the Relationship between Low Calcium Intake and High Blood Pressure. Nutrients 2019, 11, 1112. [Google Scholar] [CrossRef]
- He, J.; Yu, S.; Fang, A.; Shen, X.; Li, K. Association between Protein Intake and the Risk of Hypertension among Chinese Men and Women: A Longitudinal Study. Nutrients 2022, 14, 1276. [Google Scholar] [CrossRef] [PubMed]
- Zhubi-Bakija, F.; Bajraktari, G.; Bytyçi, I.; Mikhailidis, D.P.; Henein, M.Y.; Latkovskis, G.; Rexhaj, Z.; Zhubi, E.; Banach, M. The Impact of Type of Dietary Protein, Animal versus Vegetable, in Modifying Cardiometabolic Risk Factors: A Position Paper from the International Lipid Expert Panel (ILEP). Clin. Nutr. 2021, 40, 255–276. [Google Scholar] [CrossRef]
- Stambolliu, E.; Iliakis, P.; Tsioufis, K.; Damianaki, A. Managing Hypertension in Chronic Kidney Disease: The Role of Diet and Guideline Recommendations. J. Clin. Med. 2025, 14, 3755. [Google Scholar] [CrossRef]
- Palmer, S.C.; Maggo, J.K.; Campbell, K.L.; Craig, J.C.; Johnson, D.W.; Sutanto, B.; Ruospo, M.; Tong, A.; Strippoli, G.F. Dietary Interventions for Adults with Chronic Kidney Disease. Cochrane database Syst. Rev. 2017, 4, CD011998. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [CrossRef]
- Riley, M.D.; Dwyer, T. Microalbuminuria Is Positively Associated with Usual Dietary Saturated Fat Intake and Negatively Associated with Usual Dietary Protein Intake in People with Insulin-Dependent Diabetes Mellitus. Am. J. Clin. Nutr. 1998, 67, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.C. Importance of Glycemic Index in Diabetes. Am. J. Clin. Nutr. 1994, 59, 747S–752S. [Google Scholar] [CrossRef]
- Dong, J.-Y.; Zhang, Y.-H.; Wang, P.; Qin, L.-Q. Meta-Analysis of Dietary Glycemic Load and Glycemic Index in Relation to Risk of Coronary Heart Disease. Am. J. Cardiol. 2012, 109, 1608–1613. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, C.; Zhang, S.; Li, R.; Zhang, Y.; He, P.; Zhang, Z.; Liu, M.; Zhou, C.; Ye, Z.; et al. Dietary Carbohydrate Intake and New-Onset Hypertension: A Nationwide Cohort Study in China. Hypertension 2021, 78, 422–430. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Kim, S.H.; Lim, H. Association between Dietary Carbohydrate Quality and the Prevalence of Obesity and Hypertension. J. Hum. Nutr. Diet. Off. J. Br. Diet. Assoc. 2018, 31, 587–596. [Google Scholar] [CrossRef]
- Soh, S.M.; Chung, S.-J.; Yoon, J. Dietary and Health Characteristics of Korean Adults According to the Level of Energy Intake from Carbohydrate: Analysis of the 7th (2016-2017) Korea National Health and Nutrition Examination Survey Data. Nutrients 2020, 12, 429. [Google Scholar] [CrossRef]
- Lopes, H.F.; Martin, K.L.; Nashar, K.; Morrow, J.D.; Goodfriend, T.L.; Egan, B.M. DASH Diet Lowers Blood Pressure and Lipid-Induced Oxidative Stress in Obesity. Hypertens 2003, 41, 422–430. [Google Scholar] [CrossRef]
- Al-Solaiman, Y.; Jesri, A.; Mountford, W.K.; Lackland, D.T.; Zhao, Y.; Egan, B.M. DASH Lowers Blood Pressure in Obese Hypertensives beyond Potassium, Magnesium and Fibre. J. Hum. Hypertens. 2010, 24, 237–246. [Google Scholar] [CrossRef]
- Zhang, N.; Cheng, Y.; Luo, R.; Chang, D.; Liu, T.; Wang, Z.; Guo, K.; Ge, S.; Xu, G. Low-Carbohydrate-Diet Score and Mortality in Adults With and Without Chronic Kidney Disease: Results From the Third National Health and Nutrition Examination Survey. J. Ren. Nutr. 2022, 32, 301–311. [Google Scholar] [CrossRef]
- Oyabu, C.; Hashimoto, Y.; Fukuda, T.; Tanaka, M.; Asano, M.; Yamazaki, M.; Fukui, M. Impact of Low-Carbohydrate Diet on Renal Function: A Meta-Analysis of over 1000 Individuals from Nine Randomised Controlled Trials. Br. J. Nutr. 2016, 116, 632–638. [Google Scholar] [CrossRef]
- Benson, G.; Hayes, J. An Update on the Mediterranean, Vegetarian, and DASH Eating Patterns in People With Type 2 Diabetes. Diabetes Spectr. 2020, 33, 125–132. [Google Scholar] [CrossRef]
- Charles, J.A.; Habibullah, N.K.; Bautista, S.; Davis, B.; Joshi, S.; Hull, S.C. Planting the Seed for Blood Pressure Control: The Role of Plant-Based Nutrition in the Management of Hypertension. Curr. Cardiol. Rep. 2024, 26, 121–134. [Google Scholar] [CrossRef]
- Singh, R.B.; Nabavizadeh, F.; Fedacko, J.; Pella, D.; Vanova, N.; Jakabcin, P.; Fatima, G.; Horuichi, R.; Takahashi, T.; Mojto, V.; et al. Dietary Approaches to Stop Hypertension via Indo-Mediterranean Foods, May Be Superior to DASH Diet Intervention. Nutrients 2022, 15, 46. [Google Scholar] [CrossRef]
- Filippou, C.D.; Tsioufis, C.P.; Thomopoulos, C.G.; Mihas, C.C.; Dimitriadis, K.S.; Sotiropoulou, L.I.; Chrysochoou, C.A.; Nihoyannopoulos, P.I.; Tousoulis, D.M. Dietary Approaches to Stop Hypertension (DASH) Diet and Blood Pressure Reduction in Adults with and without Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2020, 11, 1150–1160. [Google Scholar] [CrossRef]
- Taghavi, M.; Sadeghi, A.; Maleki, V.; Nasiri, M.; Khodadost, M.; Pirouzi, A.; Rashid-Beigi, E.; Sadeghi, O.; Swann, O. Adherence to the Dietary Approaches to Stop Hypertension-Style Diet Is Inversely Associated with Chronic Kidney Disease: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Nutr. Res. 2019, 72, 46–56. [Google Scholar] [CrossRef]
- Aderoju, Y.B.G.; Hayford, F.E.A.; Achempim-Ansong, G.; Duah, E.; Baloyi, T.V.; Morerwa, S.; Agordoh, P.; Dzansi, G. Exploring the Application of Dietary Approaches to Stop Hypertension (DASH) in the Management of Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Clin. Nutr. ESPEN 2025, 69, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Picone, P.; Girgenti, A.; Buttacavoli, M.; Nuzzo, D. Enriching the Mediterranean Diet Could Nourish the Brain More Effectively. Front. Nutr. 2024, 11, 1489489. [Google Scholar] [CrossRef]
- Filippou, C.D.; Thomopoulos, C.G.; Kouremeti, M.M.; Sotiropoulou, L.I.; Nihoyannopoulos, P.I.; Tousoulis, D.M.; Tsioufis, C.P. Mediterranean Diet and Blood Pressure Reduction in Adults with and without Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin. Nutr. 2021, 40, 3191–3200. [Google Scholar] [CrossRef]
- Cowell, O.R.; Mistry, N.; Deighton, K.; Matu, J.; Griffiths, A.; Minihane, A.M.; Mathers, J.C.; Shannon, O.M.; Siervo, M. Effects of a Mediterranean Diet on Blood Pressure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials and Observational Studies. J. Hypertens. 2021, 39, 729–739. [Google Scholar] [CrossRef]
- Zooravar, D.; Soltani, P.; Khezri, S. Mediterranean Diet and Diabetic Microvascular Complications: A Systematic Review and Meta-Analysis. BMC Nutr. 2025, 11, 66. [Google Scholar] [CrossRef]
- Podadera-Herreros, A.; Arenas-de Larriva, A.P.; Gutierrez-Mariscal, F.M.; Alcala-Diaz, J.F.; Ojeda-Rodriguez, A.; Rodriguez-Cantalejo, F.; Cardelo, M.P.; Rodriguez-Cano, D.; Torres-Peña, J.D.; Luque, R.M.; et al. Mediterranean Diet as a Strategy for Preserving Kidney Function in Patients with Coronary Heart Disease with Type 2 Diabetes and Obesity: A Secondary Analysis of CORDIOPREV Randomized Controlled Trial. Nutr. Diabetes 2024, 14, 27. [Google Scholar] [CrossRef]
- Gibbs, J.; Gaskin, E.; Ji, C.; Miller, M.A.; Cappuccio, F.P. The Effect of Plant-Based Dietary Patterns on Blood Pressure: A Systematic Review and Meta-Analysis of Controlled Intervention Trials. J. Hypertens. 2021, 39, 23–37. [Google Scholar] [CrossRef]
- Tomé-Carneiro, J.; Visioli, F. Plant-Based Diets Reduce Blood Pressure: A Systematic Review of Recent Evidence. Curr. Hypertens. Rep. 2023, 25, 127–150. [Google Scholar] [CrossRef]
- Tow, W.-K.; Looi, A.D.; Nithusharini, V.; Lakshmipathy, K.; Palanisamy, U.D.; Sundralingam, U. The Green Plate Effect: Systematic Review and Meta-Analyses of Vegan Diets and Metabolic Health in Adults- Findings from Randomized Controlled Trials. Trends Food Sci. Technol. 2025, 164, 105227. [Google Scholar] [CrossRef]
- Zarantonello, D.; Brunori, G. The Role of Plant-Based Diets in Preventing and Mitigating Chronic Kidney Disease: More Light than Shadows. J. Clin. Med. 2023, 12, 6137. [Google Scholar] [CrossRef]
- Świątek, Ł.; Jeske, J.; Miedziaszczyk, M.; Idasiak-Piechocka, I. The Impact of a Vegetarian Diet on Chronic Kidney Disease (CKD) Progression – a Systematic Review. BMC Nephrol. 2023, 24, 168. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Dai, P.; Wang, H. Effects of Vitamin C Supplementation on Essential Hypertension: A Systematic Review and Meta-Analysis. Medicine 2020, 99, e19274. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Luo, X.; Liu, S.; Ling, B.; Si, M.; Jin, H. Effect of Vitamin B(2), Vitamin C, Vitamin D, Vitamin E and Folic Acid in Adults with Essential Hypertension: A Systematic Review and Network Meta-Analysis. BMJ Open 2024, 14, e074511. [Google Scholar] [CrossRef]
- Lbban, E.; Kwon, K.; Ashor, A.; Stephan, B.; Idris, I.; Tsintzas, K.; Siervo, M. Vitamin C Supplementation Showed Greater Effects on Systolic Blood Pressure in Hypertensive and Diabetic Patients: An Updated Systematic Review and Meta-Analysis of Randomised Clinical Trials. Int. J. Food Sci. Nutr. 2023, 74, 814–825. [Google Scholar] [CrossRef]
- Behers, B.J.; Melchor, J.; Behers, B.M.; Meng, Z.; Swanson, P.J.; Paterson, H.I.; Mendez Araque, S.J.; Davis, J.L.; Gerhold, C.J.; Shah, R.S.; et al. Vitamins and Minerals for Blood Pressure Reduction in the General, Normotensive Population: A Systematic Review and Meta-Analysis of Six Supplements. Nutrients 2023, 15, 4223. [Google Scholar] [CrossRef]
- Chen, J.; Wu, J.; Kong, D.; Yang, C.; Yu, H.; Pan, Q.; Liu, W.; Ding, Y.; Liu, H. The Effect of Antioxidant Vitamins on Patients With Diabetes and Albuminuria: A Meta-Analysis of Randomized Controlled Trials. J. Ren. Nutr. 2020, 30, 101–110. [Google Scholar] [CrossRef]
- Llopis-González, A.; Rubio-López, N.; Pineda-Alonso, M.; Martín-Escudero, J.C.; Chaves, F.J.; Redondo, M.; Morales-Suarez-Varela, M. Hypertension and the Fat-Soluble Vitamins A, D and E. Int. J. Environ. Res. Public Health 2015, 12, 2793–2809. [Google Scholar] [CrossRef]
- Hirnerova, E.; Krahulec, B.; Strbova, L.; Stecova, A.; Dekret, J.; Hajovska, A.; Ch, A.; Dukat, A. Effect of Vitamin E Supplementation on Microalbuminuria, Lipid Peroxidation and Blood Prostaglandins in Diabetic Patients. Bratisl. Lek. Listy 2004, 105, 408–413. [Google Scholar]
- Rojo-Trejo, M.H.; Robles-Osorio, M.L.; Sabath, E. Liposoluble Vitamins A and E in Kidney Disease. World J. Nephrol. 2022, 11, 96–104. [Google Scholar] [CrossRef]
- He, P.; Li, H.; Zhang, Y.; Song, Y.; Liu, C.; Liu, L.; Wang, B.; Guo, H.; Wang, X.; Huo, Y.; et al. Evaluation of Plasma Vitamin E and Development of Proteinuria in Hypertensive Patients. J. Transl. Intern. Med. 2024, 12, 78–85. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, J.; Zhou, Q.; Li, J. Serum Vitamin C Levels and Their Correlation with Chronic Kidney Disease in Adults: A Nationwide Study. Ren. Fail. 2024, 46, 2298079. [Google Scholar] [CrossRef]
- Huang, H.-Y.; Appel, L.J. Supplementation of Diets with Alpha-Tocopherol Reduces Serum Concentrations of Gamma- and Delta-Tocopherol in Humans. J. Nutr. 2003, 133, 3137–3140. [Google Scholar] [CrossRef]
- Kaye, A.D.; Thomassen, A.S.; Mashaw, S.A.; MacDonald, E.M.; Waguespack, A.; Hickey, L.; Singh, A.; Gungor, D.; Kallurkar, A.; Kaye, A.M.; et al. Vitamin E (α-Tocopherol): Emerging Clinical Role and Adverse Risks of Supplementation in Adults. Cureus 2025. [Google Scholar] [CrossRef]
- Liu, Y.; Weisberg, L.S.; Langman, C.B.; Logan, A.; Hunter, K.; Prasad, D.; Avila, J.; Venkatchalam, T.; Berns, J.S.; Handelman, G.J.; et al. Plasma Oxalate Levels in Prevalent Hemodialysis Patients and Potential Implications for Ascorbic Acid Supplementation. Clin. Biochem. 2016, 49, 1133–1139. [Google Scholar] [CrossRef]
- Xiong, Y.; Huang, J.; Amoah, A.N.; Liu, B.; Bo, Y.; Lyu, Q. Folate, Vitamin B6, and Vitamin B12 Intakes Are Negatively Associated with the Prevalence of Hypertension: A National Population-Based Study. Nutr. Res. 2023, 112, 46–54. [Google Scholar] [CrossRef]
- Bian, X.-Y.; Cui, C.; Zhang, Q.-Y. Relationship between Blood Pressure Variability and Vitamin B Level in Essential Hypertension. J. Physiol. Pharmacol. 2025, 76, 19–29. [Google Scholar] [CrossRef]
- Tian, W.; Ju, J.; Guan, B.; Wang, T.; Zhang, J.; Song, L.; Xu, H. Role of Hyperhomocysteinemia in Atherosclerosis: From Bench to Bedside. Ann. Med. 2025, 57, 2457527. [Google Scholar] [CrossRef]
- Liu, M.; Zhou, C.; Zhang, Z.; Li, Q.; He, P.; Zhang, Y.; Li, H.; Liu, C.; Qin, X. Inverse Association Between Riboflavin Intake and New-Onset Hypertension: A Nationwide Cohort Study in China. Hypertens 2020, 76, 1709–1716. [Google Scholar] [CrossRef]
- Stanger, O.; Herrmann, W.; Pietrzik, K.; Fowler, B.; Geisel, J.; Dierkes, J.; Weger, M. DACH-LIGA Homocystein (German, Austrian and Swiss Homocysteine Society): Consensus Paper on the Rational Clinical Use of Homocysteine, Folic Acid and B-Vitamins in Cardiovascular and Thrombotic Diseases: Guidelines and Recommendations. Clin. Chem. Lab. Med. 2003, 41, 1392–1403. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, C.; Lu, L.; Shikany, J.M.; D’Alton, M.E.; Kahe, K. Folate, Vitamin B6, and Vitamin B12 Status in Association With Metabolic Syndrome Incidence. JAMA Netw. Open 2023, 6, e2250621. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Khatun, P.; Xiong, Y.; Liu, B.; Zhao, Y.; Lyu, Q. Intakes of Folate, Vitamin B6, and Vitamin B12 and Cardiovascular Disease Risk: A National Population-Based Cross-Sectional Study. Front. Cardiovasc. Med. 2023, 10, 1237103. [Google Scholar] [CrossRef]
- Tamura, T.; Kuriyama, N.; Koyama, T.; Ozaki, E.; Matsui, D.; Kadomatsu, Y.; Tsukamoto, M.; Kubo, Y.; Okada, R.; Hishida, A.; et al. Association between Plasma Levels of Homocysteine, Folate, and Vitamin B12, and Dietary Folate Intake and Hypertension in a Cross-Sectional Study. Sci. Rep. 2020, 10, 18499. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Yang, S.; Ye, Z.; Wu, Q.; Liu, M.; Zhou, C.; He, P.; Jiang, J.; Liang, M.; et al. U-Shaped Relation of Dietary Thiamine Intake and New-Onset Hypertension. Nutrients 2022, 14, 3251. [Google Scholar] [CrossRef]
- Wu, H.H.L.; McDonnell, T.; Chinnadurai, R. Physiological Associations between Vitamin B Deficiency and Diabetic Kidney Disease. Biomedicines 2023, 11, 1153. [Google Scholar] [CrossRef]
- Rabbani, N.; Thornalley, P.J. Emerging Role of Thiamine Therapy for Prevention and Treatment of Early-Stage Diabetic Nephropathy. Diabetes. Obes. Metab. 2011, 13, 577–583. [Google Scholar] [CrossRef]
- Raval, A.D.; Thakker, D.; Rangoonwala, A.N.; Gor, D.; Walia, R. Vitamin B and Its Derivatives for Diabetic Kidney Disease. Cochrane database Syst. Rev. 2015, 1, CD009403. [Google Scholar] [CrossRef]
- Hu, X.; Liu, W.; Yan, Y.; Liu, H.; Huang, Q.; Xiao, Y.; Gong, Z.; Du, J. Vitamin D Protects against Diabetic Nephropathy: Evidence-Based Effectiveness and Mechanism. Eur. J. Pharmacol. 2019, 845, 91–98. [Google Scholar] [CrossRef]
- Liang, X.; Chen, M.; Qu, P.; Hao, G.; Huang, Y.; Chen, J.; Li, T. The Association of Vitamin A and Vitamin D with Hypertension in Children: A Case-Control Study. Int. J. Hypertens. 2018, 2018, 9295147. [Google Scholar] [CrossRef]
- Karataş, S.; Köse, Ş.; Hacioğlu, Y. Vitamin D Deficiency and Microalbuminuria in Patients with Diabetes Mellitus. Turkish J. Diabetes Obes. 2021, 5, 266–269. [Google Scholar] [CrossRef]
- Mokhtari, E.; Hajhashemy, Z.; Saneei, P. Serum Vitamin D Levels in Relation to Hypertension and Pre-Hypertension in Adults: A Systematic Review and Dose-Response Meta-Analysis of Epidemiologic Studies. Front. Nutr. 2022, 9, 829307. [Google Scholar] [CrossRef]
- Meng, R.; Radkhah, N.; Ghalichi, F.; Hamedi-Kalajahi, F.; Musazadeh, V.; Saleh, S.A.K.; Adly, H.M.; Albadawi, M.I.; Jamilian, P.; Zarezadeh, M.; et al. The Impact of Vitamin D Supplementation on Improving Blood Pressure: Evidence Obtained From an Umbrella Meta-Analysis. Clin. Ther. 2023, 45, e208–e216. [Google Scholar] [CrossRef] [PubMed]
- Amer, S.A.; Abo-elnour, D.E.; Abbas, A.; Abdelrahman, A.S.; Hamdy, H.-E.M.; Kenawy, S.; Sarhan, M.M.; Mohamed, O.H.; Elnaghy, M.Y.; Baker, M.; et al. Calcium, Magnesium, and Vitamin D Supplementations as Complementary Therapy for Hypertensive Patients: A Systematic Review and Meta-Analysis. BMC Complement. Med. Ther. 2025, 25, 89. [Google Scholar] [CrossRef]
- Chackochan, A.; Rashid, M.; Reghunath, S.R.; Poojari, P.G.; Thunga, G.; Nagri, S.K.; Guddattu, V.; Shenoy, R.P.; Prasad Shenoy, V.; Acharya, L.D. Role of Vitamin D in the Development and Progression of Diabetic Kidney Disease: An Overview of Meta-Analyses. Ther. Adv. Endocrinol. Metab. 2025, 16, 20420188251319476. [Google Scholar] [CrossRef]
- Xuan, S.; Jin, Z.; Zhe, W.; Huai-en, B.; Chun-ying, T.; Dong-jun, W.; Yuan-yuan, G.; Hong-wu, W. A Systematic Review and Meta-Analysis of Randomized Control Trials of Vitamin D Supplementation in Diabetic Nephropathy. Int. J. Diabetes Dev. Ctries. 2023, 43, 4–11. [Google Scholar] [CrossRef]
- Schutten, J.C.; Joosten, M.M.; de Borst, M.H.; Bakker, S.J.L. Magnesium and Blood Pressure: A Physiology-Based Approach. Adv. Chronic Kidney Dis. 2018, 25, 244–250. [Google Scholar] [CrossRef]
- Volpe, S.L. Magnesium in Disease Prevention and Overall Health. Adv. Nutr. 2013, 4, 378S–383S. [Google Scholar] [CrossRef]
- Houston, M. The Role of Magnesium in Hypertension and Cardiovascular Disease. J. Clin. Hypertens. 2011, 13, 843–847. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Del Gobbo, L.C.; Rosanoff, A.; Wang, J.; Zhang, W.; Song, Y. Effects of Magnesium Supplementation on Blood Pressure: A Meta-Analysis of Randomized Double-Blind Placebo-Controlled Trials. Hypertens 2016, 68, 324–333. [Google Scholar] [CrossRef]
- Alharran, A.M.; Alzayed, M.M.; Jamilian, P.; Prabahar, K.; Kamal, A.H.; Alotaibi, M.N.; Elshaer, O.E.; Alhatm, M.; Masmoum, M.D.; Hernández-Wolters, B.; et al. Impact of Magnesium Supplementation on Blood Pressure: An Umbrella Meta-Analysis of Randomized Controlled Trials. Curr. Ther. Res. 2024, 101, 100755. [Google Scholar] [CrossRef]
- Xu, B.; Sun, J.; Deng, X.; Huang, X.; Sun, W.; Xu, Y.; Xu, M.; Lu, J.; Bi, Y. Low Serum Magnesium Level Is Associated with Microalbuminuria in Chinese Diabetic Patients. Int. J. Endocrinol. 2013, 2013, 580685. [Google Scholar] [CrossRef]
- Edi Tarigan, T.J.; Marbun, M.B.H.; Harimurti, K. Korelasi Kadar Magnesium Serum Dengan Albuminuria Pada Pasien Diabetes Melitus Tipe 2. eJournal Kedokt. Indones. 2015, 3, 115–119. [Google Scholar]
- Rezaei, M.; Khazaei, R.; Mohaqiq, Z.; Raeesi, V.; Farkhondeh, T.; Samarghandian, S. Effect of Magnesium Status on Microalbuminuria in Type 2 Diabetic Patients. Cardiovasc. Hematol. Agents Med. Chem. 2023, 21, 55–59. [Google Scholar] [CrossRef]
- Halawa, N.; Elsaid, T.W.; El Wakeel, L.M.; Shawki, M.A. Impact of Magnesium Supplementation on Clinical Outcome and Disease Progression of Patients with Diabetic Nephropathy: A Prospective Randomized Trial. Ther. Adv. Chronic Dis. 2023, 14, 20406223231214640. [Google Scholar] [CrossRef]
- Cormick, G.; Ciapponi, A.; Cafferata, M.L.; Cormick, M.S.; Belizán, J.M. Calcium Supplementation for Prevention of Primary Hypertension. Cochrane database Syst. Rev. 2022, 1, CD010037. [Google Scholar] [CrossRef]
- Kim, M.-H.; Bu, S.Y.; Choi, M.-K. Daily Calcium Intake and Its Relation to Blood Pressure, Blood Lipids, and Oxidative Stress Biomarkers in Hypertensive and Normotensive Subjects. Nutr. Res. Pract. 2012, 6, 421–428. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, C.; Liu, M.; Zhou, C.; Li, Q.; He, P.; Zhang, Y.; Li, H.; Qin, X. Dietary Iron Intake and New-Onset Hypertension: A Nationwide Cohort Study from China. J. Nutr. Health Aging 2022, 26, 1016–1024. [Google Scholar] [CrossRef]
- Galan, P.; Vergnaud, A.-C.; Tzoulaki, I.; Buyck, J.-F.; Blacher, J.; Czernichow, S.; Hercberg, S. Low Total and Nonheme Iron Intakes Are Associated with a Greater Risk of Hypertension. J. Nutr. 2010, 140, 75–80. [Google Scholar] [CrossRef]
- Ma, X.; Lv, J.; Zhang, S.; Zhang, X.; Lin, X.; Li, S.; Yang, L.; Xue, F.; Yi, F.; Zhang, T. Habitual Iron Supplementation Associated with Elevated Risk of Chronic Kidney Disease in Individuals with Antihypertensive Medication. Nutrients 2024, 16, 2355. [Google Scholar] [CrossRef]
- Kim, B.J.; Kim, B.S.; Kang, J.H. The Association between Serum Ferritin Level, Microalbuminuria and Non-Alcoholic Fatty Liver Disease in Non-Diabetic, Non-Hypertensive Men. Clin. Exp. Hypertens. 2014, 36, 380–385. [Google Scholar] [CrossRef]
- Tejeswini, C.J.; Syed, J.; Sumukh, G.N.; Rajanna, S.; Pereira, P.; Chalasani, S.H. Correlating Serum Ferritin with Microalbuminuria for Early Detection of Diabetic Nephropathy: A Comparative Analysis between Adult and Older Adult Diabetes Patients. Clin. Epidemiol. Glob. Heal. 2024, 26, 101551. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Mofrad, M.D.; do Nascimento, I.J.B.; Milajerdi, A.; Mokhtari, T.; Esmaillzadeh, A. The Effect of Zinc Supplementation on Blood Pressure: A Systematic Review and Dose-Response Meta-Analysis of Randomized-Controlled Trials. Eur. J. Nutr. 2020, 59, 1815–1827. [Google Scholar] [CrossRef]
- Kim, J. Dietary Zinc Intake Is Inversely Associated with Systolic Blood Pressure in Young Obese Women. Nutr. Res. Pract. 2013, 7, 380–384. [Google Scholar] [CrossRef]
- Parham, M.; Amini, M.; Aminorroaya, A.; Heidarian, E. Effect of Zinc Supplementation on Microalbuminuria in Patients with Type 2 Diabetes: A Double Blind, Randomized, Placebo-Controlled, Cross-over Trial. Rev. Diabet. Stud. 2008, 5, 102–109. [Google Scholar] [CrossRef]
- Gembillo, G.; Visconti, L.; Giuffrida, A.E.; Labbozzetta, V.; Peritore, L.; Lipari, A.; Calabrese, V.; Piccoli, G.B.; Torreggiani, M.; Siligato, R.; et al. Role of Zinc in Diabetic Kidney Disease. Nutrients 2022, 14, 1353. [Google Scholar] [CrossRef]
- Bastola, M.M.; Locatis, C.; Maisiak, R.; Fontelo, P. Selenium, Copper, Zinc and Hypertension: An Analysis of the National Health and Nutrition Examination Survey (2011-2016). BMC Cardiovasc. Disord. 2020, 20, 45. [Google Scholar] [CrossRef]
- Laclaustra, M.; Navas-Acien, A.; Stranges, S.; Ordovas, J.M.; Guallar, E. Serum Selenium Concentrations and Hypertension in the US Population. Circ. Cardiovasc. Qual. Outcomes 2009, 2, 369–376. [Google Scholar] [CrossRef]
- Zhang, J.-W.; Lin, Y.; Liu, Y.-M.; Wang, M.-M.; Gong, J.-G.; Shen, X.-G.; Shen, Q.-Q.; Lin, B.; Su, W.-E.; Gao, Y.-C.; et al. Excess Selenium Intake Is Associated with Microalbuminuria in Female but Not in Male among Adults with Obesity: Results from NHANES 2009-2018. Front. Nutr. 2023, 10, 1043395. [Google Scholar] [CrossRef]
- Le, N.T.; Pham, Y.T.-H.; Le, C.T.-K.; Le, L.T.; Le, T.-D.; Dao, H.V.; Ha, T.H.; Kuchipudi, S.V.; Luu, H.N. A U-Shaped Association between Selenium Intake and Cancer Risk. Sci. Rep. 2024, 14, 21378. [Google Scholar] [CrossRef]
- Olivo, R.E.; Hale, S.L.; Diamantidis, C.J.; Bhavsar, N.A.; Tyson, C.C.; Tucker, K.L.; Carithers, T.C.; Kestenbaum, B.; Muntner, P.; Tanner, R.M.; et al. Dietary Phosphorus and Ambulatory Blood Pressure in African Americans: The Jackson Heart Study. Am. J. Hypertens. 2019, 32, 94–103. [Google Scholar] [CrossRef]
- McClure, S.T.; Rebholz, C.M.; Medabalimi, S.; Hu, E.A.; Xu, Z.; Selvin, E.; Appel, L.J. Dietary Phosphorus Intake and Blood Pressure in Adults: A Systematic Review of Randomized Trials and Prospective Observational Studies. Am. J. Clin. Nutr. 2019, 109, 1264–1272. [Google Scholar] [CrossRef]
- McClure, S.T.; Rebholz, C.M.; Mitchell, D.C.; Selvin, E.; Appel, L.J. The Association of Dietary Phosphorus with Blood Pressure: Results from a Secondary Analysis of the PREMIER Trial. J. Hum. Hypertens. 2020, 34, 132–142. [Google Scholar] [CrossRef]
- Hofrichter, J.; Sempert, K.; Kerkhoff, C.; Breitrück, A.; Wasserkort, R.; Mitzner, S. Phosphate Restriction Using a Processed Clay Mineral Reduces Vascular Pathologies and Microalbuminuria in Rats with Chronic Renal Failure. BMC Nephrol. 2022, 23, 162. [Google Scholar] [CrossRef]
| Categories | Systolic Blood Pressure (SBP; mmHg) | and/or | Diastolic Blood Pressure (DBP; mmHg) |
|---|---|---|---|
| Joint National Committee (JNC) 8 | |||
| Normal | <120 | and | <80 |
| Prehypertension | 120–139 | or | 80–89 |
| Stage 1 hypertension | 140–159 | or | 90–99 |
| Stage 2 hypertension | ≥160 | or | ≥100 |
| American College of Cardiology/American Heart Association | |||
| Normal | <120 | and | <80 |
| Elevated | 120–129 | and | <80 |
| Stage 1 hypertension | 130–139 | or | 80–89 |
| Stage 2 hypertension | ≥140 | or | ≥90 |
| Dietary Pattern | Key Components | Primary Mechanisms | Established Benefits for HTN & MA |
|---|---|---|---|
| DASH Diet | Rich in fruits, vegetables, and low-fat dairy; low in sodium, saturated fat, red meat, and sweets. | Provides high levels of potassium, magnesium, and calcium; is high in fiber and has an anti-inflammatory effect. | Significantly lowers BP, reducing the intraglomerular pressure contributing to kidney damage and HTN. |
| Mediterranean Diet | High intake of olive oil, nuts, fish, legumes, vegetables, and fruits; low in red/processed meat and sweets. | High in monounsaturated fats, omega-3s, antioxidants, and polyphenols; improves endothelial function and reduces inflammation and oxidative stress. | Highly effective for blood pressure control and has demonstrated benefits for kidney health, including a lower risk of CKD and a decreased UACR. |
| Plant-Based Diets | Rich in fruits, vegetables, whole grains, and legumes; eliminates meat (vegetarian) or all animal products (vegan). | Typically lower in sodium and saturated fat, and higher in potassium, magnesium, and fiber. The lower acid load from plant proteins may also benefit kidney health. | Effective for lowering BP, plant-based low-protein diets are associated with significantly decreasing proteinuria and lower urinary albumin excretion rates. |
| Nutrient/ Factor | Strength of Evidence | Effect on Hypertension (HTN) | Effect on Microalbuminuria (MA) | Clinical Recommendation |
|---|---|---|---|---|
| Sodium | Strong | High sodium intake is a primary and well-established driver of HTN. | Elevated salt consumption can activate the local RAAS within the kidneys, leading to glomerular injury. | Prioritize reducing sodium intake towards the WHO recommendation of 2 g/day. |
| Potassium | Strong | Crucial for promoting vasodilation and lowering BP by counteracting sodium’s effects. | The complex relationship appears to follow a U-shaped curve where moderate intake may be protective, but excessive intake may be harmful. | Achieve adequate intake through diet (3.5–4.7 g/day) while exercising caution in patients with compromised renal function. |
| Protein | Moderate | The role is complex, with benefits and risks depending on the quantity and the source (plant vs. animal). | High-protein diets are harmful and accelerate kidney function decline by causing hyperfiltration and glomerular scarring. | Recommend moderation (~0.8 g/kg/day), favoring plant-based and lean protein sources. Protein restriction is crucial for patients with CKD. |
| Vitamin D | Moderate (Associative) | Observational studies show a strong inverse relationship between vitamin D levels and HTN risk, but evidence from intervention trials is conflicting. | The benefits of supplementation appear more pronounced for kidney health, with evidence showing a significant reduction in proteinuria. | Consider its role as an “efficient adjuvant” therapy. The goal is to correct the deficiency, not pursue high-dose supplementation. |
| Carbohydrate | Moderate to Strong | Quality is more critical than quantity; diets high in fiber and low in glycemic index are beneficial. | High fructose intake is linked to glomerular HTN and renal injury, while fiber is protective. | Prioritize high-quality, high-fiber, low-glycemic-index carbohydrates while limiting added sugars and refined grains. |
| Antioxidant Vitamins (C & E) | Weak & Conflicting | Vitamin C has a modest benefit in hypertensive populations, but not normotensive ones. Vitamin E has no significant effect on BP. | Evidence does not support a benefit for Vitamin C. Vitamin E supplementation alone may significantly reduce albuminuria. | Long-term, high-dose supplementation is not recommended; nutrients should be obtained from whole foods. |
| B Vitamins & Homocysteine | Weak & Conflicting | Folic acid reduces BP in hypertensive populations (especially with MTHFR variants), but B vitamins do not affect normotensive individuals. | Despite successfully lowering homocysteine, B vitamin supplementation has little to no effect on urinary albumin excretion in clinical trials. | The evidence does not currently support routine high-dose supplementation beyond correcting a deficiency. |
| Magnesium & Calcium | Promising but Inconsistent | Supplementation benefits hypertensive individuals but not the normotensive population. | Magnesium may reduce urinary albumin excretion. A direct link between calcium intake and MA is not established. | Prioritize dietary sources. Supplementation can be considered for hypertensive patients. |
| Iron & Selenium | Controversial (U-shaped) | Both deficiency and excess are detrimental to vascular health and are linked to HTN risk. | The U-shaped risk curve applies to renal health, as both deficiency and excess can promote oxidative stress in the kidneys. | Supplementation should be avoided unless a true deficiency is diagnosed, due to the narrow therapeutic window and risk of toxicity. |
| Phosphorus | Controversial | The “phosphorus paradox”: harm is most strongly associated with inorganic phosphates from food additives, not organic phosphorus from whole foods. | Phosphate control is a cornerstone of management in Chronic Kidney Disease (CKD) to slow its progression. | Limit phosphorus from food additives. For any patient with CKD, a low-phosphate diet is essential. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iryaningrum, M.R.; Soetedjo, N.N.M.; Indraswari, N.; Agustini, D.; Sribudiani, Y.; Supriyadi, R. The Relationship of Macro–Micronutrient Intake with Incidence and Progressivity of Hypertension and Microalbuminuria. Kidney Dial. 2025, 5, 53. https://doi.org/10.3390/kidneydial5040053
Iryaningrum MR, Soetedjo NNM, Indraswari N, Agustini D, Sribudiani Y, Supriyadi R. The Relationship of Macro–Micronutrient Intake with Incidence and Progressivity of Hypertension and Microalbuminuria. Kidney and Dialysis. 2025; 5(4):53. https://doi.org/10.3390/kidneydial5040053
Chicago/Turabian StyleIryaningrum, Maria Riastuti, Nanny Natalia Mulyani Soetedjo, Noormarina Indraswari, Dessy Agustini, Yunia Sribudiani, and Rudi Supriyadi. 2025. "The Relationship of Macro–Micronutrient Intake with Incidence and Progressivity of Hypertension and Microalbuminuria" Kidney and Dialysis 5, no. 4: 53. https://doi.org/10.3390/kidneydial5040053
APA StyleIryaningrum, M. R., Soetedjo, N. N. M., Indraswari, N., Agustini, D., Sribudiani, Y., & Supriyadi, R. (2025). The Relationship of Macro–Micronutrient Intake with Incidence and Progressivity of Hypertension and Microalbuminuria. Kidney and Dialysis, 5(4), 53. https://doi.org/10.3390/kidneydial5040053

