Distinctive Patterns of Trace Elements in Chronic Kidney Disease of Uncertain Etiology: Comparative Analysis Across Multiple Control Groups
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Recruitment of Study Subjects
2.2. Sample Collection, Processing and Laboratory Analysis
2.3. Statistical Analysis
3. Results
3.1. General Characteristics of the Study Participants
3.2. Descriptive Statistics of the Study Participants
3.3. Significant Changes in TE Levels in Serum and Urine
3.4. Relationship Between TEs and eGFR
3.5. TE Levels in Heat Maps
3.6. Significance of TEs to Differentiate Within Defined Categories
4. Discussion
4.1. TEs and Renal Involvement
4.2. Significance of the Study
4.3. Challenges and Future Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Webster, J.D.; Goldoff, B.A.; Flesch, R.N.; Nadeau, P.A.; Silbert, Z.W. Hydroxyl, Cl, and F partitioning between high-silica rhyolitic melts-apatite-fluid(s) at 50–200 MPa and 700–1000 °C. Am. Mineral. 2017, 102, 61–74. [Google Scholar] [CrossRef]
- Cockwell, P.; Fisher, L.-N. The global burden of chronic kidney disease. Lancet 2020, 395, 662–664. [Google Scholar] [CrossRef]
- Jha, V.; Garcia-Garcia, G.; Iseki, K.; Li, Z.; Naicker, S.; Plattner, B.; Saran, R.; Wang, A.Y.-M.; Yang, C.-W. Chronic kidney disease: Global dimension and perspectives. Lancet 2013, 382, 260–272. [Google Scholar] [CrossRef]
- Vervaet, B.A.; Nast, C.C.; Jayasumana, C.; Schreurs, G.; Roels, F.; Herath, C.; Kojc, N.; Samaee, V.; Rodrigo, S.; Gowrishankar, S.; et al. Chronic interstitial nephritis in agricultural communities is a toxin-induced proximal tubular nephropathy. Kidney Int. 2020, 97, 350–369. [Google Scholar] [CrossRef]
- Pett, J.; Mohamed, F.; Knight, J.; Linhart, C.; Osborne, N.J.; Taylor, R. Two decades of chronic kidney disease of unknown aetiology (CKDu) research: Existing evidence and persistent gaps from epidemiological studies in Sri Lanka. Nephrology 2022, 27, 238–247. [Google Scholar] [CrossRef]
- Nanayakkara, S.; Senevirathna, S.; Abeysekara, T.; Chandrajith, R.; Ratnatunga, N.; Gunaratne, E.D.L.; Yan, J.; Hitomi, T.; Muso, E.; Komiya, T.; et al. An Integrative Study of the Genetic, Social and Environmental Determinants of Chronic Kidney Disease Characterized by tubulointerstitial damages in the North Central Region of Srilanka. J. Occup. Health 2014, 56, 28–38. [Google Scholar] [CrossRef]
- Balasooriya, S.; Diyabalanage, S.; Yatigammana, S.K.; Ileperuma, O.A.; Chandrajith, R. Major and trace elements in rice paddy soils in Sri Lanka with special emphasis on regions with endemic chronic kidney disease of undetermined origin. Environ. Geochem. Health 2021, 44, 1841–1855. [Google Scholar] [CrossRef]
- Liyanage, D.; Diyabalanage, S.; Dunuweera, S.; Rajapakse, S.; Rajapakse, R.; Chandrajith, R. Significance of Mg-hardness and fluoride in drinking water on chronic kidney disease of unknown etiology in Monaragala, Sri Lanka. Environ. Res. 2021, 203, 111779. [Google Scholar] [CrossRef]
- Wickramarathna, S.; Balasooriya, S.; Diyabalanage, S.; Chandrajith, R. Tracing environmental aetiological factors of chronic kidney diseases in the dry zone of Sri Lanka—A hydrogeochemical and isotope approach. J. Trace Elem. Med. Biol. 2017, 44, 298–306. [Google Scholar] [CrossRef]
- Rango, T.; Jeuland, M.; Manthrithilake, H.; McCornick, P. Nephrotoxic contaminants in drinking water and urine, and Chronic Kidney Disease in rural Sri Lanka. Sci. Total. Environ. 2015, 518–519, 574–585. [Google Scholar] [CrossRef]
- Nanayakkara, S.; Senevirathna, L.; Harada, K.H.; Chandrajith, R.; Hitomi, T.; Abeysekera, T.; Muso, E.; Watanabe, T.; Koizumi, A. Systematic evaluation of exposure to trace elements and minerals in patients with chronic kidney disease of uncertain etiology (CKDu) in Sri Lanka. J. Trace Elem. Med. Biol. 2019, 54, 206–213. [Google Scholar] [CrossRef]
- Bandara, J.M.; Wijewardena, H.V.; Bandara, A.; Jayasooriya, R.G.P.T.; Rajapaksha, H. Pollution of River Mahaweli and farmlands under irrigation by Cd from agricultural inputs leading to a chronic renal failure epidemic among farmers in NCP, Sri Lanka. Environ. Geochem. Health 2011, 33, 439–453. [Google Scholar] [CrossRef]
- Chandrajith, R.; Dissanayake, C. Phosphate Mineral Fertilizers, trace metals and human health. J. Natl. Sci. Found. Sri Lanka 2009, 37, 153. [Google Scholar] [CrossRef]
- Said, S.; Hernandez, G.T. Environmental exposures, socioeconomics, disparities, and the kidneys. Adv. Chronic Kidney Dis. 2015, 22, 39–45. [Google Scholar] [CrossRef]
- Premarathne, S.; Chandrajith, R.; Nanayakkara, N.; Gamage, C.D.; Ratnatunga, N.; Wijetunge, S.; Badurdeen, Z.; Guruge, S.; Elladeniya, N.; Madushan, K.P.S.; et al. Could Consumption of Trace Element–Contaminated Rice Be a Risk Factor for Acute Interstitial Nephritis with Uncertain Etiology in the Dry Zone of Sri Lanka? Biol. Trace Element Res. 2022, 200, 2597–2605. [Google Scholar] [CrossRef]
- Jayalal, T.B.A.; Bandara, T.W.M.A.J.; Mahawithanage, S.T.C.; Wansapala, M.A.J.; Galappaththi, S.P.L. A quantitative analysis of chronic exposure of selected heavy metals in a model diet in a CKD hotspot in Sri Lanka. BMC Nephrol. 2019, 20, 208. [Google Scholar] [CrossRef]
- Levine, K.E.; Redmon, J.H.; Elledge, M.F.; Wanigasuriya, K.P.; Smith, K.; Munoz, B.; Waduge, V.A.; Periris-John, R.J.; Sathiakumar, N.; Harrington, J.M.; et al. Quest to identify geochemical risk factors associated with chronic kidney disease of unknown etiology (CKDu) in an endemic region of Sri Lanka—A multimedia laboratory analysis of biological, food, and environmental samples. Environ. Monit. Assess. 2016, 188, 548. [Google Scholar] [CrossRef]
- Jayatilake, N.; Mendis, S.; Maheepala, P.; Mehta, F.R. Chronic Kidney Disease of uncertain aetiology: Prevalence and causative factors in a developing country. BMC Nephrol. 2013, 14, 180. [Google Scholar] [CrossRef]
- Herath, H.; Kawakami, T.; Nagasawa, S.; Serikawa, Y.; Motoyama, A.; Chaminda, G.G.T.; Weragoda, S.K.; Yatigammana, S.K.; Amarasooriya, A.A.G.D. Arsenic, cadmium, lead, and chromium in well water, rice, and human urine in Sri Lanka in relation to chronic kidney disease of unknown etiology. J. Water Health 2018, 16, 212–222. [Google Scholar] [CrossRef]
- Gunawardena, S.A.; Gunawardana, J.W.; Chandrajith, R.; Thoradeniya, T.; Jayasinghe, S. Renal bioaccumulation of trace elements in urban and rural Sri Lankan populations: A preliminary study based on post mortem tissue analysis. J. Trace Elem. Med. Biol. 2020, 61, 126565. [Google Scholar] [CrossRef]
- Diyabalanage, S.; Navarathna, T.; Abeysundara, H.T.K.; Rajapakse, S.; Chandrajith, R. Trace elements in native and improved paddy rice from different climatic regions of Sri Lanka: Implications for public health. SpringerPlus 2016, 5, 1864. [Google Scholar] [CrossRef]
- Wijewickrama, E.S.; Gunawardena, N.; Jayasinghe, S.; Herath, C. CKD of Unknown Etiology (CKDu) in SriLanka: A Multiple Clinical Case Definition for Surveillance and Epidemiological Studies. Kidney Int. Rep. 2019, 4, 781–785. [Google Scholar] [CrossRef]
- Stephan, C.H.; Fournier, M.; Brousseau, P.; Sauvé, S. Graphite furnace atomic absorption spectrometry as a routine method for the quantification of beryllium in blood and serum. BMC Chem. 2008, 2, 14. [Google Scholar] [CrossRef]
- Labcorp. Available online: https://www.labcorp.com/tests/808540/beryllium-urine (accessed on 25 June 2021).
- Długaszek, M.; Szopa, M.; Rzeszotarski, J.; Karbowiak, P. Magnesium, calcium and trace elements distribution in serum, erythrocytes, and hair of patients with chronic renal failure. Magnes. Res. 2008, 21, 109–117. Available online: https://pubmed.ncbi.nlm.nih.gov/18705539/ (accessed on 30 October 2024).
- Schonwald, S. Medical Toxicology, 3rd ed.; Dart, R.C., Ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2004; pp. 1470–1471. [Google Scholar]
- Rockhold, W.T.; Talvitie, N.A. Vanadium Concentration of Urine: Rapid Colorimetric Method for Its Estimation. Clin. Chem. 1956, 2, 188–194. [Google Scholar] [CrossRef]
- Lokesh, S.; Green, S.R.; Radhakrishnan, H.; Kadavanu, T.M.; Ramachandrappa, A.; Tiwari, S.R.; Rajkumar, A.L.; Go-vindasamy, E. Trace elements in chronic haemodialysis patients and healthy individuals-a comparative study. J. Clin. Diagn. Res. 2016, 10, 14–17. [Google Scholar] [CrossRef]
- Lybra+e. Available online: https://www.lybrate.com/lab-test/chromium (accessed on 30 October 2024).
- Islam, M.R.; Islam, M.R.; Shalahuddin Qusar, M.M.A.; Islam, M.S.; Kabir, M.H.; Mustafizur Rahman, G.K.M.; Islam, M.S.; Hasnat, A. Alterations of serum macro-minerals and trace elements are associated with major depressive disorder: A case-control study. BMC Psychiatry 2008, 18, 94. [Google Scholar] [CrossRef]
- White, M.; Sabbioni, E. Trace element reference values in tissues from inhabitants of the European Union. X. A study of 13 elements in blood and urine of a United Kingdom population. Sci. Total. Environ. 1998, 216, 253–270. [Google Scholar] [CrossRef]
- Iyengar, V.; Woittiez, J. Trace elements in human clinical specimens: Evaluation of literature data to identify reference values. Clin. Chem. 1988, 34, 474–481. [Google Scholar] [CrossRef]
- Rodushkin, I.; Ödman, F. Assessment of the contamination from devices used for sampling and storage of whole blood and serum for element analysis. J. Trace Elem. Med. Biol. 2001, 15, 40–45. [Google Scholar] [CrossRef]
- Taylor, A. Biochemistry of Tellurium. Biol. Trace Elem. Res. 1996, 5, 231–239. [Google Scholar] [CrossRef]
- Fischer, R.S.B.; Unrine, J.M.; Vangala, C.; Sanderson, W.T.; Mandayam, S.; Murray, K.O. Evidence of nickel and other trace elements and their relationship to clinical findings in acute Mesoamerican Nephropathy: A case-control analysis. PLoS ONE 2020, 15, e0240988. [Google Scholar] [CrossRef] [PubMed]
- Filler, G.; Felder, S. Trace elements in dialysis. Pediatr. Nephrol. 2014, 29, 1329–1335. [Google Scholar] [CrossRef]
- Hadrup, N.; Ravn-Haren, G. Acute human toxicity and mortality after selenium ingestion: A review. J. Trace Elem. Med. Bio. 2020, 58, 126435. [Google Scholar] [CrossRef]
- Mertz, W. Lithium. In Trace Elements in Humun and Animal Nutrition, 5th ed.; Mertz, W., Ed.; Academic Press: Orlando, FL, USA, 1986; Volume 2, pp. 391–397. [Google Scholar]
- Caroli, S.; Alimonti, A.; Coni, E.; Petrucci, F.; Senofonte, O.; Violante, N. The assessment of reference values for elements in human biological tissues and fluids: A systematic review. Crit. Rev. Anal. Chem. 1994, 24, 363–398. [Google Scholar] [CrossRef]
- Jayasumana, M.A.C.S.; Paranagama, P.A.; Amarasinghe, M.D.; Wijewardane, K.M.R.C.; Dahanayake, K.S.; Fonseka, S.I.; Rajakaruna, K.D.I.M.P.; Mahamithawa, A.M.P.; Samarasinghe, U.D.; Senanayake, V.K. Possible link of chronic arsenic toxicity to chronic kidney disease of unknown etiology in Sri Lanka. J. Nat. Sci. Res. 2013, 3, 64–73. [Google Scholar]
- Wanigasuriya, K.P.; Peiris-John, R.J.; Wickremasinghe, R. Chronic Kidney Disease of Unknown Aetiology in Sri Lanka: Is Cadmium a Likely Cause? BMC Nephrol. 2011, 12, 1–7. [Google Scholar] [CrossRef]
- Jayasumana, C.; Gunathilake, S.; Senanayake, P. Glyphosate, hard water and nephrotoxic metals: Are they the culprits behind the epidemic of chronic kidney disease of unknown etiology in Sri Lanka? Int. J. Environ. Res. Public Health 2014, 11, 2125–2147. [Google Scholar] [CrossRef]
- Chandrajith, R.; Seneviratna, S.; Wickramaarachchi, K.; Attanayake, T.; Aturaliya, T.N.C.; Dissanayake, C.B. Natural radio-nuclides and trace elements in rice field soils in relation to fertilizer application: Study of a chronic kidney disease area in Sri Lanka. Environ. Earth Sci. 2010, 60, 193–201. [Google Scholar] [CrossRef]
- Chandrajith, R.; Dissanayake, C.B.; Tobschall, H.J. The abundances of rarer trace elements in paddy (rice) soils of Sri Lanka. Chemosphere 2005, 58, 1415–1420. [Google Scholar] [CrossRef]
- Bandara, J.M.R.S.; Senevirathna, D.M.A.N.; Dasanayake, D.M.R.S.B.; Herath, V.; Abeysekara, T.; Rajapaksha, K.H. Chronic renal failure among farm families in cascade irrigation systems in Sri Lanka associated with elevated dietary cadmium levels in rice and freshwater fish (Tilapia). Environ. Geochem. Health 2008, 30, 465–478. [Google Scholar] [CrossRef]
- Atlani, M.; Kumar, A.; Ahirwar, R.; Meenu, M.N.; Goel, S.K.; Kumari, R.; Anirudhan, A.; Vallamshetla, S.; Reddy, G.S.T. Heavy metal association with chronic kidney disease of unknown cause in central India-results from a case-control study. BMC Nephrol. 2024, 25, 120. [Google Scholar] [CrossRef]
- Järup, L.; Åkesson, A. Current Status of Cadmium as an Environmental Health Problem. Toxicol. Appl. Pharmacol. 2009, 238, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, G.F. Historical Perspectives on Cadmium Toxicology. Toxicol. Appl. Pharmacol. 2009, 238, 192–200. [Google Scholar] [CrossRef]
- Kabata-Pendias, H.A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007; Volume 23. [Google Scholar] [CrossRef]
- Filler, G.; Roach, E.; Yasin, A.; Sharma, A.P.; Blake, P.G.; Yang, L. High prevalence of elevated lead levels in pediatric dialysis patients. Pediatr. Nephrol. 2012, 27, 1551–1556. [Google Scholar] [CrossRef]
- Staessen, J.; Bernard, A.; Buchet, J.P.; Claeys, F.; Dekempeneer, L.; Ducoffre, G.; Fagard, R.; Lauwerys, R.; Lijnen, P.; Roels, H. Effects of cadmium exposure on the cardiovascular system and on calcium metabolism: Results of a cross-sectional population study. IARC Sci. Pub. 1992, 118, 263–269. [Google Scholar]
- Bourget, P.; Lesne-Hulin, A.; Quinquis-Desmaris, V. Study of the bioequivalence of two controlled-release formulations of morphine. Int. J. Clin. Pharmacol. Ther. 1995, 33, 588–594. [Google Scholar]
- Brody, T. Nutritional Biochemistry; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Linder, M.C.; Hazegh-Azam, M. Copper Biochemistry and Molecular Biology. Am. J. Clin. Nutr. 1996, 63, 797S–811S. [Google Scholar] [CrossRef]
- Hirano, T.; Murakami, M.; Fukada, T.; Nishida, K.; Yamasaki, S.; Suzuki, T. Roles of zinc and zinc signaling in immunity: Zinc as an intracellular signaling molecule. Adv. Immunol. 2008, 97, 149–176. [Google Scholar]
- Shimada, B.K.; Alfulaij, N.; Seale, L.A. The Impact of Selenium Deficiency on Cardiovascular Function. Int. J. Mol. Sci. 2021, 22, 10713. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Edirithilake, T.; Nanayakkara, N.; Lin, X.X.; Biggs, P.J.; Chandrajith, R.; Lokugalappatti, S.; Wickramasinghe, S. Urinary MicroRNA Analysis Indicates an Epigenetic Regulation of Chronic Kidney Disease of Unknown Etiology in Sri Lanka. MicroRNA 2023, 12, 156–163. [Google Scholar] [CrossRef] [PubMed]
Characteristic/Outcome | CKDu (n = 75) | EC (n = 79) | NEC (n = 85) | ECKD (n = 82) | NECKD (n = 85) |
---|---|---|---|---|---|
Male, n (%) | 61 (81.3) | 55 (69.6) | 46 (54.1) | 38 (46.3) | 42 (49.4) |
Female, n (%) | 14 (18.7) | 24 (30.4) | 39 (45.9) | 44 (53.7) | 43 (50.6) |
Age, years (SD) | 51 ± 10 | 38 ± 10 | 46 ± 12 | 59 ± 10 | 49 ± 13 |
eGFR, >60, n (%) | 32 (42.7) | 79 (100) | 84 (98.8) | 15 (18.3) | 26 (30.6) |
eGFR, <60, n (%) | 43 (57.3) | 01 (01.2) | 67 (81.7) | 59 (69.4) | |
Comorbidity: | |||||
DM, n (%) * | 05 (06.7) | 0 | 0 | 19 (23.2) | 37 (43.5) |
HT, n (%) * | 26 (34.7) | 01 (01.3) | 0 | 60 (73.2) | 56 (65.9) |
TE | S/U | CKDu (µg/L) | EC (µg/L) | ECKD (µg/L) | NEC (µg/L) | NECKD (µg/L) | Reference Range * (µg/L) |
---|---|---|---|---|---|---|---|
Be | S | 0.26 (1.6) | 0.07 (0.11) | 0.21 (0.66) | 0.02 (0.01) | 0.04 (0.02) | <1 [23] |
U | 0.04 (0.01) | 0.05 (0.01) | 0.04 (0.02) | 0.05 (0.01) | 0.04 (0.02) | <2 [24] | |
Al | S | 975 (235) | 1199 (531) | 1612 (346) | 1288 (256) | 1484 (409) | <10 [25] |
U | 2040 (326) | 1876 (564) | 2677 (839) | 1864 (362) | 3039 (1066) | 1.2–168 [10] | |
V | S | 126 (16) | 1753 (543) | 87 (14) | 157 (52) | 68 (23) | 11 [26] |
U | 2.12 (1.0) | 2.71 (0.8) | 1.95 (1.0) | 2.93 (0.69) | 1.66 (0.9) | <10 [27] | |
Cr | S | 177 (270) | 5304 (8662) | 599 (1084) | 248 (549) | 204 (166) | <30 [28] |
U | 223 (227) | 78 (23) | 72 (10) | 77 (16) | 92 (84) | <1400 [29] | |
Mn | S | 43 (24) | 335 (489) | 272 (736) | 56 (91) | 56 (41) | 100–2900 [30] |
U | 50 (63) | 15 (10) | 29 (17) | 23 (6) | 22 (35) | <0.09–7.8 [31] | |
Fe | S | 2262 (1036) | 26,640 (31,994) | 4103 (3574) | 2878 (1578) | 2919 (2202) | 800–1200 [32] |
U | 895 (883) | 531 (411) | 423 (226) | 593 (152) | 689 (360) | 1.2–16 [33] | |
Co | S | 3.6 (3.7) | 29.9 (75) | 21.4 (52.7) | 5.0 (15) | 4.2 (4.3) | <4 [28] |
U | 4.8 (4.2) | 2.6 (1.8) | 3.0 (1.2) | 3.3 (2.0) | 3.0 (3.8) | 1.3–28 [34] | |
Ni | S | 106 (95) | 1564 (3930) | 1249 (3313) | 221 (450) | 237 (420) | <1.0 [35] |
U | 234 (290) | 52.6 (40.8) | 77 (51) | 58 (7) | 90 (174) | <10.4 [35] | |
Cu | S | 698 (202) | 1849 (651) | 752 (299) | 722 (131) | 828 (173) | 600–1400 [30] |
U | 36 (29.1) | 25 (15) | 63 (54) | 29 (8) | 41 (31) | 4.6–40.4 [31] | |
Zn | S | 1483 (722) | 9761 (4805) | 1050 (228) | 1177 (330) | 1239 (258) | 750–1200 [36] |
U | 377 (273) | 734 (443) | 790 (457) | 611 (229) | 640 (424) | 40–430 [33] | |
As | S | 16 (6.1) | 21.5 (16) | 6.6 (3.6) | 4.8 (1.4) | 6.4 (3.3) | <5 [28] |
U | 33.5 (71) | 26.9 (22) | 26.6 (33) | 43.9 (37) | 31.5 (26) | <0.5–48.2 [31] | |
Se | S | 63.1 (14.8) | 285 (151) | 58 (20) | 63 (12) | 67 (14) | 58–234 [36] |
U | 9.8 (6.9) | 16.5 (11) | 17.9 (12) | 20 (13) | 16.8 (12) | 10–160 [37] | |
Rb | S | 365 (101) | 2012 (1220) | 403 (118) | 429 (102) | 427 (114) | 98–215 [33] |
U | 2005 (1216) | 2819 (1925) | 176 (154) | 2939 (2330) | 1632 (1065) | 500–5500 [33] | |
Sr | S | 87 (30) | 968 (578) | 97 (22) | 88 (26) | 94 (29) | 57 [38] |
U | 139 (98) | 253 (152) | 116 (76) | 200 (100) | 101 (54) | 27–220 [33] | |
Cd | S | 1.73 (2.7) | 12 (9) | 1.26 (3.4) | 4.3 (16) | 1.0 (0.5) | <1.5 [28] |
U | 0.95 (0.5) | 1.48 (1) | 2.72 (1.9) | 1.84 (1.1) | 3.9 (3.1) | 0.05–1.64 [31] | |
Ba | S | 1197 (1288) | 2173 (964) | 27 (9) | 52 (53) | 45 (49) | <30 [28] |
U | 15.6 (4.8) | 21.9 (12) | 29.5 (20) | 26.8 (12) | 49.2 (66) | 0.03–5.7 [39] | |
Pb | S | 15 (10) | 39 (29) | 6.3 (2.5) | 16 (16) | 14 (8) | <100 [33] |
U | 9.7 (17) | 6.6 (7) | 20 (22) | 9.5 (3) | 18.7 (10) | 0.3–30 [31] | |
U | S | 1.1 (0.1) | 5.1 (3.4) | 0.84 (0.07) | 1.13 (0.3) | 0.89 (0.1) | 0.014–0.015 [33] |
U | 1.4 (0.1) | 1.5 (0.2) | 1.5 (0.08) | 1.8 (0.1) | 1.7 (0.1) | 0.0007–0.019 [33] |
Category | Serum | Urine | |
---|---|---|---|
In all groups | Al, V, Cr, Fe, Co, Ni, Rb, Sr, U | Al, Ti, Mn, Fe, Ni, Ba, U | |
Non-endemic vs. endemic groups | Increased in NE | Al | Al, Fe, Cd, Ba, V |
NECKD vs. NEC | Increased in NEC | V, U | As, Rb, Sr, V, U |
Increased in NECKD | Be, Al, Cu, As | Al, Fe, Cu, Cd, Ba, Pb | |
Endemic vs. non-endemic groups | Increased in Endemic | V, Cr, Fe, Co, Ni, Zn, As, Rb, Sr, Cd, Ba, Bi, U | Mn, Ni, Cu |
EC vs. ECKD (increasing in endemic groups) | Increased in EC | V, Cr, Fe, Cu, Zn, As, Se, Rb, Sr, Cd, Ba, Pb, U | V, Cr, Fe, Rb, Sr |
Increased in ECKD | Be, Al | Al, Mn, Ni, Cu, Cd, Ba, Pb | |
CKDu vs. ECKD | Increased in ECKD | Al, Cr, Mn, Fe, Co, Ni | Al, Cu, Zn, Se, Cd, Ba, U |
Increased in CKDu | V, Zn, As, Ba, Pb, U | Cr, Mn, Fe, Co, Ni, Rb | |
EC vs. CKDu | Increased in EC | Al, Cr, Mn, Fe, Co, Ni, Cu, V, Zn, Se, Rb, Sr, U, Pb | Be, V, Zn, Se, Rb, Sr, U, Cd, Ba |
Increased in CKDu | Cd | Al, Cr, Mn, Fe, Co, Ni, Cu | |
NEC vs. CKDu | Increased in NEC | Al, V, Fe, Ni | Zn, Cd, Ba, U |
Increased in CKDu | Ba | Al, Fe, Ni, Mn | |
NEC vs. EC | Increased in NEC | Al | Mn, Fe, Ni, Cd, Ba, U |
Increased in EC | V, Cr, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Cd, Ba, U | Al, Zn |
Trace Element | eGFR (CKDu) | eGFR (ECKD) | eGFR (NECKD) | |||
---|---|---|---|---|---|---|
Serum/Urine | Serum | Urine | Serum | Urine | Serum | Urine |
Be | - | - | - | - | −0.231 * | - |
Al | - | - | −0.401 ** | - | - | - |
V | - | - | 0.353 ** | 0.486 ** | - | - |
Cr | - | - | −0.253 * | - | - | −0.238 * |
Mn | - | - | −0.391 ** | 0.334 ** | - | - |
Fe | - | - | −0.274 * | 0.254 * | −0.238 * | - |
Co | - | - | −0.329 ** | 0.367 ** | −0.240 * | - |
Ni | - | - | −0.435 ** | - | −0.283 ** | - |
Cu | - | - | - | 0.296 ** | - | - |
Zn | - | - | - | 0.505 ** | - | 0.221 * |
As | - | - | −0.336 ** | - | −0.504 ** | - |
Se | - | 0.381 ** | - | 0.294 ** | - | - |
Rb | - | 0.304 ** | - | 0.454 ** | - | - |
Sr | - | 0.500 ** | - | 0.485 ** | - | 0.247 * |
Cd | - | 0.311 ** | - | 0.393 ** | - | 0.251 * |
Ba | - | 0.360 ** | −0.243 * | 0.477 ** | - | - |
Pb | - | - | −0.295 ** | 0.379 ** | −0.301 ** | 0.343 ** |
Group | AUC > 0.9 Outstanding | AUC 0.8–0.9 Excellent | AUC 0.7–0.8 Acceptable |
---|---|---|---|
Endemic vs. non-endemic | S- As U- U* | S- Be, Co, Sr, Ba, V U- Ba | |
EC vs. ECKD + CKDu | S- V, Cr, M, Fe, Cu, Zn, Se, Rb, Cd, Sr, Pb, U* | S- Ba, Co, Ni U- Rb | S- As U- V, Sr |
ECKD vs. CKDu | S- V, As, U* | S- Ba, Pb U- Zn, Cd | S- Cd U- Al, Cu, Se, Ba, Pb |
NEC vs. NECKD | S- V U- V | S- U* U- Mn, Sr | S- None U- Co, Rb, U* |
CKDu vs. NEC | S- As U- Ba, U* | U- Se, Cd | S- Be, Ba U- Be, V, Zn, As, Pb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernando, B.N.T.; Nanayakkara, N.; Chandrajith, R.; Abeysundara, H.T.K.; Herath, D. Distinctive Patterns of Trace Elements in Chronic Kidney Disease of Uncertain Etiology: Comparative Analysis Across Multiple Control Groups. Kidney Dial. 2025, 5, 11. https://doi.org/10.3390/kidneydial5010011
Fernando BNT, Nanayakkara N, Chandrajith R, Abeysundara HTK, Herath D. Distinctive Patterns of Trace Elements in Chronic Kidney Disease of Uncertain Etiology: Comparative Analysis Across Multiple Control Groups. Kidney and Dialysis. 2025; 5(1):11. https://doi.org/10.3390/kidneydial5010011
Chicago/Turabian StyleFernando, Buddhi N. T., Nishantha Nanayakkara, Rohana Chandrajith, Hemalika T. K. Abeysundara, and Dulanjali Herath. 2025. "Distinctive Patterns of Trace Elements in Chronic Kidney Disease of Uncertain Etiology: Comparative Analysis Across Multiple Control Groups" Kidney and Dialysis 5, no. 1: 11. https://doi.org/10.3390/kidneydial5010011
APA StyleFernando, B. N. T., Nanayakkara, N., Chandrajith, R., Abeysundara, H. T. K., & Herath, D. (2025). Distinctive Patterns of Trace Elements in Chronic Kidney Disease of Uncertain Etiology: Comparative Analysis Across Multiple Control Groups. Kidney and Dialysis, 5(1), 11. https://doi.org/10.3390/kidneydial5010011