Dyslipidemia and Development of Chronic Kidney Disease in Non-Diabetic Japanese Adults: A 26-Year, Community-Based, Longitudinal Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Variables
2.2.1. Exposure Variable
2.2.2. Outcome Variable
2.2.3. Covariates
2.3. Statistical Analysis
3. Results
3.1. Main Analysis
3.2. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bermúdez-López, M.; Arroyo, D.; Betriu, À.; Masana, L.; Fernández, E.; Valdivielso, J.M. New Perspectives on CKD-Induced Dyslipidemia. Expert Opin. Ther. Targets 2017, 21, 967–976. [Google Scholar] [CrossRef]
- Mikolasevic, I.; Žutelija, M.; Mavrinac, V.; Orlic, L. Dyslipidemia in Patients with Chronic Kidney Disease: Etiology and Management. Int. J. Nephrol. Renov. Dis. 2017, 10, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Ye, M.; Tao, M.; Zheng, D.; Cai, R.; Zhu, Y.; Jin, J.; He, Q. The Association between Dyslipidemia and the Incidence of Chronic Kidney Disease in the General Zhejiang Population: A Retrospective Study. BMC Nephrol. 2020, 21, 252. [Google Scholar] [CrossRef] [PubMed]
- Weon, B.; Jang, Y.; Jo, J.; Jin, W.; Ha, S.; Ko, A.; Oh, Y.K.; Lim, C.S.; Lee, J.P.; Won, S.; et al. Association between Dyslipidemia and the Risk of Incident Chronic Kidney Disease Affected by Genetic Susceptibility: Polygenic Risk Score Analysis. PLoS ONE 2024, 19, e0299605. [Google Scholar] [CrossRef]
- Kosugi, T.; Eriguchi, M.; Yoshida, H.; Tasaki, H.; Fukata, F.; Nishimoto, M.; Matsui, M.; Samejima, K.; Iseki, K.; Fujimoto, S.; et al. Association between Chronic Kidney Disease and New-Onset Dyslipidemia: The Japan Specific Health Checkups (J-SHC) Study. Atherosclerosis 2021, 332, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, I.J. Diabetic Dyslipidemia: Causes and Consequences. J. Clin. Endocrinol. Metab. 2001, 86, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Cai, R.; Sun, J.; Dong, X.; Huang, R.; Tian, S.; Wang, S. Diabetes Mellitus as a Risk Factor for Incident Chronic Kidney Disease and End-Stage Renal Disease in Women Compared with Men: A Systematic Review and Meta-Analysis. Endocrine 2017, 55, 66–76. [Google Scholar] [CrossRef]
- Tomic, D.; Shaw, J.E.; Magliano, D.J. The Burden and Risks of Emerging Complications of Diabetes Mellitus. Nat. Rev. Endocrinol. 2022, 18, 525–539. [Google Scholar] [CrossRef]
- López-Bueno, R.; Núñez-Cortés, R.; Calatayud, J.; Salazar-Méndez, J.; Petermann-Rocha, F.; López-Gil, J.F.; Del Pozo Cruz, B. Global Prevalence of Cardiovascular Risk Factors Based on the Life’s Essential 8 Score: An Overview of Systematic Reviews and Meta-Analysis. Cardiovasc. Res. 2024, 120, 13–33. [Google Scholar] [CrossRef] [PubMed]
- Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; et al. Global, Regional, and National Burden of Chronic Kidney Disease, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef]
- Zentsuji City. Zentsuji City Official Website. Available online: https://www.city.zentsuji.kagawa.jp (accessed on 31 October 2024).
- Ministry of Health, Labour and Welfare. Specific Health Examination and Specific Health Guidance. Available online: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000161103.html (accessed on 28 October 2024).
- Okawa, Y.; Suzuki, E.; Mitsuhashi, T.; Tsuda, T.; Yorifuji, T. A Population-Based Longitudinal Study on Glycated Hemoglobin Levels and New-Onset Chronic Kidney Disease among Non-Diabetic Japanese Adults. Sci. Rep. 2023, 13, 13770. [Google Scholar] [CrossRef]
- Okawa, Y.; Mitsuhashi, T. Association between Blood Pressure and New Onset of Chronic Kidney Disease in Non-Diabetic Japanese Adults: A Population-Based Longitudinal Study from 1998 to 2023. Nutr. Metab. Cardiovasc. Dis. 2024, S093947532400173X. [Google Scholar] [CrossRef]
- Okawa, Y.; Mitsuhashi, T.; Suzuki, E. Aspartate/Alanine Aminotransferase Ratio and Development of Chronic Kidney Disease in Non-Diabetic Men and Women: A Population-Based Longitudinal Study in Kagawa, Japan. Clin. Exp. Nephrol. 2024, 1–13. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee; ElSayed, N.A.; Aleppo, G.; Bannuru, R.R.; Bruemmer, D.; Collins, B.S.; Ekhlaspour, L.; Gaglia, J.L.; Hilliard, M.E.; Johnson, E.L.; et al. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S20–S42. [Google Scholar] [CrossRef]
- Aygun, S.; Tokgozoglu, L. Comparison of Current International Guidelines for the Management of Dyslipidemia. J. Clin. Med. 2022, 11, 7249. [Google Scholar] [CrossRef] [PubMed]
- Frank, A.T.H.; Zhao, B.; Jose, P.O.; Azar, K.M.J.; Fortmann, S.P.; Palaniappan, L.P. Racial/Ethnic Differences in Dyslipidemia Patterns. Circulation 2014, 129, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Okamura, T.; Tsukamoto, K.; Arai, H.; Fujioka, Y.; Ishigaki, Y.; Koba, S.; Ohmura, H.; Shoji, T.; Yokote, K.; Yoshida, H.; et al. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2022. J. Atheroscler. Thromb. 2024, 31, 641–853. [Google Scholar] [CrossRef] [PubMed]
- Stevens, P.E.; Ahmed, S.B.; Carrero, J.J.; Foster, B.; Francis, A.; Hall, R.K.; Herrington, W.G.; Hill, G.; Inker, L.A.; Kazancıoğlu, R.; et al. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef]
- Matsuo, S.; Yasuda, Y.; Imai, E.; Horio, M. Current Status of Estimated Glomerular Filtration Rate (eGFR) Equations for Asians and an Approach to Create a Common eGFR Equation: Approach to eGFR Equation for Asians. Nephrology 2010, 15, 45–48. [Google Scholar] [CrossRef]
- Betzler, B.K.; Sultana, R.; Banu, R.; Tham, Y.C.; Lim, C.C.; Wang, Y.X.; Nangia, V.; Tai, E.S.; Rim, T.H.; Bikbov, M.M.; et al. Association between Body Mass Index and Chronic Kidney Disease in Asian Populations: A Participant-Level Meta-Analysis. Maturitas 2021, 154, 46–54. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 31 October 2024).
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, 11. [Google Scholar] [CrossRef]
- Kashiwagi, A.; Kasuga, M.; Araki, E.; Oka, Y.; Hanafusa, T.; Ito, H.; Tominaga, M.; Oikawa, S.; Noda, M.; Kawamura, T.; et al. International Clinical Harmonization of Glycated Hemoglobin in Japan: From Japan Diabetes Society to National Glycohemoglobin Standardization Program Values. J. Diabetes Investig. 2012, 3, 39–40. [Google Scholar] [CrossRef]
- Schoenfeld, D. Partial Residuals for the Proportional Hazards Regression Model. Biometrika 1982, 69, 239–241. [Google Scholar] [CrossRef]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the Dimension of a Model. Ann. Statist. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Liyanage, T.; Toyama, T.; Hockham, C.; Ninomiya, T.; Perkovic, V.; Woodward, M.; Fukagawa, M.; Matsushita, K.; Praditpornsilpa, K.; Hooi, L.S.; et al. Prevalence of Chronic Kidney Disease in Asia: A Systematic Review and Analysis. BMJ Glob. Health 2022, 7, e007525. [Google Scholar] [CrossRef] [PubMed]
- von Hippel, P.T. How Many Imputations Do You Need? A Two-Stage Calculation Using a Quadratic Rule. Sociol. Methods Res. 2020, 49, 699–718. [Google Scholar] [CrossRef] [PubMed]
- Young, R.; Johnson, D.R. Handling Missing Values in Longitudinal Panel Data with Multiple Imputation. Fam. Relat. 2015, 77, 277–294. [Google Scholar] [CrossRef]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and Elaboration. Epidemiology 2007, 18, 805–835. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.J.; Kanaya, A.M.; Araneta, M.R.G.; Saydah, S.H.; Kahn, H.S.; Gregg, E.W.; Fujimoto, W.Y.; Imperatore, G. Prevalence of Diabetes by Race and Ethnicity in the United States, 2011–2016. JAMA 2019, 322, 2389. [Google Scholar] [CrossRef]
- Hernán, M.A. The Hazards of Hazard Ratios. Epidemiology 2010, 21, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Esmeijer, K.; Dekkers, O.M.; De Fijter, J.W.; Dekker, F.W.; Hoogeveen, E.K. Effect of Different Types of Statins on Kidney Function Decline and Proteinuria: A Network Meta-Analysis. Sci. Rep. 2019, 9, 16632. [Google Scholar] [CrossRef]
- Chen, S.; Yang, H.; Chen, Y.; Wang, J.; Xu, L.; Miao, M.; Xu, C. Association between Serum Uric Acid Levels and Dyslipidemia in Chinese Adults: A Cross-Sectional Study and Further Meta-Analysis. Medicine 2020, 99, e19088. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yang, C.; Zhao, Y.; Zeng, X.; Liu, F.; Fu, P. Is Hyperuricemia an Independent Risk Factor for New-Onset Chronic Kidney Disease? A Systematic Review and Meta-Analysis Based on Observational Cohort Studies. BMC Nephrol. 2014, 15, 122. [Google Scholar] [CrossRef] [PubMed]
- Farukhi, Z.; Mora, S. Assessing the Dyslipidemias: To Fast or Not to Fast? Curr. Opin. Endocrinol. Diabetes Obes. 2021, 28, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Mosenzon, O.; Cheng, A.Y.; Rabinstein, A.A.; Sacco, S. Diabetes and Stroke: What Are the Connections? J. Stroke 2023, 25, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Bjerregaard, A.-L.; Maindal, H.T.; Bruun, N.H.; Sandbæk, A. Patterns of Attendance to Health Checks in a Municipality Setting: The Danish “Check Your Health Preventive Program”. Prev. Med. Rep. 2017, 5, 175–182. [Google Scholar] [CrossRef]
- Chen, T.K.; Knicely, D.H.; Grams, M.E. Chronic Kidney Disease Diagnosis and Management: A Review. JAMA 2019, 322, 1294. [Google Scholar] [CrossRef] [PubMed]
- Koeda, Y.; Tanaka, F.; Segawa, T.; Ohta, M.; Ohsawa, M.; Tanno, K.; Makita, S.; Ishibashi, Y.; Itai, K.; Omama, S.; et al. Comparison between Urine Albumin-to-Creatinine Ratio and Urine Protein Dipstick Testing for Prevalence and Ability to Predict the Risk for Chronic Kidney Disease in the General Population (Iwate-KENCO Study): A Prospective Community-Based Cohort Study. BMC Nephrol. 2016, 17, 46. [Google Scholar] [CrossRef] [PubMed]
- Crichton, G.E.; Alkerwi, A. Physical Activity, Sedentary Behavior Time and Lipid Levels in the Observation of Cardiovascular Risk Factors in Luxembourg Study. Lipids Health Dis. 2015, 14, 87. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-A.; Joung, H.; Shin, S. Dietary Pattern, Dietary Total Antioxidant Capacity, and Dyslipidemia in Korean Adults. Nutr. J. 2019, 18, 37. [Google Scholar] [CrossRef]
Dyslipidemia Classification * | |||||||||
---|---|---|---|---|---|---|---|---|---|
No Dyslipidemia | Dyslipidemia | Total | |||||||
Failure | PY | IR † | Failure | PY | IR † | Failure | PY | IR † | |
Time at risk | |||||||||
Total | 23,077.1 | 19,278.2 | 42,355.3 | ||||||
Minimum | 0.47 | 0.40 | 0.40 | ||||||
Maximum | 25.4 | 24.7 | 25.5 | ||||||
Mean | 5.39 | 4.85 | 7.09 | ||||||
Median | 4.06 | 3.83 | 6.04 | ||||||
Failure/IR † | 940 | 40.7 | 950 | 49.3 | 1890 | 44.6 | |||
Sex | |||||||||
Female | 369 | 9253.9 | 39.9 | 400 | 7963.2 | 50.2 | 769 | 17,217.0 | 44.7 |
Male | 571 | 13,823.2 | 41.3 | 550 | 11,315.0 | 48.6 | 1121 | 25,138.3 | 44.6 |
Age, mean (SD) | 66.0 | (11.4) | 66.5 | (10.1) | 66.2 | (10.8) | |||
BMI category ‡ | |||||||||
Normal weight | 726 | 18,969.6 | 38.3 | 642 | 14,016.8 | 45.8 | 1368 | 32,986.4 | 41.5 |
Overweight or obesity | 214 | 4107.5 | 52.1 | 308 | 5261.4 | 58.5 | 522 | 9368.9 | 55.7 |
Self-reported alcohol intake | |||||||||
Non- or seldom-drinker | 552.6 | 12,316.4 | 44.9 | 591.2 | 11,361.9 | 52.0 | 1143.8 | 23,678.3 | 48.3 |
Drinker | 387.4 | 10,760.7 | 36.0 | 358.8 | 7916.3 | 45.3 | 746.2 | 18,677.0 | 40.0 |
Self-reported smoking status | |||||||||
Non- or ex-smoker | 853.8 | 19,875.1 | 43.0 | 858.9 | 16,623.7 | 51.7 | 1712.7 | 36,498.8 | 46.9 |
Smoker | 86.2 | 3202.0 | 26.9 | 91.1 | 2654.5 | 34.3 | 177.3 | 5856.5 | 30.3 |
Blood pressure category ¶ | |||||||||
Normal | 408 | 12,577.1 | 32.4 | 387 | 8731.7 | 44.3 | 795 | 21,308.8 | 37.3 |
Hypertensive | 532 | 10,500.1 | 50.7 | 563 | 10,546.4 | 53.4 | 1095 | 21,046.5 | 52.0 |
HbA1c, mean (SD) | 5.53 | (0.34) | 5.58 | (0.33) | 5.55 | (0.34) | |||
AST, mean (SD) | 23.3 | (17.2) | 23.9 | (9.92) | 23.6 | (14.4) | |||
ALT, mean (SD) | 18.9 | (15.9) | 21.8 | (15.0) | 20.2 | (15.6) | |||
GGT, mean (SD) | 29.1 | (34.4) | 34.4 | (46.3) | 31.5 | (40.2) | |||
Residential district | |||||||||
East | 165.6 | 4332.8 | 38.2 | 187.9 | 3556.5 | 52.8 | 353.5 | 7889.3 | 44.8 |
Tatsukawa | 162.5 | 3700.8 | 43.9 | 151.6 | 2996.1 | 50.6 | 314.1 | 6696.9 | 46.9 |
South | 137.4 | 3898.9 | 35.2 | 156.7 | 3376.7 | 46.4 | 294.1 | 7275.6 | 40.4 |
Fudeoka | 101.0 | 2916.7 | 34.6 | 96.4 | 2274.3 | 42.4 | 197.4 | 5191.1 | 38.0 |
Central | 103.5 | 2292.9 | 45.2 | 117.6 | 2096.2 | 56.1 | 221.1 | 4389.1 | 50.4 |
West | 97.7 | 2351.0 | 41.6 | 89.8 | 1775.0 | 50.6 | 187.6 | 4126.0 | 45.5 |
Yoshiwara | 88.9 | 2075.5 | 42.8 | 85.0 | 1828.6 | 46.5 | 173.9 | 3904.1 | 44.5 |
Yogita | 83.5 | 1508.6 | 55.3 | 64.8 | 1374.6 | 47.1 | 148.3 | 2883.2 | 51.4 |
Total (n = 5970) | Crude | Model 1 | Model 2 | Model 3 | Model 4 | |||
---|---|---|---|---|---|---|---|---|
Variable | Person-Years | Failures | IR ¶ | TR (95% CI) | aTR (95% CI) | aTR (95% CI) | aTR (95% CI) | aTR (95% CI) |
No dyslipidemia (reference) | 23,077.1 | 940 | 40.7 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Dyslipidemia * | 19,278.2 | 950 | 49.3 | 0.97 (0.95–0.98) | 0.96 (0.95–0.98) | 0.97 (0.95–0.98) | 0.96 (0.95–0.98) | 0.95 (0.93–0.97) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okawa, Y.; Mitsuhashi, T. Dyslipidemia and Development of Chronic Kidney Disease in Non-Diabetic Japanese Adults: A 26-Year, Community-Based, Longitudinal Study. Kidney Dial. 2024, 4, 246-256. https://doi.org/10.3390/kidneydial4040020
Okawa Y, Mitsuhashi T. Dyslipidemia and Development of Chronic Kidney Disease in Non-Diabetic Japanese Adults: A 26-Year, Community-Based, Longitudinal Study. Kidney and Dialysis. 2024; 4(4):246-256. https://doi.org/10.3390/kidneydial4040020
Chicago/Turabian StyleOkawa, Yukari, and Toshiharu Mitsuhashi. 2024. "Dyslipidemia and Development of Chronic Kidney Disease in Non-Diabetic Japanese Adults: A 26-Year, Community-Based, Longitudinal Study" Kidney and Dialysis 4, no. 4: 246-256. https://doi.org/10.3390/kidneydial4040020
APA StyleOkawa, Y., & Mitsuhashi, T. (2024). Dyslipidemia and Development of Chronic Kidney Disease in Non-Diabetic Japanese Adults: A 26-Year, Community-Based, Longitudinal Study. Kidney and Dialysis, 4(4), 246-256. https://doi.org/10.3390/kidneydial4040020