Analysis of 2-Year Survival Outcomes of Japanese Older Populations on Hemodiafiltration: A Propensity Score-Matched Study Based on Insurance Claims Data
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Study Location
2.3. Data Source
2.4. Participant Identification
2.5. Matching
2.6. Final Sample
2.7. Definition of Variables
2.8. Definition of Outcome
2.9. Data Analysis
2.10. Ethical Considerations
3. Results
3.1. Baseline Characteristics of HDF Patients
3.2. Evaluation of Treatment Modality
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanafusa, N.; Abe, M.; Joki, N.; Hoshino, J.; Taniguchi, M.; Kikuchi, K.; Hasegawa, T.; Goto, S.; Ogawa, T.; Kanda, E.; et al. Current Status of Chronic Dialysis Therapy in Japan (as of 31 December 2022). Nihon Toseki Igakkai Zasshi 2023, 56, 473–536. (In Japanese) [Google Scholar]
- Hanafusa, N.; Fukagawa, M. Global Dialysis Perspective: Japan. Kidney360 2020, 1, 416–419. [Google Scholar] [CrossRef] [PubMed]
- Akizawa, T.; Koiwa, F. Clinical expectation of on-line hemodiafiltration: A Japanese Perspective. Blood Purif. 2015, 40 (Suppl. S1), 12–16. [Google Scholar] [CrossRef]
- Maduell, F.; Moreso, F.; Pons, M.; Ramos, R.; Mora-Macià, J.; Carreras, J.; Soler, J.; Torres, F.; Campistol, J.M.; Martinez-Castelao, A. High-efficiency postdilution on-line hemodiafiltration reduces all-cause mortality in hemodialysis patients. J. Am. Soc. Nephrol. 2013, 24, 487–497, Erratum in J. Am. Soc. Nephrol. 2014, 25, 1130. [Google Scholar] [CrossRef] [PubMed]
- Blankestijn, P.J.; Vernooij, R.W.M.; Hockham, C.; Strippoli, G.F.; Canaud, B.; Hegbrant, J.; Barth, C.; Covic, A.; Cromm, K.; Cucui, A.; et al. Effect of Hemodiafiltration or Hemodialysis on Mortality in Kidney Failure. N. Engl. J. Med. 2023, 389, 700–709. [Google Scholar] [CrossRef]
- Schiffl, H. Online hemodiafiltration and mortality risk in end-stage renal disease patients: A critical appraisal of current evidence. Kidney Res. Clin. Pract. 2019, 38, 159–168. [Google Scholar] [CrossRef] [PubMed]
- See, E.J.; Hedley, J.; Agar, J.W.M.; Hawley, C.M.; Johnson, D.W.; Kelly, P.J.; Lee, V.W.; Mac, K.; Polkinghorne, K.R.; Rabindranath, K.S.; et al. Patient survival on haemodiafiltration and haemodialysis: A cohort study using the Australia and New Zealand Dialysis and Transplant Registry. Nephrol. Dial. Transplant. 2019, 34, 326–338. [Google Scholar] [CrossRef]
- Canaud, B.; Bragg-Gresham, J.L.; Marshall, M.R.; Desmeules, S.; Gillespie, B.; Depner, T.; Klassen, P.; Port, F. Mortality risk for patients receiving hemodiafiltration versus hemodialysis: European results from the DOPPS. Kidney Int. 2006, 69, 2087–2093. [Google Scholar] [CrossRef] [PubMed]
- Maduell, F.; Varas, J.; Ramos, R.; Martin-Malo, A.; Pérez-Garcia, R.; Berdud, I.; Moreso, F.; Canaud, B.; Stuard, S.; Gauly, A.; et al. Hemodiafiltration Reduces All-Cause and Cardiovascular Mortality in Incident Hemodialysis Patients: A Propensity-Matched Cohort Study. Am. J. Nephrol. 2017, 46, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Tomo, T.; Larkina, M.; Shintani, A.; Ogawa, T.; Robinson, B.M.; Bieber, B.; Henn, L.; Pisoni, R.L. Changes in practice patterns in Japan from before to after JSDT 2013 guidelines on hemodialysis prescriptions: Results from the JDOPPS. BMC Nephrol. 2021, 22, 339. [Google Scholar] [CrossRef]
- Kawanishi, H. Development of on-line hemodiafiltration in Japan. Ren. Replace. Ther. 2021, 7, 51. [Google Scholar] [CrossRef]
- Dyer, M.; Frieze, A.; Pittel, B. The Average Performance of the Greedy Matching Algorithm. Ann. Appl. Probab. 1993, 3, 526–552. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, H.; Li, C.; Jiang, Z.; Wang, L.; Song, J.; Xia, J. Optimal Caliper Width for Propensity Score Matching of Three Treatment Groups: A Monte Carlo Study. PLoS ONE 2013, 8, e81045. [Google Scholar] [CrossRef]
- Yamada, M.; Arai, H. Long-Term Care System in Japan. Ann. Geriatr. Med. Res. 2020, 24, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Sundararajan, V.; Henderson, T.; Perry, C.; Muggivan, A.; Quan, H.; Ghali, W.A. New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality. J. Clin. Epidemiol. 2004, 57, 1288–1294. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Li, B.; Couris, C.M.; Fushimi, K.; Graham, P.; Hider, P.; Januel, J.-M.; Sundararajan, V. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am. J. Epidemiol. 2011, 173, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Akiyama, T.; Morishita, A. PNS73 Retrospective Study for Comorbidities in ACTIVE Population Using Japanese Health Insurance Claims Database. Value Health Reg. Issues 2022, 22 (Suppl. S94), S94. [Google Scholar] [CrossRef]
- Kimura, T.; Sugitani, T.; Nishimura, T.; Ito, M. Validation and Recalibration of Charlson and Elixhauser Comorbidity Indices Based on Data from a Japanese Insurance Claims Database. Jpn. J. Pharmacoepidemiol. 2019, 24, 53–64. [Google Scholar] [CrossRef]
- Ooba, N.; Setoguchi, S.; Ando, T.; Sato, T.; Yamaguchi, T.; Mochizuki, M.; Kubota, K. Claims-based definition of death in Japanese claims database: Validity and implications. PLoS ONE 2013, 8, e66116. [Google Scholar] [CrossRef]
- Sakai, M.; Ohtera, S.; Iwao, T.; Neff, Y.; Kato, G.; Takahashi, Y.; Nakayama, T.; BiDAME (Big Data Analysis of Medical care for the Elderly in Kyoto). Validation of claims data to identify death among aged persons utilizing enrollment data from health insurance unions. Environ. Health Prev. Med. 2019, 24, 63. [Google Scholar] [CrossRef]
- Cochran, W.G. Some Methods for Strengthening the Common χ2 Tests. Biometrics 1954, 10, 417–451. [Google Scholar] [CrossRef]
- Armitage, P. Tests for Linear Trends in Proportions and Frequencies. Biometrics 1955, 11, 375–386. [Google Scholar] [CrossRef]
- Jonckheere, A.R. A Distribution-Free k-Sample Test Against Ordered Alternatives. Biometrika 1954, 41, 133–145. [Google Scholar] [CrossRef]
- Masakane, I.; Kikuchi, K.; Kawanishi, H. Evidence for the clinical advantages of predilution on-line hemodiafiltration. Contrib. Nephrol. 2017, 189, 17–23. [Google Scholar]
- Masakane, I.; Sakurai, K. Current approaches to middle molecule removal: Room for innovation. Nephrol. Dial. Transplant. 2018, 33 (Suppl. S3), iii12–iii21. [Google Scholar] [CrossRef] [PubMed]
- Royston, P.; Parmar, M.K. Restricted mean survival time: An alternative to the hazard ratio for the design and analysis of randomized trials with a time-to-event outcome. BMC Med. Res. Methodol. 2013, 13, 152. [Google Scholar] [CrossRef]
- Perego, C.; Sbolli, M.; Specchia, C.; Fiuzat, M.; McCaw, Z.R.; Metra, M.; Oriecuia, C.; Peveri, G.; Wei, L.-J.; O’Connor, C.M.; et al. Utility of Restricted Mean Survival Time Analysis for Heart Failure Clinical Trial Evaluation and Interpretation. JACC Heart Fail. 2020, 8, 973–983. [Google Scholar] [CrossRef]
- Kim, D.H.; Li, X.; Bian, S.; Wei, L.J.; Sun, R. Utility of Restricted Mean Survival Time for Analyzing Time to Nursing Home Placement among Patients with Dementia. JAMA Netw. Open 2021, 4, e213081, Erratum in JAMA Netw. Open 2021, 4, e2034745. [Google Scholar] [CrossRef]
- Ben-Aharon, O.; Magnezi, R.; Leshno, M.; Goldstein, D.A. Median Survival or Mean Survival: Which Measure Is the Most Appropriate for Patients, Physicians, and Policymakers? Oncologist 2019, 24, 1469–1478. [Google Scholar] [CrossRef]
- Penne, E.L.; Blankestijn, P.J.; Bots, M.L.; Dorpel, M.A.v.D.; Grooteman, M.P.; Nubé, M.J.; van der Tweel, I.; ter Wee, P.M.; the CONTRAST study group. Effect of increased convective clearance by on-line hemodiafiltration on all cause and cardiovascular mortality in chronic hemodialysis patients—The Dutch CONvective TRAnsport STudy (CONTRAST): Rationale and design of a randomised controlled trial [ISRCTN38365125]. Curr. Control Trials Cardiovasc. Med. 2005, 6, 8. [Google Scholar] [CrossRef]
- Farrington, K.; Davenport, A. The ESHOL study: Hemodiafiltration improves survival-but how? Kidney Int. 2013, 83, 979–981. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, K.; Hamano, T.; Wada, A.; Nakai, S.; Masakane, I. Predilution online hemodiafiltration is associated with improved survival compared with hemodialysis. Kidney Int. 2019, 95, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.K.; Jo, Y.I. Why should we focus on high-volume hemodiafiltration? Kidney Res. Clin. Pract. 2022, 41, 670–681. [Google Scholar] [CrossRef]
Cohort | Cohort 1 (1 April 2012–31 March 2014) | Cohort 2 (1 April 2014–31 March 2016) | Cohort 3 (1 April 2016–31 March 2018) | All (1 April 2012–31 March 2018) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HDF (N = 48) | Died (N = 16, 33%) | HDF (N = 110) | Died (N = 26, 24%) | HDF (N = 305) | Died (N = 57, 19%) | HDF (N = 463) | Died (N = 99, 21%) | |||||||||||
n | % | n | % | n | % | n | % | n | % | n | % | n | % | n | % | * p | § p | |
Age | ||||||||||||||||||
<75 | 24 | 50.0 | 8 | 33.3 | 58 | 52.7 | 7 | 12.1 | 151 | 49.5 | 14 | 9.27 | 233 | 50.3 | 29 | 12.5 | 0.74 | 0.34 |
≥75 | 24 | 50.0 | 8 | 33.3 | 52 | 47.3 | 19 | 36.5 | 154 | 50.5 | 43 | 27.9 | 230 | 49.7 | 70 | 30.4 | ||
Sex | ||||||||||||||||||
Male | 24 | 50.0 | 8 | 33.3 | 50 | 45.5 | 12 | 24.0 | 169 | 55.4 | 37 | 21.9 | 243 | 52.5 | 57 | 23.5 | 0.16 | 0.34 |
Female | 24 | 50.0 | 8 | 33.3 | 60 | 54.6 | 14 | 23.3 | 136 | 44.6 | 20 | 14.7 | 220 | 47.5 | 42 | 19.1 | ||
Heart Failure | ||||||||||||||||||
No | 23 | 47.9 | 5 | 21.8 | 44 | 40.0 | 8 | 18.2 | 146 | 47.9 | 24 | 16.4 | 213 | 46.0 | 37 | 17.4 | 0.50 | 0.30 |
Yes | 25 | 52.1 | 11 | 44.0 | 66 | 60.0 | 18 | 27.2 | 159 | 52.1 | 33 | 20.8 | 250 | 54.0 | 62 | 24.8 | ||
Diabetes | ||||||||||||||||||
No | 39 | 81.3 | 15 | 38.5 | 79 | 71.8 | 20 | 25.3 | 204 | 66.9 | 36 | 17.7 | 322 | 69.6 | 71 | 22.1 | 0.03 | 0.88 |
Yes | 9 | 18.8 | 1 | 11.1 | 31 | 28.2 | 6 | 19.4 | 101 | 33.1 | 21 | 20.8 | 141 | 30.5 | 28 | 19.9 | ||
Malignancy | ||||||||||||||||||
No | 37 | 77.1 | 12 | 32.4 | 98 | 89.1 | 23 | 23.5 | 272 | 89.2 | 48 | 17.7 | 407 | 87.9 | 83 | 20.4 | 0.57 | 0.55 |
Yes | 11 | 22.9 | 4 | 36.4 | 12 | 10.9 | 3 | 25.0 | 33 | 10.8 | 9 | 27.3 | 56 | 12.1 | 16 | 28.6 | ||
Stroke | ||||||||||||||||||
No | 22 | 45.8 | 7 | 31.9 | 52 | 47.3 | 12 | 23.1 | 167 | 54.8 | 34 | 20.4 | 241 | 52.1 | 53 | 21.9 | 0.12 | 0.64 |
Yes | 26 | 54.2 | 9 | 34.6 | 58 | 52.7 | 14 | 24.1 | 138 | 45.3 | 23 | 16.7 | 222 | 47.9 | 46 | 20.7 | ||
Dementia | ||||||||||||||||||
No | 40 | 83.3 | 10 | 25.0 | 98 | 89.1 | 23 | 23.5 | 256 | 83.9 | 36 | 14.1 | 394 | 85.1 | 69 | 17.5 | 0.60 | 0.45 |
Yes | 8 | 16.7 | 6 | 75.0 | 12 | 10.9 | 3 | 25.0 | 49 | 16.1 | 21 | 42.9 | 69 | 14.9 | 30 | 43.5 | ||
SCL | ||||||||||||||||||
NA | 33 | 68.6 | 15 | 93.8 | 79 | 71.8 | 16 | 61.5 | 206 | 67.5 | 32 | 18.4 | 318 | 68.7 | 63 | 24.7 | 0.29 | 0.01 |
Low | 9 | 18.8 | 0 | 0.00 | 13 | 11.8 | 7 | 26.9 | 31 | 10.2 | 4 | 14.8 | 53 | 11.5 | 11 | 26.2 | ||
Moderate | 5 | 10.5 | 0 | 0.00 | 12 | 10.9 | 0 | 0.00 | 44 | 14.4 | 14 | 46.7 | 61 | 13.2 | 14 | 23.4 | ||
High | 1 | 2.08 | 1 | 6.25 | 6 | 5.45 | 3 | 11.5 | 24 | 7.87 | 7 | 41.1 | 31 | 6.70 | 11 | 55.0 | ||
m-CCI | ||||||||||||||||||
Mild | 19 | 39.6 | 6 | 39.6 | 31 | 28.2 | 3 | 9.68 | 108 | 35.4 | 20 | 18.5 | 158 | 35.1 | 29 | 18.4 | 0.67 | 0.81 |
Moderate | 14 | 29.8 | 3 | 29.2 | 42 | 38.2 | 15 | 35.8 | 100 | 32.8 | 13 | 13.0 | 156 | 33.7 | 31 | 19.9 | ||
Severe | 15 | 31.3 | 7 | 31.3 | 37 | 33.6 | 8 | 21.6 | 97 | 31.8 | 24 | 24.7 | 149 | 32.2 | 39 | 26.2 |
Cox Model | Restricted Mean Survival Time (RMST) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
HR | 95% CI | p | M | 95% CI | Diff | 95% CI | p | Diff a | 95% CI | p | |
Cohort 1 | |||||||||||
HD | Ref. | 1.13 | 1.03–1.24 | ||||||||
HDF | 0.62 | 0.34–1.13 | 0.117 | 1.26 | 1.12–1.40 | 0.13 | 0.30–0.15 | 0.154 | - | - | - |
Cohort 2 | |||||||||||
HD | Ref. | 1.15 | 1.06–1.24 | ||||||||
HDF | 0.33 | 0.22–0.51 | <0.000 | 1.65 | 1.55–1.75 | 0.50 | 0.37–0.63 | <0.000 | 0.45 | 0.31–0.59 | <0.000 |
Cohort 3 | |||||||||||
HD | Ref. | 1.19 | 1.14–1.28 | ||||||||
HDF | 0.27 | 0.20–0.36 | <0.000 | 1.67 | 1.62–1.72 | 0.48 | 0.40–0.55 | <0.000 | 0.45 | 0.37–0.52 | <0.000 |
All | |||||||||||
HD | Ref. | 1.23 | 1.18–1.27 | ||||||||
HDF | 0.32 | 0.26–0.40 | <0.001 | 1.70 | 1.65–1.75 | 0.47 | 0.41–0.54 | <0.000 | 0.45 | 0.37–0.52 | <0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamal, A.; Babazono, A.; Liu, N.; Fujita, T.; Kim, S.-a.; Li, Y. Analysis of 2-Year Survival Outcomes of Japanese Older Populations on Hemodiafiltration: A Propensity Score-Matched Study Based on Insurance Claims Data. Kidney Dial. 2024, 4, 172-183. https://doi.org/10.3390/kidneydial4040015
Jamal A, Babazono A, Liu N, Fujita T, Kim S-a, Li Y. Analysis of 2-Year Survival Outcomes of Japanese Older Populations on Hemodiafiltration: A Propensity Score-Matched Study Based on Insurance Claims Data. Kidney and Dialysis. 2024; 4(4):172-183. https://doi.org/10.3390/kidneydial4040015
Chicago/Turabian StyleJamal, Aziz, Akira Babazono, Ning Liu, Takako Fujita, Sung-a Kim, and Yunfei Li. 2024. "Analysis of 2-Year Survival Outcomes of Japanese Older Populations on Hemodiafiltration: A Propensity Score-Matched Study Based on Insurance Claims Data" Kidney and Dialysis 4, no. 4: 172-183. https://doi.org/10.3390/kidneydial4040015
APA StyleJamal, A., Babazono, A., Liu, N., Fujita, T., Kim, S.-a., & Li, Y. (2024). Analysis of 2-Year Survival Outcomes of Japanese Older Populations on Hemodiafiltration: A Propensity Score-Matched Study Based on Insurance Claims Data. Kidney and Dialysis, 4(4), 172-183. https://doi.org/10.3390/kidneydial4040015