Comparison of Left Ventricular Diastolic Function Parameters between Patients with Unplanned and Planned Hemodialysis Initiation: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection
2.3. Echocardiography
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Echocardiography
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lok, C.E.; Huber, T.S.; Lee, T.; Shenoy, S.; Yevzlin, A.S.; Abreo, K.; Allon, M.; Asif, A.; Astor, B.C.; Glickman, M.H.; et al. KDOQI Clinical Practice Guideline for Vascular Access: 2019 Update. Am. J. Kidney Dis. 2020, 75, S1–S164. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, V.; Martn, M.; Rufino, M.; Hernandez, D.; Torres, A.; Ayus, J.C. Predialysis nephrologic care and a functioning arteriovenous fistula at entry are associated with better survival in incident hemodialysis patients: An observational cohort study. Am. J. Kidney Dis. 2004, 43, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Mendelssohn, D.C.; Malmberg, C.; Hamandi, B. An integrated review of “unplanned” dialysis initiation: Reframing the terminology to “suboptimal” initiation. BMC Nephrol. 2009, 10, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, L.J.; Chen, F.; Pisoni, R.L.; Krishnan, M.; Mapes, D.; Keen, M.; Bradbury, B.D. Hospitalization risks related to vascular access type among incident US hemodialysis patients. Nephrol. Dial. Transplant. 2011, 26, 3659–3666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravani, P.; Palmer, S.C.; Oliver, M.J.; Quinn, R.R.; MacRae, J.M.; Tai, D.J.; Pannu, N.I.; Thomas, C.; Hemmelgarn, B.R.; Craig, J.C.; et al. Associations between Hemodialysis Access Type and Clinical Outcomes: A Systematic Review. J. Am. Soc. Nephrol. 2013, 24, 465–473. [Google Scholar] [CrossRef] [Green Version]
- Lok, C.E.; Foley, R. Vascular access morbidity and mortality: Trends of the last decade. Clin. J. Am. Soc. Nephrol. 2013, 8, 1213–1219. [Google Scholar] [CrossRef] [Green Version]
- Mendelssohn, D.C.; Curtis, B.; Yeates, K.; Langlois, S.; MacRae, J.M.; Semeniuk, L.M.; Camacho, F.; McFarlane, P.; STARRT Study investigators. Suboptimal initiation of dialysis with and without early referral to a nephrologist. Nephrol. Dial. Transplant. 2011, 26, 2959–2965. [Google Scholar] [CrossRef] [Green Version]
- Hughes, S.A.; Mendelssohn, J.G.; Tobe, S.W.; McFarlane, P.A.; Mendelssohn, D.C. Factors associated with suboptimal initiation of dialysis despite early nephrologist referral. Nephrol. Dial. Transplant. 2013, 28, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Brown, P.A.; Akbari, A.; Molnar, A.O.; Taran, S.; Bissonnette, J.; Sood, M.; Hiremath, S. Factors associated with unplanned dialysis starts in patients followed by nephrologists: A retrospective cohort study. PLoS ONE 2015, 10, e0130080. [Google Scholar] [CrossRef]
- Johansen, K.L.; Chertow, G.M.; Foley, R.N.; Gilbertson, D.T.; Herzog, C.A.; Ishani, A.; Israni, A.K.; Ku, E.; Kurella Tamura, M.; Peng, Y.; et al. United States Renal Data System 2020 Annual Data Report. Am. J. Kidney Dis. 2021, 2, S249–S265. [Google Scholar]
- Arulkumaran, N.; Navaratnarajah, A.; Pillay, C.; Brown, W.; Duncan, N.; McLean, A.; Taube, D.; Brown, E.A. Causes and risk factors for acute dialysis initiation among patients with end-stage kidney disease-a large retrospective observational cohort study. Clin. Kidney J. 2018, 12, 550–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, R.; Akbari, A.; Brown, P.A.; Hiremath, S.; Brimble, K.S.; Molnar, A.O. Risk Factors for Unplanned Dialysis Initiation: A Systematic Review of the Literature. Can. J. Kidney Health Dis. 2019, 6, 2054358119831684. [Google Scholar] [CrossRef] [PubMed]
- Tripepi, G.; Benedetto, F.A.; Mallamaci, F.; Tripepi, R.; Malatino, L.; Zoccali, C. Left atrial volume monitoring and cardiovascular risk in patients with end-stage renal disease: A prospective cohort study. J. Am. Soc. Nephrol. 2007, 18, 1316–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otsuka, T.; Suzuki, M.; Yoshikawa, H.; Sugi, K. Left ventricular diastolic dysfunction in the early stage of chronic kidney disease. J. Cardiol. 2009, 54, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Baber, U.; Gutierrez, O.M.; Levitan, E.B.; Warnock, D.G.; Farkouh, M.E.; Tonelli, M.; Safford, M.M.; Muntner, P. Risk for recurrent coronary heart disease and all-cause mortality among individuals with chronic kidney disease compared with diabetes mellitus, metabolic syndrome, and cigarette smokers. Am. Heart J. 2013, 166, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Cai, Q.Z.; Lu, X.Z.; Lu, Y.; Wang, A.Y. Longitudinal changes of cardiac structure and function in CKD (CASCADE study). J. Am. Soc. Nephrol. 2014, 25, 1599–1608. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, T.; Nitta, K. Clinical impact of left ventricular diastolic dysfunction in chronic kidney Disease. Contrib. Nephrol. 2018, 195, 81–91. [Google Scholar] [PubMed]
- Toida, T.; Toida, R.; Yamashita, R.; Komiya, N.; Uezono, S.; Komatsu, H.; Ishikawa, T.; Kitamura, K.; Sato, Y.; Fujimoto, S. Grading of Left Ventricular Diastolic Dysfunction with Preserved Systolic Function by the 2016 American Society of Echocardiography/European Association of Cardiovascular Imaging Recommendations Contributes to Predicting Cardiovascular Events in Hemodialysis Patients. Cardiorenal Med. 2019, 9, 190–200. [Google Scholar]
- Han, J.H.; Han, J.S.; Kim, E.J.; Doh, F.M.; Koo, H.M.; Kim, C.H.; Lee, M.J.; Oh, H.J.; Park, J.T.; Han, S.H.; et al. Diastolic dysfunction is an independent predictor of cardiovascular events in incident dialysis patients with preserved systolic function. PLoS ONE 2015, 13, e0118694. [Google Scholar] [CrossRef] [Green Version]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Gillebert, T.C.; Marino, P.N.; Oh, J.K.; Smiseth, O.A.; Waggoner, A.D.; Flachskampf, F.A.; Pellikka, P.A.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.T.; Blankestijn, P.J.; Dember, L.M.; Gallieni, M.; Harris, D.C.; Lok, C.E.; Mehrotra, R.; Stevens, P.E.; Wang, A.Y.M.; Cheung, M.; et al. Dialysis initiation, modality choice, access, and prescription: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2019, 96, 37–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanda, Y. Investigation of the freely available easy-to-use software‘EZR’ for medical statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, S.H.; Vogel, M.W.; Chen, H.H. Pre-Clinical Diastolic Dysfunction. J. Am. Coll. Cardiol. 2014, 63, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Redfield, M.M.; Jacobsen, S.J.; Burnett, J.C., Jr.; Mahoney, D.W.; Bailey, K.R.; Rodeheffer, R.J. Burden of systolic and diastolic ventricular dysfunction in the community: Appreciating the scope of the heart failure epidemic. JAMA 2003, 289, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Abhayaratna, W.P.; Marwick, T.H.; Smith, W.T.; Becker, N.G. Characteristics of left ventricular diastolic dysfunction in the community: An echocardiographic survey. Heart 2006, 92, 1259–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lester, S.J.; Ryan, E.W.; Schiller, N.B.; Foster, E. Best method in clinical practice and in research studies to determine left atrial size. Am. J. Cardiol. 1999, 84, 829–832. [Google Scholar] [CrossRef]
- Tsang, T.S.; Abhayaratna, W.P.; Barnes, M.E.; Miyasaka, Y.; Gersh, B.J.; Bailey, K.R.; Cha, S.S.; Seward, J.B. Prediction of cardiovascular outcomes with left atrial size: Is volume superior to area or diameter? J. Am. Coll. Cardiol. 2006, 47, 1018–1023. [Google Scholar] [CrossRef] [Green Version]
- Moller, J.E.; Hillis, G.S.; Oh, J.K.; Seward, J.B.; Reeder, G.S.; Wright, R.S.; Park, S.W.; Bailey, K.R.; Pellikka, P.A. Left atrial volume: A powerful predictor of survival after acute myocardial infarction. Circulation 2003, 107, 2207–2212. [Google Scholar] [CrossRef] [Green Version]
- Simek, C.L.; Feldman, M.D.; Haber, H.L.; Wu, C.C.; Jayaweera, A.R.; Kaul, S. Relationship between left ventricular wall thickness and left atrial size: Comparison with other measures of diastolic function. J. Am. Soc. Echocardiogr. 1995, 8, 37–47. [Google Scholar] [CrossRef]
- Ommen, S.R.; Nishimura, R.A.; Appleton, C.P.; Miller, F.A.; Oh, J.K.; Redfield, M.M.; Tajik, A.J. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: A comparative simultaneous Doppler-catheterization study. Circulation 2000, 102, 1788–1794. [Google Scholar] [CrossRef] [Green Version]
- Little, W.C.; Oh, J.K. Echocardiographic evaluation of diastolic function can be used to guide clinical care. Circulation 2009, 120, 802–809. [Google Scholar] [CrossRef] [Green Version]
- Sohn, D.W.; Chai, I.H.; Lee, D.J.; Kim, H.C.; Kim, H.S.; Oh, B.H.; Lee, M.M.; Park, Y.B.; Choi, Y.S.; Seo, J.D.; et al. Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic function. J. Am. Coll. Cardiol. 1997, 30, 474–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiremath, S.; Knoll, G.; Weinstein, M.C. Should the Arteriovenous Fistula Be Created before Starting Dialysis?: A Decision Analytic Approach. PLoS ONE 2011, 6, e28453. [Google Scholar] [CrossRef]
- Cooper, B.A.; Branley, P.; Bulfone, L.; Collins, J.F.; Craig, J.C.; Fraenkel, M.B.; Harris, A.; Johnson, D.W.; Kesselhut, J.; Li, J.J.; et al. A Randomized, Controlled Trial of Early versus Late Initiation of Dialysis. N. Engl. J. Med. 2010, 363, 609–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Susantitaphong, P.; Altamimi, S.; Ashkar, M.; Balk, E.M.; Stel, V.S.; Wright, S.; Jaber, B.L. GFR at initiation of dialysis and mortality in CKD: A meta-analysis. Am. J. Kidney Dis. 2012, 59, 829–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, E.L.; Evans, M.; Carrero, J.J.; Putter, H.; Clase, C.M.; Caskey, F.J.; Szymczak, M.; Torino, C.; Chesnaye, N.C.; Jager, K.J.; et al. Timing of dialysis initiation to reduce mortality and cardiovascular events in advanced chronic kidney disease: Nationwide cohort study. BMJ 2021, 375, e066306. [Google Scholar] [CrossRef]
- Crews, D.C.; Scialla, J.J.; Boulware, L.E.; Navaneethan, S.D.; Nally, J.V., Jr.; Liu, X.; Arrigain, S.; Schold, J.D.; Ephraim, P.L.; Tangri, N.; et al. Comparative effectiveness of early versus conventional timing of dialysis initiation in advanced CKD. Am. J. Kidney Dis. 2014, 63, 806–815. [Google Scholar] [CrossRef] [Green Version]
- Park, J.Y.; Yoo, K.D.; Kim, Y.C.; Kim, D.K.; Joo, K.W.; Kang, S.W.; Yang, C.W.; Kim, N.H.; Kim, Y.L.; Lim, C.S.; et al. Early dialysis initiation does not improve clinical outcomes in elderly end-stage renal disease patients: A multicenter prospective cohort study. PLoS ONE 2017, 12, e0175830. [Google Scholar] [CrossRef] [Green Version]
Variables | Planned (n = 11) | Unplanned (n = 10) | p-Value |
---|---|---|---|
Age, years | 74 (72–79) | 75 (66–77) | 0.75 |
Male sex (%) | 9 (82) | 6 (60) | 0.36 |
BMI, kg/m2 | 21.5 (20.7–22.5) | 24.1 (21.6–26.4) | 0.15 |
SBP, mmHg | 150 (143–158) | 145 (131–165) | 0.78 |
DBP mmHg | 81 (70–92) | 70 (60–80) | 0.16 |
Referral to nephrologists (%) | 7 (64) | 7 (70) | 1.0 |
Comorbidities | |||
Hypertension (%) | 10 (91) | 10 (100) | 1.0 |
Dyslipidemia (%) | 9 (82) | 5 (50) | 0.18 |
Diabetes (%) | 7 (64) | 5 (50) | 0.67 |
Hyperuricemia (%) | 10 (91) | 7 (70) | 0.31 |
CVD (%) | 2 (18) | 5 (50) | 0.18 |
Medications | |||
ACEI/ARB (%) | 2 (18) | 8 (80) | 0.009 |
β-blocker (%) | 3 (27) | 7 (70) | 0.086 |
CCB (%) | 10 (91) | 9 (90) | 1.0 |
Diuretics (%) | 4 (36) | 7 (70) | 0.2 |
Statin (%) | 9 (82) | 4 (40) | 0.081 |
ESA (%) | 10 (91) | 3 (30) | 0.008 |
Reasons for commencing dialysis | |||
Uremic symptom (%) | 5 (45) | 4 (40) | 1.0 |
Volume overload (%) | 3 (27) | 4 (40) | 0.66 |
Other (%) | 3 (27) | 2 (20) | 1.0 |
Variables | Planned (n = 11) | Unplanned (n = 10) | p-Value |
---|---|---|---|
Serum urea nitrogen, mg/dL | 77.7 (55.2–94.6) | 73.4 (64.5–78.3) | 0.92 |
Serum creatinine, mg/dL | 7.0 (5.9–8.0) | 6.7 (5.8–9.2) | 0.97 |
eGFR, mL/min per 1.73 m2 | 6.5 (5.6–7.6) | 7.3 (4.0–8.3) | 1.0 |
Serum sodium, mEq/L | 140 (139–142) | 139 (137–141) | 0.30 |
Serum potassium, mEq/L | 4.4 (4.2–5.0) | 4.1 (3.9–4.5) | 0.23 |
Serum calcium, mg/dL | 8.9 (8.7–9.6) | 9.1 (8.9–9.9) | 0.48 |
Serum phosphate, mg/dL | 4.9 (4.7–5.7) | 5.4 (4.9–6.3) | 0.42 |
Hemoglobin, g/L | 9.3 (8.8–10.5) | 9.0 (7.6–10.1) | 0.60 |
Hematocrit, % | 28.9 (26.9–32.4) | 27.7 (23.3–30.6) | 0.48 |
Serum Ferritin, ng/mL | 94.7 (72.5–122.2) | 127.3 (41.9–194.8) | 0.89 |
Serum albumin, g/dL | 3.3 (3.1–3.7) | 2.7 (2.3–3.4) | 0.006 |
Fasting glucose, mg/dL | 102 (96–121) | 108 (103–135) | 0.26 |
Fasting LDL cholesterol, mg/dL | 73 (58–78) | 79 (70–133) | 0.26 |
Fasting triglyceride, mg/dL | 141 (108–153) | 103 (66–154) | 0.53 |
Variables | Planned (n = 11) | Unplanned (n = 10) | p-Value |
---|---|---|---|
LAD (mm) | 37.0 (34.1–40.8) | 40.3 (38.5–45.6) | 0.34 |
LAVI (mL/m2) | 44.7 (38.2–53.1) | 51.1 (46.8–59.8) | 0.25 |
LVEDD (mm) | 50.0 (49.2–52.5) | 49.6 (45.6–54.5) | 0.67 |
LVESD (mm) | 32.0 (30.2–35.8) | 35.2 (29.7–37.2) | 0.60 |
LVEF (%) | 65.0 (62.0–68.4) | 60.1 (56.3–64.6) | 0.18 |
LVEF ≥ 50 (%) | 10 (91) | 8 (80) | 0.59 |
E (cm/s) | 78.7 (63.5–94.5) | 110.5 (84.0–121.7) | 0.051 |
A (cm/s) | 110.6 (93.6–120.3) | 94.4 (73.9–109.8) | 0.25 |
E/A | 0.86 (0.71–0.90) | 1.20 (0.81–1.80) | 0.048 |
DT (msec) | 200 (177–223) | 192 (176–227) | 0.94 |
E′ (cm/s) | 7.5 (6.1–9.0) | 6.3 (5.5–6.4) | 0.07 |
E/E′ | 10.4 (9.5–12.8) | 17.6 (15.0–18.5) | 0.003 |
TRV (m/s) | 2.41 (2.23–2.49) | 2.65 (2.23–3.08) | 0.16 |
Variables | Planned (n = 11) | Unplanned (n = 10) | p-Value |
---|---|---|---|
LAVI > 34 (%) | 9 (82) | 9 (90) | 1.0 |
E′ < 7 (%) | 4 (36) | 8 (80) | 0.081 |
E/E′ > 14 (%) | 2 (18) | 8 (80) | 0.009 |
TRV > 2.8 (%) | 0 (0) | 4 (40) | 0.035 |
Diastolic function | |||
Normal (%) | 7 (64) | 0 (0) | |
Indeterminate (%) | 2 (18) | 2 (20) | |
Diastolic dysfunction (%) | 2 (18) | 8 (80) | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshioka, T.; Inoue, S.; Kohriyama, H.; Haruna, Y.; Satoh, M.; Inoue, N. Comparison of Left Ventricular Diastolic Function Parameters between Patients with Unplanned and Planned Hemodialysis Initiation: A Cross-Sectional Study. Kidney Dial. 2023, 3, 163-170. https://doi.org/10.3390/kidneydial3020014
Yoshioka T, Inoue S, Kohriyama H, Haruna Y, Satoh M, Inoue N. Comparison of Left Ventricular Diastolic Function Parameters between Patients with Unplanned and Planned Hemodialysis Initiation: A Cross-Sectional Study. Kidney and Dialysis. 2023; 3(2):163-170. https://doi.org/10.3390/kidneydial3020014
Chicago/Turabian StyleYoshioka, Takayuki, Seiya Inoue, Hitoshi Kohriyama, Yoshisuke Haruna, Minoru Satoh, and Nobutaka Inoue. 2023. "Comparison of Left Ventricular Diastolic Function Parameters between Patients with Unplanned and Planned Hemodialysis Initiation: A Cross-Sectional Study" Kidney and Dialysis 3, no. 2: 163-170. https://doi.org/10.3390/kidneydial3020014