Silent Invasion: COVID-19′s Hidden Damage to Human Organs
Abstract
1. Introduction
2. Methodology
2.1. Protocol and Search Strategy
2.2. Study Selection
- Inclusion criteria:
- Peer-reviewed publications in English;
- Human studies with clinical outcome data;
- Studies reporting organ-specific complications of COVID-19;
- Clinical studies, cohort studies, case–control studies, systematic reviews and meta-analyses;
- Minimum sample size of 10 patients for primary studies.
2.3. Screening Process
- Title and abstract screening (n = 1410 records identified);
- Full-text review of potentially eligible studies (n = 236);
- Final inclusion of 161 studies meeting all criteria;
- Disagreements resolved through consensus discussion.
2.4. Data Extraction and Quality Assessment
3. Pulmonary System Complications in COVID-19
4. Cardiovascular System Complications in COVID-19
5. Neurological Complications: Beyond Respiratory Symptoms
6. Hepatic Complications of COVID-19: Pathogenesis and Prognostic Concerns
7. Gastrointestinal Manifestations and Post-Acute Complications of COVID-19
8. Immune and Endocrine System Disruption in COVID-19: A Systemic Inflammatory Profile
9. Mental Health Consequences of COVID-19: A Syndemic of Psychological Disruption
10. Impact of SARS-CoV-2 Variants on Symptom Variability
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Perico, L.; Benigni, A.; Remuzzi, G. SARS-CoV-2 and the spike protein in endotheliopathy. Trends Microbiol. 2023, 32, 53–67. [Google Scholar] [CrossRef]
- Pons, S.; Fodil, S.; Azoulay, E.; Zafrani, L. The vascular endothelium: The cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Crit. Care 2020, 24, 353. [Google Scholar] [CrossRef]
- Subramaniam, S.; Jose, A.; Kenney, D.; O’cOnnell, A.K.; Bosmann, M.; Douam, F.; Crossland, N. Challenging the notion of endothelial infection by SARS-CoV-2: Insights from the current scientific evidence. Front. Immunol. 2025, 16, 1443932. [Google Scholar] [CrossRef]
- Parotto, M.; Gyöngyösi, M.; Howe, K.; Myatra, S.N.; Ranzani, O.; Shankar-Hari, M.; Herridge, M.S. Post-acute sequelae of COVID-19: Understanding and addressing the burden of multisystem manifestations. Lancet Respir. Med. 2023, 11, 739–754. [Google Scholar] [CrossRef]
- Proal, A.D.; VanElzakker, M.B. Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms. Front. Microbiol. 2021, 12, 698169. [Google Scholar] [CrossRef] [PubMed]
- Gusev, E.; Sarapultsev, A. Exploring the Pathophysiology of Long COVID: The Central Role of Low-Grade Inflammation and Multisystem Involvement. Int. J. Mol. Sci. 2024, 25, 6389. [Google Scholar] [CrossRef]
- Sherif, Z.A.; Gomez, C.R.; Connors, T.J.; Henrich, T.J.; Reeves, W.B.; Force, R.M.P.T. Pathogenic mechanisms of post-acute sequelae of SARS-CoV-2 infection (PASC). eLife 2023, 12, e86002. [Google Scholar] [CrossRef]
- Mehandru, S.; Merad, M. Pathological sequelae of long-haul COVID. Nat. Immunol. 2022, 23, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Castanares-Zapatero, D.; Chalon, P.; Kohn, L.; Dauvrin, M.; Detollenaere, J.; de Noordhout, C.M.; Jong, C.P.-D.; Cleemput, I.; Heede, K.V.D. Pathophysiology and mechanism of long COVID: A comprehensive review. Ann. Med. 2022, 54, 1473–1487. [Google Scholar] [CrossRef]
- Golzardi, M.; Hromić-Jahjefendić, A.; Šutković, J.; Aydin, O.; Ünal-Aydın, P.; Bećirević, T.; Redwan, E.M.; Rubio-Casillas, A.; Uversky, V.N. The Aftermath of COVID-19: Exploring the Long-Term Effects on Organ Systems. Biomedicines 2024, 12, 913. [Google Scholar] [CrossRef] [PubMed]
- Semo, D.; Shomanova, Z.; Sindermann, J.; Mohr, M.; Evers, G.; Motloch, L.J.; Reinecke, H.; Godfrey, R.; Pistulli, R. Persistent Monocytic Bioenergetic Impairment and Mitochondrial DNA Damage in PASC Patients with Cardiovascular Complications. Int. J. Mol. Sci. 2025, 26, 4562. [Google Scholar] [CrossRef] [PubMed]
- Menezes, F.; Palmeira, J.D.F.; Oliveira, J.D.S.; Argañaraz, G.A.; Soares, C.R.J.; Nóbrega, O.T.; Ribeiro, B.M.; Argañaraz, E.R. Unraveling the SARS-CoV-2 spike protein long-term effect on neuro-PASC. Front. Cell. Neurosci. 2024, 18, 1481963. [Google Scholar] [CrossRef]
- Ong, I.Z.; Kolson, D.L.; Schindler, M.K. Mechanisms, Effects, and Management of Neurological Complications of Post-Acute Sequelae of COVID-19 (NC-PASC). Biomedicines 2023, 11, 377. [Google Scholar] [CrossRef] [PubMed]
- Smadja, D.M.; Mentzer, S.J.; Fontenay, M.; Laffan, M.A.; Ackermann, M.; Helms, J.; Jonigk, D.; Chocron, R.; Pier, G.B.; Gendron, N.; et al. COVID-19 is a systemic vascular hemopathy: Insight for mechanistic and clinical aspects. Angiogenesis 2021, 24, 755–788. [Google Scholar] [CrossRef]
- Akhmerov, A.; Marbán, E. COVID-19 and the Heart. Circ. Res. 2020, 126, 1443–1455. [Google Scholar] [CrossRef] [PubMed]
- Long, B.; Brady, W.J.; Koyfman, A.; Gottlieb, M. Cardiovascular complications in COVID-19. Am. J. Emerg. Med. 2020, 38, 1504–1507. [Google Scholar] [CrossRef]
- Joshee, S.; Vatti, N.; Chang, C. Long-Term Effects of COVID-19. Mayo Clin. Proc. 2022, 97, 579–599. [Google Scholar] [CrossRef]
- Ball, L.; Silva, P.L.; Giacobbe, D.R.; Bassetti, M.; Zubieta-Calleja, G.R.; Rocco, P.R.; Pelosi, P. Understanding the pathophysiology of typical acute respiratory distress syndrome and severe COVID-19. Expert Rev. Respir. Med. 2022, 16, 437–446. [Google Scholar] [CrossRef]
- Gibson, P.G.; Qin, L.; Puah, S.H. COVID-19 acute respiratory distress syndrome (ARDS): Clinical features and differences from typical pre-COVID-19 ARDS. Med. J. Aust. 2020, 213, 54–56e1. [Google Scholar] [CrossRef]
- Grasselli, G.; Tonetti, T.; Protti, A.; Langer, T.; Girardis, M.; Bellani, G.; Laffey, J.; Carrafiello, G.; Carsana, L.; Rizzuto, C.; et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: A multicentre prospective observational study. Lancet Respir. Med. 2020, 8, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhang, K.; Chen, T.; Lin, R.; Chen, Q.; Chen, C.; Tong, M.; Chen, J.; Yu, J.; Lou, Y.; et al. Temporal patterns of organ dysfunction in COVID-19 patients hospitalized in the intensive care unit: A group-based multitrajectory modeling analysis. Int. J. Infect. Dis. 2024, 144, 107045. [Google Scholar] [CrossRef]
- Bertilacchi, M.S.; Piccarducci, R.; Celi, A.; Germelli, L.; Romei, C.; Bartholmai, B.J.; Barbieri, G.; Giacomelli, C.; Martini, C. Blood oxygenation state in COVID-19 patients: Unexplored role of 2,3-bisphosphoglycerate. Biomed. J. 2024, 47, 100723. [Google Scholar] [CrossRef]
- Gutowski, M.; Klimkiewicz, J.; Rustecki, B.; Michałowski, A.; Paryż, K.; Lubas, A. Effect of Respiratory Failure on Peripheral and Organ Perfusion Markers in Severe COVID-19: A Prospective Cohort Study. J. Clin. Med. 2024, 13, 469. [Google Scholar] [CrossRef] [PubMed]
- Sudo, K.; Kinoshita, M.; Kawaguchi, K.; Kushimoto, K.; Yoshii, R.; Inoue, K.; Yamasaki, M.; Matsuyama, T.; Kooguchi, K.; Takashima, Y.; et al. Case study observational research: Inflammatory cytokines in the bronchial epithelial lining fluid of COVID-19 patients with acute hypoxemic respiratory failure. Crit. Care 2024, 28, 134. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.L.; Jacobs, H.M.; Lee, S. Pediatric Myocarditis. Cardiol. Ther. 2023, 12, 243–260. [Google Scholar] [CrossRef]
- Amin, B.J.H.; Kakamad, F.H.; Ahmed, G.S.; Ahmed, S.F.; Abdulla, B.A.; Mohammed, S.H.; Mikael, T.M.; Salih, R.Q.; Ali, R.K.; Salh, A.M.; et al. Post COVID-19 pulmonary fibrosis; a meta-analysis study. Ann. Med. Surg. 2022, 77, 103590. [Google Scholar] [CrossRef] [PubMed]
- Patton, M.J.; Benson, D.; Robison, S.W.; Raval, D.; Locy, M.L.; Patel, K.; Grumley, S.; Levitan, E.B.; Morris, P.; Might, M.; et al. Characteristics and determinants of pulmonary long COVID. J. Clin. Investig. 2024, 9, e177518. [Google Scholar] [CrossRef]
- Duong-Quy, S.; Vo-Pham-Minh, T.; Tran-Xuan, Q.; Huynh-Anh, T.; Vo-Van, T.; Vu-Tran-Thien, Q.; Nguyen-Nhu, V. Post-COVID-19 Pulmonary Fibrosis: Facts—Challenges and Futures: A Narrative Review. Pulm. Ther. 2023, 9, 295–307. [Google Scholar] [CrossRef]
- Malas, M.B.; Naazie, I.N.; Elsayed, N.; Mathlouthi, A.; Marmor, R.; Clary, B. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: A systematic review and meta-analysis. EClinicalMedicine 2020, 29–30, 100639. [Google Scholar] [CrossRef]
- Lodigiani, C.; Iapichino, G.; Carenzo, L.; Cecconi, M.; Ferrazzi, P.; Sebastian, T.; Kucher, N.; Studt, J.-D.; Sacco, C.; Bertuzzi, A.; et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb. Res. 2020, 191, 9–14. [Google Scholar] [CrossRef]
- Poor, H.D. Pulmonary Thrombosis and Thromboembolism in COVID-19. Chest 2021, 160, 1471–1480. [Google Scholar] [CrossRef]
- Bonow, R.O.; Fonarow, G.C.; O’Gara, P.T.; Yancy, C.W. Association of Coronavirus Disease 2019 (COVID-19) with Myocardial Injury and Mortality. JAMA Cardiol. 2020, 5, 751–753. [Google Scholar] [CrossRef]
- Deng, Q.; Hu, B.; Zhang, Y.; Wang, H.; Zhou, X.; Hu, W.; Cheng, Y.; Yan, J.; Ping, H.; Zhou, Q. Suspected myocardial injury in patients with COVID-19: Evidence from front-line clinical observation in Wuhan, China. Int. J. Cardiol. 2020, 311, 116–121. [Google Scholar] [CrossRef]
- Lala, A.; Johnson, K.W.; Januzzi, J.L.; Russak, A.J.; Paranjpe, I.; Richter, F.; Zhao, S.; Somani, S.; Van Vleck, T.; Vaid, A.; et al. Prevalence and Impact of Myocardial Injury in Patients Hospitalized with COVID-19 Infection. JACC 2020, 76, 533–546. [Google Scholar] [CrossRef]
- Katsoularis, I.; Jerndal, H.; Kalucza, S.; Lindmark, K.; Fonseca-Rodríguez, O.; Connolly, A.-M.F.; Braunschweig, F. Risk of arrhythmias following COVID-19: Nationwide self-controlled case series and matched cohort study. Eur. Heart J. Open 2023, 3, oead120. [Google Scholar] [CrossRef] [PubMed]
- Shakir, M.; Hassan, S.M.; Adil, U.; Abidi, S.M.A.; Ali, S.A.; Yaqoob, U. Unveiling the silent threat of new onset atrial fibrillation in covid-19 hospitalized patients: A retrospective cohort study. PLoS ONE 2024, 19, e0291829. [Google Scholar] [CrossRef]
- Saha, S.A.; Russo, A.M.; Chung, M.K.; Deering, T.F.; Lakkireddy, D.; Gopinathannair, R. COVID-19 and Cardiac Arrhythmias: A Contemporary Review. Curr. Treat. Options Cardiovasc. Med. 2022, 24, 87–107. [Google Scholar] [CrossRef] [PubMed]
- Delorey, T.M.; Ziegler, C.G.K.; Heimberg, G.; Normand, R.; Yang, Y.; Segerstolpe, Å.; Abbondanza, D.; Fleming, S.J.; Subramanian, A.; Montoro, D.T.; et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 2021, 595, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Bonaventura, A.; Vecchié, A.; Dagna, L.; Martinod, K.; Dixon, D.L.; Van Tassell, B.W.; Dentali, F.; Montecucco, F.; Massberg, S.; Levi, M.; et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol. 2021, 21, 319–329. [Google Scholar] [CrossRef]
- Alanazi, T.K.A.; Alahmari, N.F.A.; Qubays, F.E.I.; Alenezi, S.H.I.; Alenezi, M.F.M. Post COVID-19 Organizing Pneumonia: A Systematic Review and Meta-analysis. J. Pharm. Res. Int. 2021, 33, 259–270. [Google Scholar] [CrossRef]
- Zhou, C. The Impact of COVID-19 on Different Human Systems and Related Research Progress. Highlights Sci. Eng. Technol. 2024, 91, 145–150. [Google Scholar] [CrossRef]
- Gerayeli, F.V.; Park, H.Y.; Milne, S.; Li, X.; Yang, C.X.; Tuong, J.; Eddy, R.L.; Vahedi, S.M.; Guinto, E.; Cheung, C.Y.; et al. Single-cell sequencing reveals cellular landscape alterations in the airway mucosa of patients with pulmonary long COVID. Eur. Respir. J. 2024, 64, 2301947. [Google Scholar] [CrossRef]
- Low, R.N.; Low, R.J.; Akrami, A. A review of cytokine-based pathophysiology of Long COVID symptoms. Front. Med. 2023, 10, 1011936. [Google Scholar] [CrossRef]
- Alabdali, A.Y.M.; Chinnappan, S.; Basma, M.; Mogana, R.; Khalivulla, S.I.; Rahman, H. Impact of COVID-19 on Multiple Body Organ Failure: A Review. Int. J. Appl. Pharm. 2021, 13, 54–59. [Google Scholar] [CrossRef]
- Shi, H.; Xu, J. The impact of COVID-19 on human body. Highlights Sci. Eng. Technol. 2023, 36, 1186–1192. [Google Scholar] [CrossRef]
- Sozzi, F.B.; Gherbesi, E.; Faggiano, A.; Gnan, E.; Maruccio, A.; Schiavone, M.; Iacuzio, L.; Carugo, S. Viral Myocarditis: Classification, Diagnosis, and Clinical Implications. Front. Cardiovasc. Med. 2022, 9, 908663. [Google Scholar] [CrossRef]
- Yan, P.; Yang, S.; Wang, T. Management Status of Myocarditis-Related Sudden Cardiac Death. Rev. Cardiovasc. Med. 2024, 25, 452. [Google Scholar] [CrossRef] [PubMed]
- Rekalova, E. Long-term Consequences of COVID-19 (Review). Int. J. Rehabil. Palliat. Med. 2023, 1, 100–104. [Google Scholar] [CrossRef]
- Mroueh, A.; Fakih, W.; Carmona, A.; Trimaille, A.; Matsushita, K.; Marchandot, B.; Qureshi, A.W.; Gong, D.-S.; Auger, C.; Sattler, L.; et al. COVID-19 promotes endothelial dysfunction and thrombogenicity: Role of proinflammatory cytokines/SGLT2 prooxidant pathway. J. Thromb. Haemost. 2023, 22, 286–299. [Google Scholar] [CrossRef]
- Peng, X.; Wang, Y.; Xi, X.; Jia, Y.; Tian, J.; Yu, B.; Tian, J. Promising Therapy for Heart Failure in Patients with Severe COVID-19: Calming the Cytokine Storm. Cardiovasc. Drugs Ther. 2021, 35, 231–247. [Google Scholar] [CrossRef]
- Nguyen, A.; Corcoran, J.; Nedzlek, C.D. Sinus Arrest in Asymptomatic COVID-19 Infection. Cureus 2022, 14, e23736. [Google Scholar] [CrossRef]
- Kar, M. Vascular Dysfunction and Its Cardiovascular Consequences During and After COVID-19 Infection: A Narrative Review. Vasc. Health Risk Manag. 2022, 18, 105–112. [Google Scholar] [CrossRef]
- Chen, H.; Peng, J.; Wang, T.; Wen, J.; Chen, S.; Huang, Y.; Zhang, Y. Counter-regulatory renin-angiotensin system in hypertension: Review and update in the era of COVID-19 pandemic. Biochem. Pharmacol. 2022, 208, 115370. [Google Scholar] [CrossRef]
- Hărșan, S.T.; Sin, A.I. The Involvement and Manifestations of SARS-CoV-2 Virus in Cardiovascular Pathology. Medicina 2025, 61, 773. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, E.F.B.; Varela, J.P.D.V.; Liphaus, L.A.; Rosado, Á.B.; Nobre, J.M.; Brambilla, B.A.; Barbosa, A.L.F.; Preti, L.C.; Figueiredo, B.D.O.; Moutinho, B.D.F.; et al. Takotsubo Cardiomyopathy and the Heart-Brain Axis. Health Soc. 2025, 5, 69–78. [Google Scholar] [CrossRef]
- Al Houri, H.N.; Jomaa, S.; Jabra, M.; Alhouri, A.N.; Latifeh, Y. Pathophysiology of stress cardiomyopathy: A comprehensive literature review. Ann. Med. Surg. 2022, 82, 104671. [Google Scholar] [CrossRef]
- McMaster, M.W.D.; Dey, S.D.; Fishkin, T.; Wang, A.; Frishman, W.H.; Aronow, W.S. The Impact of Long COVID-19 on the Cardiovascular System. Cardiol. Rev. 2024. [Google Scholar] [CrossRef]
- Marques, K.C.; Quaresma, J.A.S.; Falcão, L.F.M. Cardiovascular autonomic dysfunction in “Long COVID”: Pathophysiology, heart rate variability, and inflammatory markers. Front. Cardiovasc. Med. 2023, 10, 1256512. [Google Scholar] [CrossRef]
- Hess, D.C.; Eldahshan, W.; Rutkowski, E. COVID-19-Related Stroke. Transl. Stroke Res. 2020, 11, 322–325. [Google Scholar] [CrossRef]
- Beyerstedt, S.; Casaro, E.B.; Rangel, É.B. COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 905–919. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Yang, X.; Yang, D.; Bao, J.; Li, R.; Xiao, Y.; Hou, C.; Wang, H.; Liu, J.; Yang, D.; et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care 2020, 24, 422. [Google Scholar] [CrossRef]
- Shao, S.-C.; Lai, C.-C.; Chen, Y.-H.; Chen, Y.-C.; Hung, M.-J.; Liao, S.-C. Prevalence, incidence and mortality of delirium in patients with COVID-19: A systematic review and meta-analysis. Age Ageing 2021, 50, 1445–1453. [Google Scholar] [CrossRef]
- Klopfenstein, T.; Kadiane-Oussou, N.; Toko, L.; Royer, P.-Y.; Lepiller, Q.; Gendrin, V.; Zayet, S. Features of anosmia in COVID-19. Med. Mal. Infect. 2020, 50, 436–439. [Google Scholar] [CrossRef]
- Salih, R.; Hassan, R.; Ibrahim, S.N.; Omer, H.; Abdelsamad, A.; Elmustafa, F.; Elomeiri, L.; Mahmoud, S.; Ahmed, M.; Alsamani, R.H.; et al. The Neuro-cognitive Implications of COVID-19 Infection: A Systematic Review with an Insight into the Pathophysiology (P11-13.009). Neurology 2024, 102 (Suppl. 1), 6303. [Google Scholar] [CrossRef]
- Bommarito, G.; Garibotto, V.; Frisoni, G.B.; Assal, F.; Lalive, P.H.; Allali, G. The Two-Way Route between Delirium Disorder and Dementia: Insights from COVID-19. Neurodegener. Dis. 2022, 22, 91–103. [Google Scholar] [CrossRef]
- Otani, K.; Fukushima, H.; Matsuishi, K. COVID-19 delirium and encephalopathy: Pathophysiology assumed in the first 3 years of the ongoing pandemic. Brain Disord. 2023, 10, 100074. [Google Scholar] [CrossRef]
- Asadi-Pooya, A.A.; Akbari, A.; Emami, A.; Lotfi, M.; Rostamihosseinkhani, M.; Nemati, H.; Barzegar, Z.; Kabiri, M.; Zeraatpisheh, Z.; Farjoud-Kouhanjani, M.; et al. Long COVID syndrome-associated Brain Fog. J. Med. Virol. 2021, 94, 979–984. [Google Scholar] [CrossRef]
- Córdova-Martínez, A.; Caballero-García, A.; Pérez-Valdecantos, D.; Roche, E.; Noriega-González, D.C. Peripheral Neuropathies Derived from COVID-19: New Perspectives for Treatment. Biomedicines 2022, 10, 1051. [Google Scholar] [CrossRef]
- Islam, A.; Cavestro, C.; Alam, S.S.; Kundu, S.; Kamal, M.A.; Reza, F. Encephalitis in Patients with COVID-19: A Systematic Evidence-Based Analysis. Cells 2022, 11, 2575. [Google Scholar] [CrossRef]
- Badenoch, J.B.; Rengasamy, E.R.; Watson, C.; Jansen, K.; Chakraborty, S.; Sundaram, R.D.; Hafeez, D.; Burchill, E.; Saini, A.; Thomas, L.; et al. Persistent neuropsychiatric symptoms after COVID-19: A systematic review and meta-analysis. Brain Commun. 2021, 4, fcab297. [Google Scholar] [CrossRef]
- Quan, L.; Lu, W.; Zhen, R.; Zhou, X. Post-traumatic stress disorders, anxiety, and depression in college students during the COVID-19 pandemic: A cross-sectional study. BMC Psychiatry 2023, 23, 228. [Google Scholar] [CrossRef]
- Xiong, J.; Lipsitz, O.; Nasri, F.; Lui, L.M.W.; Gill, H.; Phan, L.; Chen-Li, D.; Iacobucci, M.; Ho, R.; Majeed, A.; et al. Impact of COVID-19 pandemic on mental health in the general population: A systematic review. J. Affect. Disord. 2020, 277, 55–64. [Google Scholar] [CrossRef]
- Legrand, M.; Bell, S.; Forni, L.; Joannidis, M.; Koyner, J.L.; Liu, K.; Cantaluppi, V. Pathophysiology of COVID-19-associated acute kidney injury. Nat. Rev. Nephrol. 2021, 17, 751–764. [Google Scholar] [CrossRef]
- Sharma, P.; Ng, J.H.; Bijol, V.; Jhaveri, K.D.; Wanchoo, R. Pathology of COVID-19-associated acute kidney injury. Clin. Kidney J. 2021, 14, i30–i39. [Google Scholar] [CrossRef]
- Gupta, A.; Madhavan, M.V.; Sehgal, K.; Nair, N.; Mahajan, S.; Sehrawat, T.S.; Bikdeli, B.; Ahluwalia, N.; Ausiello, J.C.; Wan, E.Y.; et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020, 26, 1017–1032. [Google Scholar] [CrossRef]
- Pei, G.; Zhang, Z.; Peng, J.; Liu, L.; Zhang, C.; Yu, C.; Ma, Z.; Huang, Y.; Liu, W.; Yao, Y.; et al. Renal Involvement and Early Prognosis in Patients with COVID-19 Pneumonia. J. Am. Soc. Nephrol. 2020, 31, 1157–1165. [Google Scholar] [CrossRef]
- Tiwari, N.R.; Phatak, S.; Sharma, V.R.; Agarwal, S.K. COVID-19 and thrombotic microangiopathies. Thromb. Res. 2021, 202, 191–198. [Google Scholar] [CrossRef]
- Bhaskar, S.; Sinha, A.; Banach, M.; Mittoo, S.; Weissert, R.; Kass, J.S.; Rajagopal, S.; Pai, A.R.; Kutty, S. Cytokine Storm in COVID-19-Immunopathological Mechanisms, Clinical Considerations, and Therapeutic Approaches: The REPROGRAM Consortium Position Paper. Front. Immunol. 2020, 11, 1648. [Google Scholar] [CrossRef]
- Genest, D.S.; Patriquin, C.J.; Licht, C.; John, R.; Reich, H.N. Renal Thrombotic Microangiopathy: A Review. Am. J. Kidney Dis. 2022, 81, 591–605. [Google Scholar] [CrossRef]
- Vaira, L.A.; Salzano, G.; Deiana, G.; De Riu, G. In Response to Anosmia and Ageusia: Common Findings in COVID-19 Patients. Laryngoscope 2020, 130, E695. [Google Scholar] [CrossRef]
- Jdiaa, S.S.; Mansour, R.; El Alayli, A.; Gautam, A.; Thomas, P.; Mustafa, R.A. COVID–19 and Chronic Kidney Disease: An Updated Overview of Reviews. J. Nephrol. 2022, 35, 69–85. [Google Scholar] [CrossRef]
- Shariff, S.; Uwishema, O.; Mizero, J.; Thambi, V.D.; Nazir, A.; Mahmoud, A.; Kaushik, I.; Khayat, S.; Maigoro, A.Y.; Awde, S.; et al. Long-term Cognitive Dysfunction After the COVID-19 Pandemic: A Narrative Review. Ann. Med. Surg. 2023, 85, 5504–5510. [Google Scholar] [CrossRef]
- Cheng, Y.; Luo, R.; Wang, K.; Zhang, M.; Wang, Z.; Dong, L.; Li, J.; Yao, Y.; Ge, S.; Xu, G. Kidney Disease Is Associated with In-hospital Death of Patients with COVID-19. Kidney Int. 2020, 97, 829–838. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S.; Liu, H.; Li, W.; Lin, F.; Jiang, L.; Li, X.; Xu, P.; Zhang, L.; Zhao, L.; et al. SARS-CoV-2 Infection of the Liver Directly Contributes to Hepatic Impairment in Patients with COVID-19. J. Hepatol. 2020, 73, 807–816. [Google Scholar] [CrossRef]
- Sharma, A.; Jaiswal, P.; Kerakhan, Y.; Saravanan, L.; Murtaza, Z.; Zergham, A.; Honganur, N.-S.; Akbar, A.; Deol, A.; Francis, B.; et al. Liver Disease and Outcomes Among COVID-19 Hospitalized Patients—A Systematic Review and Meta-Analysis. Ann. Hepatol. 2021, 21, 100273. [Google Scholar] [CrossRef]
- Bertolini, A.; Van De Peppel, I.P.; Bodewes, F.A.; Moshage, H.; Fantin, A.; Farinati, F.; Fiorotto, R.; Jonker, J.W.; Strazzabosco, M.; Verkade, H.J.; et al. Abnormal Liver Function Tests in Patients with COVID-19: Relevance and Potential Pathogenesis. Hepatology 2020, 72, 1864–1872. [Google Scholar] [CrossRef]
- Kameswari, S.; Lakshmi, T.; Ezhilarasan, D. Impact of COVID 19 in Liver Disease Patients. Int. J. Res. Pharm. Sci. 2020, 11, 701–704. [Google Scholar] [CrossRef]
- Yoo, H.W.; Jin, H.Y.; Yon, D.K.; Effenberger, M.; Shin, Y.H.; Kim, S.Y.; Yang, J.M.; Kim, M.S.; Koyanagi, A.; Jacob, L.; et al. Non-alcoholic Fatty Liver Disease and COVID-19 Susceptibility and Outcomes: A Korean Nationwide Cohort. J. Korean Med. Sci. 2021, 36, e291. [Google Scholar] [CrossRef]
- Kurniawan, A.; Hariyanto, T.I. Non-alcoholic Fatty Liver Disease (NAFLD) and COVID-19 Outcomes: A Systematic Review, Meta-analysis and Meta-regression. Narra J. 2023, 3, e102. [Google Scholar] [CrossRef]
- Singh, A.; Hussain, S.; Antony, B. Non-alcoholic Fatty Liver Disease and Clinical Outcomes in Patients with COVID-19: A Comprehensive Systematic Review and Meta-analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 813–822. [Google Scholar] [CrossRef]
- Huang, H.; Li, H.; Chen, S.; Zhou, X.; Dai, X.; Wu, J.; Zhang, J.; Shao, L.; Yan, R.; Wang, M.; et al. Prevalence and Characteristics of Hypoxic Hepatitis in COVID-19 Patients in the Intensive Care Unit: A First Retrospective Study. Front. Med. 2021, 7, 607206. [Google Scholar] [CrossRef]
- Delgado, A.; Stewart, S.; Urroz, M.; Rodríguez, A.; Borobia, A.M.; Akatbach-Bousaid, I.; González-Muñoz, M.; Ramírez, E. Characterisation of Drug-Induced Liver Injury in Patients with COVID-19 Detected by a Proactive Pharmacovigilance Program from Laboratory Signals. J. Clin. Med. 2021, 10, 4432. [Google Scholar] [CrossRef]
- Taneva, G.; Dimitrov, D.; Velikova, T. Liver Dysfunction as a Cytokine Storm Manifestation and Prognostic Factor for Severe COVID-19. World J. Hepatol. 2021, 13, 2005–2012. [Google Scholar] [CrossRef]
- Fara, A.; Mitrev, Z.; Rosalia, R.A.; Assas, B.M. Cytokine Storm and COVID-19: A Chronicle of Pro-Inflammatory Cytokines. Open Biol. 2020, 10, 200160. [Google Scholar] [CrossRef]
- Taquet, M.; Husain, M.; Geddes, J.R.; Luciano, S.; Harrison, P.J. Cerebral Venous Thrombosis and Portal Vein Thrombosis: A Retrospective Cohort Study of 537,913 COVID-19 Cases. EClinicalMedicine 2021, 39, 101061. [Google Scholar] [CrossRef]
- El Hajra, I.; Llop, E.; Blanco, S.; Perelló, C.; Fernández-Carrillo, C.; Calleja, J.L. Portal Vein Thrombosis in COVID-19: An Underdiagnosed Disease? J. Clin. Med. 2024, 13, 5599. [Google Scholar] [CrossRef]
- Gilani, M.; Akcan, T.; Patel, H.; Zahid, A. S3842 Acute Portal Vein Thrombosis in COVID-19 Patient: A Rare Thromboembolic Complication. Am. J. Gastroenterol. 2023, 118, S2461. [Google Scholar] [CrossRef]
- Lebbe, A.; Aboulwafa, A.; Bayraktar, N.; Mushannen, B.; Ayoub, S.; Sarker, S.; Abdalla, M.N.; Mohammed, I.; Mushannen, M.; Yagan, L.; et al. New Onset of Acute and Chronic Hepatic Diseases Post-COVID-19 Infection: A Systematic Review. Biomedicines 2024, 12, 2065. [Google Scholar] [CrossRef] [PubMed]
- Stasi, C. Post-COVID-19 Pandemic Sequelae in Liver Diseases. Life 2025, 15, 403. [Google Scholar] [CrossRef]
- D’aMico, F.; Baumgart, D.C.; Danese, S.; Peyrin-Biroulet, L. Diarrhea During COVID-19 Infection: Pathogenesis, Epidemiology, Prevention, and Management. Clin. Gastroenterol. Hepatol. 2020, 18, 1663–1672. [Google Scholar] [CrossRef]
- Shchikota, A.; Pogonchenkova, I.; Turova, E.; Starodubova, A.; Nosova, N. COVID-19-associated diarrhea. Probl. Nutr. 2021, 90, 18–30. [Google Scholar] [CrossRef]
- Wang, F.; Zheng, S.; Zheng, C.; Sun, X. Attaching Clinical Significance to COVID-19-associated diarrhea. Life Sci. 2020, 260, 118312. [Google Scholar] [CrossRef]
- Andrews, P.L.; Cai, W.; A Rudd, J.; Sanger, G.J. COVID-19, Nausea, and Vomiting. J. Gastroenterol. Hepatol. 2020, 36, 646–656. [Google Scholar] [CrossRef]
- Ng, S.C.; Tilg, H. COVID-19 and the Gastrointestinal Tract: More Than Meets the Eye. Gut 2020, 69, 973–974. [Google Scholar] [CrossRef]
- Kumar, V.C.S.; Mukherjee, S.; Harne, P.S.; Subedi, A.; Ganapathy, M.K.; Patthipati, V.S.; Sapkota, B. Novelty in the Gut: A Systematic Review and Meta-analysis of the Gastrointestinal Manifestations of COVID-19. BMJ Open Gastroenterol. 2020, 7, e000417. [Google Scholar] [CrossRef] [PubMed]
- Pokharel, A.; Acharya, I.; Chaudhary, R.K.; Songmen, S.; Williams, R. Superior Mesenteric Artery Thrombosis and Intestinal Ischemia as a Consequence of COVID-19 Infection. Cureus 2023, 15, e37259. [Google Scholar] [CrossRef]
- Hayashi, Y.; Wagatsuma, K.; Nojima, M.; Yamakawa, T.; Ichimiya, T.; Yokoyama, Y.; Kazama, T.; Hirayama, D.; Nakase, H. The Characteristics of Gastrointestinal Symptoms in Patients with Severe COVID-19: A Systematic Review and Meta-analysis. J. Gastroenterol. 2021, 56, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Balaphas, A.; Gkoufa, K.; Colucci, N.; Perdikis, K.-C.; Gaudet-Blavignac, C.; Pataky, Z.; Carballo, S.; Ris, F.; Stirnemann, J.; Lovis, C.; et al. Abdominal Pain Patterns During COVID-19: An Observational Study. Sci. Rep. 2022, 12, 14677. [Google Scholar] [CrossRef] [PubMed]
- Haripersad, Y.V.; Kannegiesser-Bailey, M.; Morton, K.; Skeldon, S.; Shipton, N.; Edwards, K.; Newton, R.; Newell, A.; Stevenson, P.G.; Martin, A.C. Outbreak of Anorexia Nervosa Admissions During the COVID-19 Pandemic. Arch. Dis. Child. 2021, 106, e15. [Google Scholar] [CrossRef]
- Gilsbach, S.; Plana, M.T.; Castro-Fornieles, J.; Gatta, M.; Karlsson, G.P.; Flamarique, I.; Raynaud, J.-P.; Riva, A.; Solberg, A.-L.; van Elburg, A.A.; et al. Increase in Admission Rates and Symptom Severity of Childhood and Adolescent Anorexia Nervosa in Europe During the COVID-19 Pandemic: Data From Specialized Eating Disorder Units in Different European Countries. Child Adolesc. Psychiatry Ment. Health 2022, 16, 46. [Google Scholar] [CrossRef]
- Mohamed, M.; Nassar, M.; Nso, N.; Alfishawy, M. Massive Gastrointestinal Bleeding in a Patient with COVID-19. Arab. J. Gastroenterol. 2021, 22, 177–179. [Google Scholar] [CrossRef]
- Rathore, S.S.; Wint, Z.S.; Goyal, A.; Jeswani, B.M.; Farrukh, A.M.; Nieto-Salazar, M.A.; Thugu, T.R.; Erva, S.; Mehmood, R.; Toro-Velandia, A.C.; et al. Prevalence and Outcomes of Upper Gastrointestinal Bleeding in COVID-19: A Systematic Review and Meta-analysis. Rev. Med. Virol. 2024, 34, e2509. [Google Scholar] [CrossRef]
- Chen, J.; Vitetta, L. The Gut–liver Axis in Chronic Liver Disease Associated with Severe COVID-19. Eur. J. Gastroenterol. Hepatol. 2021, 33, e1103. [Google Scholar] [CrossRef]
- Cardinale, V.; Capurso, G.; Ianiro, G.; Gasbarrini, A.; Arcidiacono, P.G.; Alvaro, D. Intestinal Permeability Changes with Bacterial Translocation as Key Events Modulating Systemic Host Immune Response to SARS-CoV-2: A Working Hypothesis. Dig. Liver Dis. 2020, 52, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Batista, K.S.; de Albuquerque, J.G.; de Vasconcelos, M.H.A.; Bezerra, M.L.R.; Barbalho, M.B.d.S.; Pinheiro, R.O.; Aquino, J.d.S. Probiotics and Prebiotics: Potential Prevention and Therapeutic Target for Nutritional Management of COVID-19? Nutr. Res. Rev. 2021, 36, 181–198. [Google Scholar] [CrossRef]
- Hiti, L.; Markovič, T.; Lainscak, M.; Lainščak, J.F.; Pal, E.; Mlinarič-Raščan, I. The immunopathogenesis of a cytokine storm: The key mechanisms underlying severe COVID-19. Cytokine Growth Factor Rev. 2025, 82, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Diamond, M.S.; Kanneganti, T.-D. Innate immunity: The first line of defense against SARS-CoV-2. Nat. Immunol. 2022, 23, 165–176. [Google Scholar] [CrossRef]
- Ombrello, M.J.; Schulert, G.S. COVID-19 and Cytokine Storm Syndrome: Are There Lessons From Macrophage Activation Syndrome? Transl. Res. 2021, 232, 1–12. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, C.; Zhan, H.; Yang, B.B.; Liu, J.B.; Rong, P.; Luo, Y.; Yang, J. Drug-induced Liver Injury in COVID-19 Patients During Hospitalization. Medicine 2023, 102, e33294. [Google Scholar] [CrossRef] [PubMed]
- Merad, M.; Martin, J.C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol. 2020, 20, 355–362. [Google Scholar] [CrossRef]
- Popescu, I.; Snyder, M.E.; Iasella, C.J.; Hannan, S.J.; Koshy, R.; Burke, R.; Das, A.; Brown, M.J.; Lyons, E.J.; Lieber, S.C.; et al. CD4+T-Cell Dysfunction in Severe COVID-19 Disease Is Tumor Necrosis Factor-α/Tumor Necrosis Factor Receptor 1–Dependent. Am. J. Respir. Crit. Care Med. 2022, 205, 1403–1418. [Google Scholar] [CrossRef]
- Paules, C.I.; Nordwall, J.A.; Shaw-Saliba, K.; Aberg, J.A.; Gardner, E.M.; Goodman, A.L.; Kumarasamy, N.; Vasudeva, S.; Vock, D.M.; North, C.M.; et al. Blood absolute lymphocyte count and trajectory are important in understanding severe COVID-19. BMC Infect. Dis. 2025, 25, 67. [Google Scholar] [CrossRef]
- Eaton-Fitch, N.; Rudd, P.; Er, T.; Hool, L.; Herrero, L.; Marshall-Gradisnik, S. Immune exhaustion in ME/CFS and long COVID. J. Clin. Investig. 2024, 9, e183810. [Google Scholar] [CrossRef]
- Gil, A.; Hoag, G.E.; Salerno, J.P.; Hornig, M.; Klimas, N.; Selin, L.K. Identification of CD8 T-cell dysfunction associated with symptoms in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and Long COVID and treatment with a nebulized antioxidant/anti-pathogen agent in a retrospective case series. Brain Behav. Immun. Health 2023, 36, 100720. [Google Scholar] [CrossRef]
- Rojas, M.; Herrán, M.; Ramírez-Santana, C.; Leung, P.S.; Anaya, J.-M.; Ridgway, W.M.; Gershwin, M.E. Molecular mimicry and autoimmunity in the time of COVID-19. J. Autoimmun. 2023, 139, 103070. [Google Scholar] [CrossRef]
- Sundaresan, B.; Shirafkan, F.; Ripperger, K.; Rattay, K. The Role of Viral Infections in the Onset of Autoimmune Diseases. Viruses 2023, 15, 782. [Google Scholar] [CrossRef]
- Pavia, G.; Quirino, A.; Marascio, N.; Veneziano, C.; Longhini, F.; Bruni, A.; Garofalo, E.; Pantanella, M.; Manno, M.; Gigliotti, S.; et al. Persistence of SARS-CoV-2 infection and viral intra- and inter-host evolution in COVID-19 hospitalized patients. J. Med. Virol. 2024, 96, e29708. [Google Scholar] [CrossRef] [PubMed]
- Laracy, J.C.; Kamboj, M.; Vardhana, S.A. Long and persistent COVID-19 in patients with hematologic malignancies: From bench to bedside. Curr. Opin. Infect. Dis. 2022, 35, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Tsao, T.; Buck, A.M.; Grimbert, L.; LaFranchi, B.H.; Poblano, B.A.; Fehrman, E.A.; Dalhuisen, T.; Hsue, P.Y.; Kelly, J.D.; Martin, J.N.; et al. Long COVID Is Associated with Lower Percentages of Mature, Cytotoxic NK Cell Phenotypes. J. Clin. Investig. 2024, 135, e188182. [Google Scholar] [CrossRef] [PubMed]
- Feldstein, L.R.; Tenforde, M.W.; Friedman, K.G.; Newhams, M.; Rose, E.B.; Dapul, H.; Soma, V.L.; Maddux, A.B.; Mourani, P.M.; Bowens, C.; et al. Characteristics and Outcomes of US Children and Adolescents with Multisystem Inflammatory Syndrome in Children (MIS-C) Compared with Severe Acute COVID-19. JAMA 2021, 325, 1074–1087. [Google Scholar] [CrossRef]
- Ashonibare, V.J.; Ashonibare, P.J.; Akhigbe, T.M.; Akhigbe, R.E.; Schlatt, S. SARS-CoV-2 impairs male fertility by targeting semen quality and testosterone level: A systematic review and meta-analysis. PLoS ONE 2024, 19, e0307396. [Google Scholar] [CrossRef]
- Delpino, F.M.; da Silva, C.N.; Jerônimo, J.S.; Mulling, E.S.; da Cunha, L.L.; Weymar, M.K.; Alt, R.; Caputo, E.L.; Feter, N. Prevalence of Anxiety During the COVID-19 Pandemic: A Systematic Review and Meta-analysis of Over 2 Million People. J. Affect. Disord. 2022, 318, 272–282. [Google Scholar] [CrossRef]
- de Figueiredo, C.S.; Sandre, P.C.; Portugal, L.C.L.; Mázala-De-Oliveira, T.; da Silva Chagas, L.; Raony, Í.; Ferreira, E.S.; Giestal-De-Araujo, E.; dos Santos, A.A.; Bomfim, P.O.-S. COVID-19 pandemic impact on children and adolescents’ mental health: Biological, environmental, and social factors. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 106, 110171. [Google Scholar] [CrossRef] [PubMed]
- Egbert, A.; Karpiak, S.; Havlik, R.; Cankurtaran, S.; Ozturk, S. Global Rise of Depression Prevalence Amid the COVID-19 Pandemic. Innov. Aging 2021, 5 (Suppl. 1), 407. [Google Scholar] [CrossRef]
- Ettman, C.K.; Abdalla, S.M.; Cohen, G.H.; Sampson, L.; Vivier, P.M.; Galea, S. Prevalence of Depression Symptoms in US Adults Before and During the COVID-19 Pandemic. JAMA Netw. Open 2020, 3, e2019686. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, T.; Li, Q.; Chen, X.; Wang, K. Depression and Anxiety During the COVID-19 Pandemic: Epidemiology, Mechanism, and Treatment. Neurosci. Bull. 2022, 39, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Xu, X.; Zhang, L.; Zheng, D.; Liu, Y.; Feng, B.; Hu, J.; Lin, Q.; Xi, X.; Wang, Q.; et al. Post-traumatic Stress Disorder Symptoms and Quality of Life of COVID-19 Survivors at 6-Month Follow-Up: A Cross-Sectional Observational Study. Front. Psychiatry 2022, 12, 782478. [Google Scholar] [CrossRef]
- Professor, M.A.; Rani, K.; Kalra, T.; Academician from Kurukshetra University Kurukshetra; Rani, M. Impact of COVID-19 on mind, body and soul. Int. J. Adv. Res. 2020, 8, 386–394. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Tsai, M.-J.; Lu, Y.-J.; Fuh, J.-L. The Neuropsychological Impacts of COVID-19 in Non-hospitalized Patients with Long COVID and Brain Fog. J. Chin. Med. Assoc. 2024, 88, 58–64. [Google Scholar] [CrossRef]
- Mallet, J.; Dubertret, C.; Le Strat, Y. Addictions in the COVID-19 Era: Current Evidence, Future Perspectives a Comprehensive Review. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 106, 110070. [Google Scholar] [CrossRef]
- Denning, M.; Goh, E.T.; Tan, B.; Kanneganti, A.; Almonte, M.; Scott, A.; Martin, G.; Clarke, J.; Sounderajah, V.; Markar, S.; et al. Determinants of Burnout and Other Aspects of Psychological Well-being in Healthcare Workers During the Covid-19 Pandemic: A Multinational Cross-sectional Study. PLoS ONE 2021, 16, e0238666. [Google Scholar] [CrossRef]
- Ojalehto, H.J.; Abramowitz, J.S.; Hellberg, S.N.; Butcher, M.W.; Buchholz, J.L. Predicting COVID-19-related Anxiety: The Role of Obsessive-compulsive Symptom Dimensions, Anxiety Sensitivity and Body Vigilance. J. Anxiety Disord. 2021, 83, 102460. [Google Scholar] [CrossRef] [PubMed]
- Ooi, L.L.; Liu, L.; Roberts, K.C.; Gariépy, G.; Capaldi, C.A. Social Isolation, Loneliness and Positive Mental Health Among Older Adults in Canada During the COVID-19 Pandemic. Health Promot. Chronic Dis. Prev. Can. 2023, 43, 171–181. [Google Scholar] [CrossRef]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef]
- Thakur, V.; Ratho, R.K.; Kumar, P.; Bhatia, S.K.; Bora, I.; Mohi, G.K.; Saxena, S.K.; Devi, M.; Yadav, D.; Mehariya, S. Multi-Organ Involvement in COVID-19: Beyond Pulmonary Manifestations. J. Clin. Med. 2021, 10, 446. [Google Scholar] [CrossRef] [PubMed]
- Afshar, Z.M.; Pirzaman, A.T.; Karim, B.; Anaraki, S.R.; Hosseinzadeh, R.; Pireivatlou, E.S.; Babazadeh, A.; Hosseinzadeh, D.; Miri, S.R.; Sio, T.T.; et al. SARS-CoV-2 Omicron (B.1.1.529) Variant: A Challenge with COVID-19. Diagnostics 2023, 13, 559. [Google Scholar] [CrossRef]
- Menni, C.; Valdes, A.M.; Polidori, L.; Antonelli, M.; Penamakuri, S.; Nogal, A.; Louca, P.; May, A.; Figueiredo, J.C.; Hu, C.; et al. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of omicron and delta variant dominance: A prospective observational study from the ZOE COVID Study. Lancet 2022, 399, 1618–1624. [Google Scholar] [CrossRef] [PubMed]
- Relan, P.; Motaze, N.V.; Kothari, K.; Askie, L.; Waroux, O.L.P.d.; Van Kerkhove, M.D.; Diaz, J.; Vijayaraghavan, B.K.T. Severity and outcomes of Omicron variant of SARS-CoV-2 compared to Delta variant and severity of Omicron sublineages: A systematic review and metanalysis. BMJ Glob. Health 2023, 8, e012328. [Google Scholar] [CrossRef]
- Hu, F.-H.; Jia, Y.-J.; Zhao, D.-Y.; Fu, X.-L.; Zhang, W.-Q.; Tang, W.; Hu, S.-Q.; Wu, H.; Ge, M.-W.; Du, W.; et al. Clinical outcomes of the severe acute respiratory syndrome coronavirus 2 Omicron and Delta variant: Systematic review and meta-analysis of 33 studies covering 6 037 144 coronavirus disease 2019–positive patients. Clin. Microbiol. Infect. 2023, 29, 835–844. [Google Scholar] [CrossRef]
- Nyberg, T.; Ferguson, N.M.; Nash, S.G.; Webster, H.H.; Flaxman, S.; Andrews, N.; Hinsley, W.; Bernal, J.L.; Kall, M.; Bhatt, S.; et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: A cohort study. Lancet 2022, 399, 1303–1312. [Google Scholar] [CrossRef]
- Tian, D.; Pan, Y.; Ge, Z.; Kong, X.; Zhang, Y.; Zhang, Q.; Wang, A.; Yang, P.; Chen, Z. Difference of Clinical Characteristics in Patients with Omicron and Delta Variants of SARS-CoV-2 in Beijing, China. Infect. Dis. Immun. 2023, 3, 75–82. [Google Scholar] [CrossRef]
- Lauring, A.S.; Tenforde, M.W.; Chappell, J.D.; Gaglani, M.; A Ginde, A.; McNeal, T.; Ghamande, S.; Douin, D.J.; Talbot, H.K.; Casey, J.D.; et al. Clinical severity of, and effectiveness of mRNA vaccines against, covid-19 from omicron, delta, and alpha SARS-CoV-2 variants in the United States: Prospective observational study. BMJ 2022, 376, e069761. [Google Scholar] [CrossRef] [PubMed]
- Sahin, A.; Karadag-Oncel, E.; Buyuksen, O.; Ekemen-Keles, Y.; Ustundag, G.; Elvan-Tuz, A.; Tasar, S.; Didinmez-Taskirdi, E.; Baykan, M.; Kara-Aksay, A.; et al. The diversity in the clinical features of children hospitalized with COVID-19 during the nonvariant, Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529) variant periods of SARS CoV-2: Caution for neurological symptoms in Omicron variant. J. Med. Virol. 2023, 95, e28628. [Google Scholar] [CrossRef]
- Ellul, M.A.; Benjamin, L.; Singh, B.; Lant, S.; Michael, B.D.; Easton, A.; Kneen, R.; Defres, S.; Sejvar, J.; Solomon, T. Neurological associations of COVID-19. Lancet Neurol. 2020, 19, 767–783. [Google Scholar] [CrossRef]
- Fernández-De-Las-Peñas, C.; Notarte, K.I.; Peligro, P.J.; Velasco, J.V.; Ocampo, M.J.; Henry, B.M.; Arendt-Nielsen, L.; Torres-Macho, J.; Plaza-Manzano, G. Long-COVID Symptoms in Individuals Infected with Different SARS-CoV-2 Variants of Concern: A Systematic Review of the Literature. Viruses 2022, 14, 2629. [Google Scholar] [CrossRef]
- Hernández-Aceituno, A.; García-Hernández, A.; Larumbe-Zabala, E. COVID-19 long-term sequelae: Omicron versus Alpha and Delta variants. Infect. Dis. Now 2023, 53, 104688. [Google Scholar] [CrossRef]
- Tziolos, N.-R.; Ioannou, P.; Baliou, S.; Kofteridis, D.P. Long COVID-19 Pathophysiology: What Do We Know So Far? Microorganisms 2023, 11, 2458. [Google Scholar] [CrossRef]
- Mistrulli, R.; Ferrera, A.; Muthukkattil, M.L.; Volpe, M.; Barbato, E.; Battistoni, A. SARS-CoV-2 Related Myocarditis: What We Know So Far. J. Clin. Med. 2023, 12, 4700. [Google Scholar] [CrossRef] [PubMed]
- Ursescu, C.; Teodoru, G.; Bucurica, S.; Nica, R.I.; Lazăr, Ș.D.; Popescu, M.N.; Ciobanu, I.; Berteanu, M. Using the ClinFIT COVID-19 Instrument to Assess the Functional Impairments Specific to Post-COVID-19 Patients in Romania. Diagnostics 2024, 14, 1540. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, S.; Zaheer, S. From COVID-19 to Long COVID: The Forms of the Neurological Manifestations. J. Mind Med. Sci. 2023, 10, 209–216. [Google Scholar] [CrossRef]
- Vasichkina, E.; Alekseeva, D.; Kudryavtsev, I.; Glushkova, A.; Starshinova, A.Y.; Malkova, A.; Kudlay, D.; Starshinova, A. COVID-19 Heart Lesions in Children: Clinical, Diagnostic and Immunological Changes. Int. J. Mol. Sci. 2023, 24, 1147. [Google Scholar] [CrossRef] [PubMed]
Organ System | Acute Manifestations | Long-Term Sequelae | Key Biomarkers | References |
---|---|---|---|---|
Pulmonary | • Pneumonia (78%) • ARDS (15–20%) • Silent hypoxemia (18–20%) • Ground-glass opacities (78%) | • Pulmonary fibrosis (15%) • Reduced DLCO • Exercise intolerance • Chronic cough | • D-dimer • IL-6 • CRP • Ferritin | [20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40] |
Cardiovascular | • Myocardial injury (28%) • Arrhythmias (16%) • Heart failure • Thromboembolism (11%) | • Chest pain • Palpitations • Autonomic dysfunction • Exercise intolerance | • Troponin • NT-proBNP • D-dimer • CK-MB | [41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62] |
Neurological | • Delirium (23% ICU) • Stroke (2.5–5.1%) • Anosmia (43%) • Ageusia (38%) • Encephalitis | • Brain fog (18%) • Cognitive impairment • Persistent anosmia/ageusia • Peripheral neuropathy | • MRI changes • EEG abnormalities • CSF markers | [63,64,65,66,67,68,69,70,71,72] |
Renal | • AKI (28% ICU, 12% ward) • Proteinuria (42%) • Hematuria (31%) | • CKD progression • Renal fibrosis • Dialysis dependence (9%) | • Creatinine • BUN • Proteinuria • eGFR | [73,74,75,76,77,78,79,80,81,82,83] |
Hepatic | • Elevated transaminases (38%) • Cholestasis • DILI | • Persistent enzyme elevation • Steatosis • Fibrosis | • AST/ALT • Bilirubin • ALP • GGT | [84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99] |
Gastrointestinal | • Diarrhea (24%) • Nausea/vomiting • Abdominal pain • Anorexia | • Dysbiosis • IBS-like symptoms • Persistent GI symptoms | • Fecal calprotectin • Viral RNA in stool | [100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115] |
Database | Records Identified | After Duplicates Removed | Full Text Reviewed | Included |
---|---|---|---|---|
PubMed | 567 | 498 | 98 | 62 |
Scopus | 492 | 441 | 89 | 62 |
Web of Science | 351 | 308 | 49 | 37 |
Total | 1410 | 1247 | 236 | 161 |
Study Type | Low Risk (%) | Moderate Risk (%) | High Risk (%) |
---|---|---|---|
Cohort Studies (n = 62) | 42 | 45 | 13 |
Case–Control (n = 31) | 35 | 48 | 17 |
Systematic Reviews (n = 28) | 46 | 43 | 11 |
Case Series (n = 26) | 31 | 46 | 23 |
Complication | Acute Phase Prevalence | 6-Month Prevalence | Key Features |
---|---|---|---|
Pneumonia | 78% | - | Bilateral ground-glass opacities |
ARDS | 15-20% | - | Severe hypoxemia, mechanical ventilation |
Silent hypoxemia | 18-20% | - | Low SpO2 without dyspnea |
Pulmonary fibrosis | - | 15% | Reduced lung capacity |
Reduced DLCO | Variable | 24% | Impaired gas exchange |
Exercise intolerance | - | 35% | Persistent dyspnea |
Manifestation | Prevalence | Pathophysiological Mechanism | Clinical Significance |
---|---|---|---|
Myocardial injury | 28% | Direct viral invasion, cytokine storm | Mortality risk |
Myocarditis | 7.2% (confirmed) | Inflammatory infiltration | Arrhythmias, sudden death |
Arrhythmias | 16% | Electrical instability, myocardial stress | ICU admission |
Thromboembolism | 11% | Hypercoagulable state, endothelial dysfunction | Anticoagulation needed |
Heart failure | Variable | Myocardial dysfunction, volume overload | Poor prognosis |
Takotsubo syndrome | <1% | Catecholamine surge, stress | Reversible dysfunction |
Category | Specific Manifestations | Prevalence | Mechanism |
---|---|---|---|
Sensory | Anosmia | 43% | Direct viral neurotropism |
Ageusia | 38% | Olfactory/gustatory nerve damage | |
Cognitive | Brain fog | 18% (6 months) | Neuroinflammation |
Delirium | 23% (ICU) | Hypoxia, cytokines | |
Vascular | Ischemic stroke | 2.5–5.1% | Coagulopathy, endothelial dysfunction |
Hemorrhagic stroke | <1% | Coagulopathy | |
Peripheral | Guillain-Barré syndrome | <1% | Autoimmune response |
Peripheral neuropathy | Variable | Direct viral/immune damage | |
Psychiatric | Depression | 23% | Multifactorial |
Anxiety | 22% | Psychological/biological | |
PTSD | 12% | Trauma response |
Manifestation | Prevalence | Risk Factors | Long-Term Outcome |
---|---|---|---|
AKI | 28% (ICU), 12% (ward) | Age, CKD, diabetes | Dialysis (9%) |
Proteinuria | 42% | Severity of illness | CKD progression |
Hematuria | 31% | Coagulopathy | Variable recovery |
Thrombotic microangiopathy | <5% | Severe COVID-19 | Poor prognosis |
System | Acute Manifestations | Prevalence | Long-Term Sequelae |
---|---|---|---|
Hepatic | Elevated AST/ALT | 38% | Persistent elevation (8%) |
Cholestasis | Variable | Chronic liver disease | |
DILI | 10–15% | Fibrosis risk | |
Gastrointestinal | Diarrhea | 24% | Dysbiosis |
Nausea/vomiting | 16% | IBS-like symptoms (16%) | |
Anorexia | 84% | Malnutrition | |
GI bleeding | <5% | Variable |
Pattern | Key Features | Biomarkers | Clinical Impact |
---|---|---|---|
Cytokine storm | Hyperinflammation | IL-6 > 100 pg/mL (72%) | ARDS, MOF |
MAS | Extreme inflammation | Ferritin > 10,000 | High mortality |
Lymphopenia | T/B cell depletion | ALC < 1000 | Secondary infections |
Immune exhaustion | T cell dysfunction | PD-1 expression | Viral persistence |
Autoimmunity | Molecular mimicry | Autoantibodies | GBS, SLE flares |
Variant | Key Features | Organ Predilection | Severity |
---|---|---|---|
Alpha (B.1.1.7) | Original symptom profile | Respiratory predominant | High |
Delta (B.1.617.2) | Severe respiratory involvement | Lower respiratory tract | Highest |
Omicron (B.1.1.529) | Upper airway symptoms | Upper respiratory tract | Lower (vaccinated) |
Reduced anosmia/ageusia | Less neurotropic | Variable |
Organ System | Acute Phase (%) | Long-Term (6 mo) (%) | Key Biomarkers | Severity Association |
---|---|---|---|---|
Pulmonary | 78 | 24 | DLCO, CT findings | High |
Cardiovascular | 32 | 11 | Troponin, NT-proBNP | High |
Neurological | 43 | 32 | MRI changes, EEG | Moderate |
Renal * | 28 | 35 | Creatinine, proteinuria | High |
Hepatic | 38 | 8 | AST, ALT, bilirubin | Moderate |
GI | 24 | 16 | Fecal calprotectin | Low–Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochilov, U.; Kholov, G.; Fayzulloyev, O.; Bobokalonov, O.; Naimova, S.; Akhmedova, N.; Ochilova, M.; Kutliyeva, M.; Kakharova, S. Silent Invasion: COVID-19′s Hidden Damage to Human Organs. COVID 2025, 5, 156. https://doi.org/10.3390/covid5090156
Ochilov U, Kholov G, Fayzulloyev O, Bobokalonov O, Naimova S, Akhmedova N, Ochilova M, Kutliyeva M, Kakharova S. Silent Invasion: COVID-19′s Hidden Damage to Human Organs. COVID. 2025; 5(9):156. https://doi.org/10.3390/covid5090156
Chicago/Turabian StyleOchilov, Ulugbek, Gulomjon Kholov, Otabek Fayzulloyev, Odilshoh Bobokalonov, Shokhida Naimova, Nilufar Akhmedova, Mehriniso Ochilova, Mukhayyo Kutliyeva, and Shakhlo Kakharova. 2025. "Silent Invasion: COVID-19′s Hidden Damage to Human Organs" COVID 5, no. 9: 156. https://doi.org/10.3390/covid5090156
APA StyleOchilov, U., Kholov, G., Fayzulloyev, O., Bobokalonov, O., Naimova, S., Akhmedova, N., Ochilova, M., Kutliyeva, M., & Kakharova, S. (2025). Silent Invasion: COVID-19′s Hidden Damage to Human Organs. COVID, 5(9), 156. https://doi.org/10.3390/covid5090156