Impact of Duration of Recovery from COVID-19 Infection on Physical Performance in Post-COVID-19 Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedure
2.3.1. Evaluation of Demographic Data
2.3.2. Evaluation of Symptomatology
2.3.3. Evaluation of Musculoskeletal Function Using the Handgrip Strength Test
2.3.4. Evaluation of Musculoskeletal Function Using the STS10
2.3.5. Evaluation of Cardiorespiratory Parameters Using the 6MWT
2.4. Statistical Analysis
3. Results
4. Discussion
Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nishiga, M.; Wang, D.W.; Han, Y.; Lewis, D.B.; Wu, J.C. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 2020, 17, 543–558. [Google Scholar] [CrossRef]
- Elseidy, S.A.; Awad, A.K.; Vorla, M.; Fatima, A.; Elbadawy, M.A.; Mandal, D.; Mohamad, T. Cardiovascular complications in the Post-Acute COVID-19 syndrome (PACS). Int. J. Cardiol. Heart Vasc. 2022, 40, 101012. [Google Scholar] [CrossRef] [PubMed]
- Maestre-Muñiz, M.M.; Arias, Á.; Mata-Vázquez, E.; Martín-Toledano, M.; López-Larramona, G.; Ruiz-Chicote, A.M.; Nieto-Sandoval, B.; Lucendo, A.J. Long-Term Outcomes of Patients with Coronavirus Disease 2019 at One Year after Hospital Discharge. J. Clin. Med. 2021, 10, 2945. [Google Scholar] [CrossRef] [PubMed]
- Rey, J.R.; Caro-Codón, J.; Rosillo, S.O.; Iniesta, Á.M.; Castrejón-Castrejón, S.; Marco-Clement, I.; Martín-Polo, L.; Merino-Argos, C.; Rodríguez-Sotelo, L.; García-Veas, J.M.; et al. Heart failure in COVID-19 patients: Prevalence, incidence and prognostic implications. Eur. J. Heart Fail. 2020, 22, 2205–2215. [Google Scholar] [CrossRef] [PubMed]
- Bonow, R.O.; O’Gara, P.T.; Yancy, C.W. Cardiology and COVID-19. JAMA 2020, 324, 1131–1132. [Google Scholar] [CrossRef]
- Bansal, M. Cardiovascular disease and COVID-19. Diabetes Metab. Syndr. 2020, 14, 247–250. [Google Scholar] [CrossRef]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in COVID-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef]
- Li, L.Q.; Huang, T.; Wang, Y.Q.; Wang, Z.P.; Liang, Y.; Huang, T.B.; Zhang, H.Y.; Sun, W.; Wang, Y. COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J. Med. Virol. 2020, 92, 577–583. [Google Scholar] [CrossRef]
- Van Aerde, N.; Van den Berghe, G.; Wilmer, A.; Gosselink, R.; Hermans, G. Intensive care unit acquired muscle weakness in COVID-19 patients. Intensive Care Med. 2020, 46, 2083–2085. [Google Scholar] [CrossRef]
- Ferrandi, P.J.; Alway, S.E.; Mohamed, J.S. The interaction between SARS-CoV-2 and ACE2 may have consequences for skeletal muscle viral susceptibility and myopathies. J. Appl. Physiol. 2020, 129, 864–867. [Google Scholar] [CrossRef]
- Qiu, J. Covert coronavirus infections could be seeding new outbreaks. Nature 2020. [Google Scholar] [CrossRef] [PubMed]
- Sungnak, W.; Huang, N.; Bécavin, C.; Berg, M.; Queen, R.; Litvinukova, M.; Talavera-López, C.; Maatz, H.; Reichart, D.; Sampaziotis, F.; et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 2020, 26, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Chan, J.F.; Wang, Y.; Yuen, T.T.; Chai, Y.; Hou, Y.; Shuai, H.; Yang, D.; Hu, B.; Huang, X.; et al. Comparative Replication and Immune Activation Profiles of SARS-CoV-2 and SARS-CoV in Human Lungs: An Ex Vivo Study with Implications for the Pathogenesis of COVID-19. Clin. Infect. Dis. 2020, 71, 1400–1409. [Google Scholar] [CrossRef] [PubMed]
- Amput, P.; Wongphon, S. Follow-Up of Cardiopulmonary Responses Using Submaximal Exercise Test in Older Adults with Post-COVID-19. Ann. Geriatr. Med. Res. 2024, 28, 476–483. [Google Scholar] [CrossRef]
- Amput, P.; Poncumhak, P.; Konsanit, S.; Wongphon, S. Comparison of cardiorespiratory parameters between 6-min walk test and 1-min sit to stand test in young adults with post-COVID-19: Follow-up 3 months. J. Thorac. Dis. 2024, 16, 3085–3095. [Google Scholar] [CrossRef]
- Rudroff, T.; Fietsam, A.C.; Deters, J.R.; Bryant, A.D.; Kamholz, J. Post-COVID-19 Fatigue: Potential Contributing Factors. Brain Sci. 2020, 10, 1012. [Google Scholar] [CrossRef]
- Santos-de-Araújo, A.D.; Bassi-Dibai, D.; Marinho, R.S.; Dourado, I.M.; de Almeida, L.V.; de Sousa Dos Santos, S.; Phillips, S.A.; Borghi-Silva, A. Impact of COVID-19 on heart rate variability in post-COVID individuals compared to a control group. Sci. Rep. 2024, 14, 31099. [Google Scholar] [CrossRef]
- Cascella, M.; Rajnik, M.; Aleem, A.; Dulebohn, S.C.; Di Napoli, R. Features, Evaluation, and Treatment of Coronavirus (COVID-19). In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. [Google Scholar]
- Seeßle, J.; Waterboer, T.; Hippchen, T.; Simon, J.; Kirchner, M.; Lim, A.; Müller, B.; Merle, U. Persistent Symptoms in Adult Patients 1 Year After Coronavirus Disease 2019 (COVID-19): A Prospective Cohort Study. Clin. Infect. Dis. 2022, 74, 1191–1198. [Google Scholar] [CrossRef]
- Segura-Ortí, E.; Martínez-Olmos, F.J. Test-retest reliability and minimal detectable change scores for sit-to-stand-to-sit tests, the six-minute walk test, the one-leg heel-rise test, and handgrip strength in people undergoing hemodialysis. Phys. Ther. 2011, 91, 1244–1252. [Google Scholar] [CrossRef]
- ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [CrossRef]
- Paneroni, M.; Simonelli, C.; Saleri, M.; Bertacchini, L.; Venturelli, M.; Troosters, T.; Ambrosino, N.; Vitacca, M. Muscle Strength and Physical Performance in Patients Without Previous Disabilities Recovering From COVID-19 Pneumonia. Am. J. Phys. Med. Rehabil. 2021, 100, 105–109. [Google Scholar] [CrossRef]
- Dickerson, E.; Revitt, O.; Houchen-Wolloff, L.; Singh, S.; Daynes, E. P224 Using the Sit to Stand tests to assess functional status and oxygen desaturations following COVID-19. BMJ Thorax 2022, 77, A203–A204. [Google Scholar]
- Núñez-Cortés, R.; Rivera-Lillo, G.; Arias-Campoverde, M.; Soto-García, D.; García-Palomera, R.; Torres-Castro, R. Use of sit-to-stand test to assess the physical capacity and exertional desaturation in patients post COVID-19. Chron. Respir. Dis. 2021, 18, 1479973121999205. [Google Scholar] [CrossRef]
Variables | Group 1 (n = 37; F = 21, M = 16) | Group 2 (n = 37; F = 21, M = 16) | Group 3 (n = 36; F = 17, M = 19) |
---|---|---|---|
Age (years) | 39.16 ± 18.44 | 44.38 ± 15.83 | 36.72 ± 16.99 |
Weight (kg) | 60.24 ± 7.47 | 55.22 ± 5.24 a | 59.94 ± 1.66 b |
Heigh (m) | 1.66 ± 0.08 | 1.60 ± 0.06 a | 1.66 ± 0.07 b |
BMI (kg/m2) | 21.70 ± 1.45 | 21.45 ± 1.78 | 21.47 ± 2.32 |
Variables | Group 1 | Group 2 | Group 3 |
---|---|---|---|
Handgrip strength test (kg) | 28.65 ± 5.21 | 24.03 ± 4.30 a | 26.97 ± 4.38 b |
STS10 (s) | 24.14 ± 3.83 | 26.30 ± 4.48 a | 25.53 ± 4.43 |
Distance of the 6MWT (meters) | 537.27 ± 39.90 | 503.32 ± 41.76 a | 541.89 ± 61.08 b |
Variables | Group 1 | Group 2 | Group 3 |
---|---|---|---|
Pre-HR (bpm) | 75.05 ± 6.75 | 81.03 ± 7.97 a | 81.89 ± 9.56 a |
Post-HR (bpm) | 110.35 ± 8.54 | 118.54 ± 8.51 a | 112.50 ± 10.64 b |
Pre-SBP (mmHg) | 132.86 ± 8.87 | 132.96 ± 5.60 | 124.94 ± 11.22 a,b |
Post-SBP (mmHg) | 142.35 ± 4.73 | 152.16 ± 10.59 a | 139.81 ± 6.24 b |
Pre-DBP (mmHg) | 78.08 ± 8.82 | 78.46 ± 5.14 | 74.92 ± 8.22 b |
Post-DBP (mmHg) | 81.22 ± 7.11 | 84.19 ± 3.70 a | 77.28 ± 7.46 a,b |
Pre-O2 sat (%) | 98.57 ± 0.50 | 98.27 ± 0.69 | 98.39 ± 0.60 |
Post-O2 sat (%) | 97.22 ± 0.63 | 96.89 ± 0.70 a | 97.08 ± 0.69 |
Post -RPE | 9.97 ± 1.21 | 10.46 ± 0.90 | 9.83 ± 1.25 b |
Post-leg fatigue | 2.95 ± 0.81 | 3.84 ± 0.83 a | 3.72 ± 0.91 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amput, P.; Udomkichpagon, P.; Wongphon, S. Impact of Duration of Recovery from COVID-19 Infection on Physical Performance in Post-COVID-19 Patients. COVID 2025, 5, 140. https://doi.org/10.3390/covid5080140
Amput P, Udomkichpagon P, Wongphon S. Impact of Duration of Recovery from COVID-19 Infection on Physical Performance in Post-COVID-19 Patients. COVID. 2025; 5(8):140. https://doi.org/10.3390/covid5080140
Chicago/Turabian StyleAmput, Patchareeya, Palagon Udomkichpagon, and Sirima Wongphon. 2025. "Impact of Duration of Recovery from COVID-19 Infection on Physical Performance in Post-COVID-19 Patients" COVID 5, no. 8: 140. https://doi.org/10.3390/covid5080140
APA StyleAmput, P., Udomkichpagon, P., & Wongphon, S. (2025). Impact of Duration of Recovery from COVID-19 Infection on Physical Performance in Post-COVID-19 Patients. COVID, 5(8), 140. https://doi.org/10.3390/covid5080140