Human Metapneumovirus Infection in Adults and Its Role in Differential Diagnosis of COVID-19
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Considerations
2.2. Patient Population and Data Collection
2.3. Sample Collection and Viral Panel Analysis
2.4. Definitions
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Niederman, M.S.; Torres, A. Respiratory infections. Eur. Respir. Rev. 2022, 31, 220150. [Google Scholar] [CrossRef]
- Esposito, S.; Noviello, S.; Pagliano, P. Update on treatment of COVID-19: Ongoing studies between promising and disappointing results. Infez. Med. 2020, 28, 198–211. [Google Scholar]
- Haas, L.E.M.; Thijsen, S.F.T.; van Elden, L.; Heemstra, K.A. Human metapneumovirus in adults. Viruses 2013, 5, 87–110. [Google Scholar] [CrossRef]
- van den Hoogen, B.G.; de Jong, J.C.; Groen, J.; Kuiken, T.; de Groot, R.; Fouchier, R.A.; Osterhaus, A.D. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat. Med. 2001, 7, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-C.; Bai, W.-Z.; Hashikawa, T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J. Med. Virol. 2020, 92, 552–555. [Google Scholar] [CrossRef] [PubMed]
- Jain, S. Epidemiology of Viral Pneumonia. Clin. Chest Med. 2017, 38, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Falsey, A.R.; Erdman, D.; Anderson, L.J.; Walsh, E.E. Human metapneumovirus infections in young and elderly adults. J. Infect. Dis. 2003, 187, 785–790. [Google Scholar] [CrossRef]
- Boivin, G.; De Serres, G.; Hamelin, M.-E.; Côté, S.; Argouin, M.; Tremblay, G.; Maranda-Aubut, R.; Sauvageau, C.; Ouakki, M.; Boulianne, N.; et al. An outbreak of severe respiratory tract infection due to human metapneumovirus in a long-term care facility. Clin. Infect. Dis. 2007, 44, 1152–1158. [Google Scholar] [CrossRef]
- Brittain-Long, R.; Nord, S.; Olofsson, S.; Westin, J.; Anderson, L.M.; Lindh, M. Multiplex real-time PCR for detection of respiratory tract infections. J. Clin. Virol. 2008, 41, 53–56. [Google Scholar] [CrossRef]
- Mercer, T.R.; Salit, M. Testing at scale during the COVID-19 pandemic. Nat. Rev. Genet. 2021, 22, 415–426. [Google Scholar] [CrossRef]
- Ruuskanen, O.; Lahti, E.; Jennings, L.C.; Murdoch, D.R. Viral pneumonia. Lancet 2011, 377, 1264–1275. [Google Scholar] [CrossRef] [PubMed]
- Salzberger, B.; Buder, F.; Lampl, B.; Ehrenstein, B.; Hitzenbichler, F.; Holzmann, T.; Schmidt, B. Epidemiology of SARS-CoV-2. Infection 2021, 49, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Greensill, J.; McNamara, P.S.; Dove, W.; Flanagan, B.; Smyth, R.L.; Hart, C.A. Human metapneumovirus in severe respiratory syncytial virus bronchiolitis. Emerg. Infect. Dis. 2003, 9, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Peiris, J.S.M.; Tang, W.-H.; Chan, K.-H.; Khong, P.-L.; Guan, Y.; Lau, Y.-L.; Chiu, S.-S. Children with respiratory disease associated with metapneumovirus in Hong Kong. Emerg. Infect. Dis. 2003, 9, 628–633. [Google Scholar] [CrossRef]
- Chow, E.J.; Uyeki, T.M.; Chu, H.Y. The effects of the COVID-19 pandemic on community respiratory virus activity. Nat. Rev. Microbiol. 2023, 21, 195–210. [Google Scholar] [CrossRef]
- Liu, P.; Xu, M.; Cao, L.; Su, L.; Lu, L.; Dong, N.; Jia, R.; Zhu, X. Impact of COVID-19 pandemic on the prevalence of respiratory viruses in children with lower respiratory tract infections in China. Virol. J. 2021, 18, 159. [Google Scholar] [CrossRef]
- Maltezou, H.C.; Papanikolopoulou, A.; Vassiliu, S.; Theodoridou, K.; Nikolopoulou, G.; Sipsas, N.V. COVID-19 and respiratory virus co-infections: A systematic review of the literature. Viruses 2023, 15, 865. [Google Scholar] [CrossRef]
- Pagliano, P.; Sellitto, C.; Conti, V.; Ascione, T.; Esposito, S. Characteristics of viral pneumonia in the COVID-19 era: An update. Infection 2021, 49, 607–616. [Google Scholar] [CrossRef]
- Kreger, J.E.; Hershenson, M.B. Effects of COVID-19 and Social Distancing on Rhinovirus Infections and Asthma Exacerbations. Viruses 2022, 14, 2340. [Google Scholar] [CrossRef]
- Mullins, J.A.; Erdman, D.D.; Weinberg, G.A.; Edwards, K.; Hall, C.B.; Walker, F.J.; Iwane, M.; Anderson, L.J. Human metapneumovirus infection among children hospitalized with acute respiratory illness. Emerg. Infect. Dis. 2004, 10, 700–705. [Google Scholar] [CrossRef]
- Williams, J.V.; Harris, P.A.; Tollefson, S.J.; Halburnt-Rush, L.L.; Pingsterhaus, J.M.; Edwards, K.M.; Wright, P.F.; Crowe, J.E., Jr. Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children. N. Engl. J. Med. 2004, 350, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Boivin, G.; Abed, Y.; Pelletier, G.; Ruel, L.; Moisan, D.; Côté, S.; Peret, T.C.T.; Erdman, D.D.; Anderson, L.J. Virological features and clinical manifestations associated with human metapneumovirus: A new paramyxovirus responsible for acute respiratory-tract infections in all age groups. J. Infect. Dis. 2002, 186, 1330–1334. [Google Scholar] [CrossRef] [PubMed]
- Widmer, K.; Zhu, Y.; Williams, J.V.; Griffin, M.R.; Edwards, K.M.; Talbot, H.K. Rates of hospitalizations for respiratory syncytial virus, human metapneumovirus, and influenza virus in older adults. J. Infect. Dis. 2012, 206, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Hermos, C.R.; Vargas, S.O.; McAdam, A.J. Human metapneumovirus. Clin. Lab. Med. 2010, 30, 131–148. [Google Scholar] [CrossRef]
- Sánchez Fernández, I.; Rebollo Polo, M.; Muñoz-Almagro, C.; Carretero, L.M.; Ureña, S.F.; Muñoz, A.R.; Roura, R.C.; Dueñas, B.P. Human Metapneumovirus in the Cerebrospinal Fluid of a Patient with Acute Encephalitis. Arch. Neurol. 2012, 69, 649–652. [Google Scholar] [CrossRef]
- Hamelin, M.E.; Côté, S.; Laforge, J.; Lampron, N.; Bourbeau, J.; Weiss, K.; Gilca, R.; DeSerres, G.; Boivin, G. Human metapneumovirus infection in adults with community-acquired pneumonia and exacerbation of chronic obstructive pulmonary disease. Clin. Infect. Dis. 2005, 41, 498–502. [Google Scholar] [CrossRef]
- Falsey, A.R. Human metapneumovirus infection in adults. Pediatr. Infect. Dis. J. 2008, 27, S80–S83. [Google Scholar] [CrossRef]
- Lüsebrink, J.; Wiese, C.; Thiel, A.; Tillmann, R.L.; Ditt, V.; Mu, A.; Schildgen, O.; Schildgen, V. High seroprevalence of neutralizing capacity against human metapneumovirus in all age groups studied in Bonn, Germany. Clin. Vaccine Immunol. 2010, 17, 481–484. [Google Scholar] [CrossRef]
- Okamoto, M.; Sugawara, K.; Takashita, E.; Muraki, Y.; Hongo, S.; Nishimura, H.; Matsuzaki, Y. Longitudinal course of human metapneumovirus antibody titers and reinfection in healthy adults. J. Med. Virol. 2010, 82, 2092–2096. [Google Scholar] [CrossRef]
- Williams, J.V.; Tollefson, S.J.; Johnson, J.E.; Crowe, J.E., Jr. The cotton rat (Sigmodon hispidus) is a permissive small animal model of human metapneumovirus infection, pathogenesis, and protective immunity. J. Virol. 2005, 79, 10944–10951. [Google Scholar] [CrossRef]
- Kanji, J.N.; Zelyas, N.; Pabbaraju, K.; Granger, D.; Wong, A.; Murphy, S.A.; Buss, E.; MacDonald, C.; Berenger, B.M.; Diggle, M.A.; et al. Respiratory virus coinfections with severe acute respiratory coronavirus virus 2 (SARS-CoV-2) continue to be rare one year into the coronavirus disease 2019 (COVID-19) pandemic in Alberta, Canada (June 2020–May 2021). Infect. Control Hosp. Epidemiol. 2023, 44, 805–808. [Google Scholar] [CrossRef]
- Uhteg, K.; Amadi, A.; Forman, M.; Mostafa, H.H. Circulation of non-SARS-CoV-2 respiratory pathogens and coinfection with SARS-CoV-2 amid the COVID-19 pandemic. Open Forum Infect. Dis. 2022, 9, ofab618. [Google Scholar] [CrossRef] [PubMed]
- Alharthy, A.; Faqihi, F.; Karakitsos, D. SARS-CoV-2 Complicated by Sinusitis and Co-Infection with Human Metapneumovirus. RI Med. J. 2020, 103, 23–24. [Google Scholar]
- Eccles, R.; Weber, O. Common Cold; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Samransamruajkit, R.; Thanasugarn, W.; Prapphal, N.; Theamboonlers, A.; Poovorawan, Y. Human metapneumovirus in infants and young children in Thailand with lower respiratory tract infections; molecular characteristics and clinical presentations. J. Infect. 2006, 52, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Ebihara, T.; Endo, R.; Kikuta, H.; Ishiguro, N.; Ishiko, H.; Hara, M.; Takahashi, Y.; Kobayashi, K. Human metapneumovirus infection in Japanese children. J. Clin. Microbiol. 2004, 42, 126–132. [Google Scholar] [CrossRef]
- Ebihara, T.; Endo, R.; Kikuta, H.; Ishiguro, N.; Yoshioka, M.; Ma, X.; Kobayashi, K. Seroprevalence of human metapneumovirus in Japan. J. Med. Virol. 2003, 70, 281–283. [Google Scholar] [CrossRef]
- Hamelin, M.-E.; Boivin, G. Development and validation of an enzyme-linked immunosorbent assay for human metapneumovirus serology based on a recombinant viral protein. Clin. Diagn. Lab. Immunol. 2005, 12, 249–253. [Google Scholar] [CrossRef]
- Mackay, I.M.; Jacob, K.C.; Woolhouse, D.; Waller, K.; Syrmis, M.W.; Whiley, D.M.; Siebert, D.J.; Nissen, M.; Sloots, T.P. Molecular assays for detection of human metapneumovirus. J. Clin. Microbiol. 2003, 41, 100–105. [Google Scholar] [CrossRef]
- McKimm-Breschkin, J.L.; Hay, A.J.; Cao, B.; Cox, R.J.; Dunning, J.; Moen, A.C.; Olson, D.; Pizzorno, A.; Hayden, F.G. COVID-19, Influenza and RSV: Surveillance-informed prevention and treatment—Meeting report from an isirv-WHO virtual conference. Antiviral Res. 2022, 197, 105227. [Google Scholar] [CrossRef]
- Li, H.; Yang, S.-G.; Gu, L.; Zhang, Y.; Yan, X.-X.; Liang, Z.-A.; Zhang, W.; Jia, H.-Y.; Chen, W.; Liu, M.; et al. Effect of low-to-moderate-dose corticosteroids on mortality of hospitalized adolescents and adults with influenza A(H1N1)pdm09 viral pneumonia. Influenza Other Respi. Viruses 2017, 11, 345–354. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Dexamethasone, A.U.; et al. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar]
- Liu, X.; Cao, W.; Li, T. High-Dose Intravenous Immunoglobulins in the Treatment of Severe Acute Viral Pneumonia: The Known Mechanisms and Clinical Effects. Front. Immunol. 2020, 11, 1660. [Google Scholar] [CrossRef] [PubMed]
- The IMpact-RSV Study Group. Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. Pediatrics 1998, 102, 531–537. [Google Scholar] [CrossRef]
- Schuster, J.E.; Williams, J.V. Human Metapneumovirus. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef] [PubMed]
- Skiadopoulos, M.H.; Biacchesi, S.; Buchholz, U.J.; Amaro-Carambot, E.; Surman, S.R.; Collins, P.L.; Murphy, B.R. Individual contributions of the human metapneumovirus F, G, and SH surface glycoproteins to the induction of neutralizing antibodies and protective immunity. Virology 2006, 345, 492–501. [Google Scholar] [CrossRef] [PubMed]
Number of Positive Viral Tests in Adults, n | 644 |
---|---|
Positive viral results, n (%) | |
HMPV | 50 (8.7) |
Adenovirus | 26 (4.0) |
Parainfluenza Virus 1 | 11 (1.7) |
Parainfluenza Virus 2 | 12 (1.9) |
Parainfluenza Virus 3 | 33 (5.1) |
Parainfluenza Virus 4 | 12 (1.9) |
Influenza A (H1; H3) | 137 (21.3) |
Influenza A (Type H1N1) | 3 (0.5) |
Influenza B | 16 (2.5) |
Respiratory Syncytial Virus | 62 (9.6) |
Rhinovirus | 113 (17.5) |
SARS-CoV-2 | 170 (26.4) |
Coronavirus 229E | 18 (2.8) |
Coronavirus HKU1 | 11 (1.7) |
Coronavirus OC43 | 10 (1.6) |
Coronavirus NL63 | 7 (1.1) |
Bocavirus | 3 (0.5) |
Patients, n = 50 | |
---|---|
Age, mean (range) | 52.14 (18–90) |
Gender, n (%) | |
Male | 18 (36.0) |
Female | 32 (64.0) |
Comorbidities, n (%) | |
Cancer | 6 (12.0) |
Diabetes mellitus | 5 (10.0) |
Chronic lung disease | 4 (8.0) |
Hypertension | 12 (24.0) |
Ischemic heart disease | 3 (6.0) |
No comorbidities | 26 (52.0) |
Clinical presentation, n (%) | |
Fever | 6 (12.0) |
Weakness | 17 (34.0) |
Upper respiratory symptoms | 6 (12.0) |
Lower respiratory symptoms | 8 (16.0) |
Gastrointestinal symptoms | 2 (4.0) |
Central nervous system | 5 (10.0) |
No symptoms | 2 (4.0) |
Hospital admission, n (%) | 17 (34.0) |
ICU admission, n (%) | 9 (18.0) |
Antibiotic usage, n (%) | 20 (40.0) |
Laboratory findings at hospital admission | |
CRP (mg/L) | 49.91 (3–200) |
Procalcitonin (ng/mL) | 5.96 (0.02–40) |
Leucocyte count (×103/μL) | 8.31 (3.97–17.77) |
Lymphocyte count (×103/μL) | 1.52 (0.18–3.14) |
Patient Characteristics | Hospitalized n = 17 | Non-Hospitalized n = 33 | p |
---|---|---|---|
Age, mean | 55.53 (23–90) | 49 (18–81) | 0.252 |
Gender, n (%) | 0.195 | ||
Male | 8 (47.1) | 10 (30.3) | |
Female | 9 (52.9) | 23 (69.7) | |
Comorbidities, n (%) | |||
Cancer | 1 (5.9) | 5 (15.2) | 0.324 |
Diabetes mellitus | 3 (17.6) | 2 (6.1) | 0.209 |
Hypertension | 4 (12.1) | 6 (35.3) | 0.061 |
Ischemic heart disease | 0 (0.0) | 3 (17.6) | 0.035 |
Chronic lung disease | 3 (17.6) | 1 (3.0) | 0.108 |
Other diseases | 7 (41.2) | 5 (15.2) | 0.47 |
Clinical presentation, n (%) | |||
Fever | 3 (17.6) | 3 (9.1) | 0.326 |
Weakness | 5 (29.4) | 12 (36.4) | 0.434 |
Upper respiratory symptoms | 4 (23.5) | 2 (6.1) | 0.093 |
Lower respiratory symptoms | 6 (35.3) | 2 (6.1) | 0.013 |
Gastrointestinal symptoms | 0 (0.0) | 2 (6.1) | 0.431 |
Central nervous system | 4 (12.1) | 1 (5.9) | 0.440 |
No symptoms | 1 (5.9) | 1 (3.0) | 0.569 |
Antibiotic usage, n (%) | 13 (76.5) | 7 (21.2) | <0.001 |
Laboratory at the time of testing | |||
Leucocyte count (×103/μL) | 8.41 (3.97–17.77) | 8.19 (3.97–17.0) | 0.838 |
Lymphocyte count (×103/μL) | 1.18 (0.18–3.14) | 1.81 (0.27–2.0) | 0.06 |
Coinfections, n (%) | |||
Parainfluenza Virus 2 | 0 (0.0) | 1 (3.0) | 0.660 |
Influenza A | 2 (5.9) | 2 (6.1) | 0.736 |
Rhinovirus | 0 (0.0) | 1 (3.0) | 0.660 |
SARS-CoV-2 | 1 (5.9) | 0 (0.0) | 0.340 |
Outcomes | |
---|---|
Hospital admission | 17 (33.0) |
ICU admission | 9 (18.0) |
Infectious parameters | |
CRP (mg/L) | 49.91 (3–200) |
Procalcitonin (ng/mL) | 5.96 (0.02–40) |
Antibiotic usage, n (%) | 20 (40.0) |
Length of hospital stay, days, mean (min-max) | 19 (4-33) |
Chronic critical illness | 2 (11.7) |
Mortality | 1 (2.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dogan, L.; Yurtturan Uyar, N.; Kocagoz, S. Human Metapneumovirus Infection in Adults and Its Role in Differential Diagnosis of COVID-19. COVID 2025, 5, 137. https://doi.org/10.3390/covid5080137
Dogan L, Yurtturan Uyar N, Kocagoz S. Human Metapneumovirus Infection in Adults and Its Role in Differential Diagnosis of COVID-19. COVID. 2025; 5(8):137. https://doi.org/10.3390/covid5080137
Chicago/Turabian StyleDogan, Lerzan, Neval Yurtturan Uyar, and Sesin Kocagoz. 2025. "Human Metapneumovirus Infection in Adults and Its Role in Differential Diagnosis of COVID-19" COVID 5, no. 8: 137. https://doi.org/10.3390/covid5080137
APA StyleDogan, L., Yurtturan Uyar, N., & Kocagoz, S. (2025). Human Metapneumovirus Infection in Adults and Its Role in Differential Diagnosis of COVID-19. COVID, 5(8), 137. https://doi.org/10.3390/covid5080137