Therapeutic Monitoring of Post-COVID-19 Cognitive Impairment Through Novel Brain Function Assessment
Abstract
1. Introduction
Justification of the Approach
- (1)
- Brain signatures can be directly read using fMRI or, more conveniently, fNIR. This allows for the independent confirmation of the data, avoiding circular reasoning in behavioral tests. Indeed, the fMRI BOLD signal (or the fNIR signal) is an emerging property of the brain, indexing an average of synaptic and dendritic activity and not neuronal spikes [26,27].
- (2)
- There are an infinite number of ways to discretize behavior into a relatively small set of scores for different “cognitive domains”. By mapping the anchoring behavioral scores into brain regions, we pick out a canonical coordinate system imposed by neurobiology, which removes the arbitrariness of the decomposition of behavior. The new representation is physiologically grounded, may identify subtle differences among subjects (e.g., two patients may have an “executive dysfunction” score but different brain region mapping), and, potentially, might indicate the best neurostimulation programs or pharmacological interventions. Furthermore, spatial maps align naturally with genetics, connectomics, lesion data, and electrophysiology, which may provide further prediction ability in the mapping.
- (3)
- Spatial maps may improve behavioral prediction: one of the “aims” of behavioral studies is to predict the future behavior or the next behavioral trajectory, given the previous states:
2. Materials and Methods
3. Results
4. Discussion
Limitations of the Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ortiz-Prado, E.; Simbaña-Rivera, K.; Gómez-Barreno, L.; Rubio-Neira, M.; Guaman, L.P.; Kyriakidis, N.C.; Muslin, C.; Jaramillo, A.M.G.; Barba-Ostria, C.; Cevallos-Robalino, D.; et al. Clinical, molecular, and epidemiological characterization of the SARS-CoV-2 virus and the Coronavirus Disease 2019 (COVID-19), a comprehensive literature review. Diagn. Microbiol. Infect. Dis. 2020, 98, 115094. [Google Scholar] [CrossRef]
- Méndez, R.; Balanzá-Martínez, V.; Luperdi, S.C.; Estrada, I.; Latorre, A.; González-Jiménez, P.; Feced, L.; Bouzas, L.; Yépez, K.; Ferrando, A.; et al. Short-term neuropsychiatric outcomes and quality of life in COVID-19 survivors. J. Intern. Med. 2021, 290, 621–631. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Z.; Zhang, Z.; Wang, Z.; Li, H. Cognitive impairment after long COVID-19: Current evidence and perspectives. Front. Neurol. 2023, 14, 1239182. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Yuan, M.; Dang, W.; Bai, L.; Yang, R.; Wang, J.; Ma, Y.; Liu, B.; Liu, S.; Zhang, S.; et al. Long term neuropsychiatric consequences in COVID-19 survivors: Cognitive impairment and inflammatory underpinnings fifteen months after discharge. Asian J. Psychiatr. 2023, 80, 103409. [Google Scholar] [CrossRef] [PubMed]
- van Kessel, S.A.M.; Olde Hartman, T.C.; Lucassen, P.L.B.J.; van Jaarsveld, C.H.M. Post-acute and long-COVID-19 symptoms in patients with mild diseases: A systematic review. Fam. Pract. 2022, 39, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef]
- Perruolo, G.; Viggiano, D.; Fiory, F.; Cassese, A.; Nigro, C.; Liotti, A.; Miele, C.; Beguinot, F.; Formisano, P. Parkinson-like phenotype in insulin-resistant PED/PEA-15 transgenic mice. Sci. Rep. 2016, 6, 29967. [Google Scholar] [CrossRef]
- Uswatte, G.; Taub, E.; Ball, K.; Mitchell, B.S.; Blake, J.A.; McKay, S.; Biney, F.; Iosipchuk, O.; Hempfling, P.; Harris, E.; et al. Long COVID brain fog treatment: An early-phase randomized controlled trial of constraint-induced cognitive therapy signals go. Rehabil. Psychol. 2025. ahead of print. [Google Scholar] [CrossRef]
- Gorenshtein, A.; Liba, T.; Leibovitch, L.; Stern, S.; Stern, Y. Intervention modalities for brain fog caused by long-COVID: Systematic review of the literature. Neurol. Sci. 2024, 45, 2951–2968. [Google Scholar] [CrossRef]
- Jia, G.; Su, C.-H. Tailored Physical Activity Interventions for Long COVID: Current Approaches and Benefits—A Narrative Review. Healthcare 2024, 12, 1539. [Google Scholar] [CrossRef]
- Butzin-Dozier, Z.; Ji, Y.; Deshpande, S.; Hurwitz, E.; Anzalone, A.J.; Coyle, J.; Shi, J.; Mertens, A.; van der Laan, M.J.; Colford, J.M.; et al. SSRI use during acute COVID-19 and risk of Long COVID among patients with depression. BMC Med. 2024, 22, 445. [Google Scholar] [CrossRef]
- Bertuccelli, M.; Ciringione, L.; Rubega, M.; Bisiacchi, P.; Masiero, S.; Del Felice, A. Cognitive impairment in people with previous COVID-19 infection: A scoping review. Cortex 2022, 154, 212–230. [Google Scholar] [CrossRef] [PubMed]
- Nasir, S.M.; Yahya, N.; Manan, H.A. Functional brain alterations in COVID-19 patients using resting-state fMRI: A systematic review. Brain Imaging Behav. 2024, 18, 1582–1601. [Google Scholar] [CrossRef]
- Vanderheiden, A.; Klein, R.S. Neuroinflammation and COVID-19. Curr. Opin. Neurobiol. 2022, 76, 102608. [Google Scholar] [CrossRef]
- Bahl, E.; Koomar, T.; Michaelson, J.J. cerebroViz: An R package for anatomical visualization of spatiotemporal brain data. Bioinformatics 2017, 33, 762–763. [Google Scholar] [CrossRef]
- Caglar, L.R.; Walbrin, J.; Akwayena, E.; Almeida, J.; Mahon, B.Z. Object-directed action representations are componentially built in parietal cortex. Proc. Natl. Acad. Sci. USA 2025, 122, e2421032122. [Google Scholar] [CrossRef]
- Kluger, D.S.; Allen, M.G.; Gross, J. Brain–body states embody complex temporal dynamics. Trends Cogn. Sci. 2024, 28, 695–698. [Google Scholar] [CrossRef]
- Padulo, J.; Di Capua, R.; Viggiano, D. Pedaling time variability is increased in dropped riding position. Eur. J. Appl. Physiol. 2012, 112, 3161–3165. [Google Scholar] [CrossRef] [PubMed]
- Viggiano, D.; Speranza, L.; Crispino, M.; Bellenchi, G.C.; di Porzio, U.; Iemolo, A.; De Leonibus, E.; Volpicelli, F.; Perrone-Capano, C. Information content of dendritic spines after motor learning. Behav. Brain Res. 2018, 336, 256–260. [Google Scholar] [CrossRef]
- Cole, B.J. Is animal behaviour chaotic? Evidence from the activity of ants. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1991, 244, 253–259. [Google Scholar] [CrossRef]
- Richardson, G.; Dickinson, P.; Burman, O.H.P.; Pike, T.W. Unpredictable movement as an anti-predator strategy. Proc. R. Soc. B Biol. Sci. 2018, 285, 20181112. [Google Scholar] [CrossRef]
- Kennedy, A. The what, how, and why of naturalistic behavior. Curr. Opin. Neurobiol. 2022, 74, 102549. [Google Scholar] [CrossRef]
- Recanatesi, S.; Pereira-Obilinovic, U.; Murakami, M.; Mainen, Z.; Mazzucato, L. Metastable attractors explain the variable timing of stable behavioral action sequences. Neuron 2022, 110, 139–153.e9. [Google Scholar] [CrossRef]
- Inoue, K.; Nakajima, K.; Kuniyoshi, Y. Designing spontaneous behavioral switching via chaotic itinerancy. Sci. Adv. 2020, 6, eabb3989. [Google Scholar] [CrossRef]
- Maksymenko, D.; Turuta, O. Tokenization efficiency of current foundational large language models for the Ukrainian language. Front. Artif. Intell. 2025, 8, 1538165. [Google Scholar] [CrossRef]
- Logothetis, N.K. The underpinnings of the BOLD functional magnetic resonance imaging signal. J. Neurosci. 2003, 23, 3963–3971. [Google Scholar] [CrossRef] [PubMed]
- Engell, A.D.; Huettel, S.; McCarthy, G. The fMRI BOLD signal tracks electrophysiological spectral perturbations, not event-related potentials. NeuroImage 2012, 59, 2600–2606. [Google Scholar] [CrossRef]
- Becker, J.H.; Lin, J.J.; Doernberg, M.; Stone, K.; Navis, A.; Festa, J.R.; Wisnivesky, J.P. Assessment of Cognitive Function in Patients After COVID-19 Infection. JAMA Netw. Open 2021, 4, e2130645. [Google Scholar] [CrossRef] [PubMed]
- Graham, E.L.; Clark, J.R.; Orban, Z.S.; Lim, P.H.; Szymanski, A.L.; Taylor, C.; DiBiase, R.M.; Jia, D.T.; Balabanov, R.; Ho, S.U.; et al. Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized COVID-19 “long haulers”. Ann. Clin. Transl. Neurol. 2021, 8, 1073–1085. [Google Scholar] [CrossRef] [PubMed]
- Seifar, F.; Dinasarapu, A.R.; Jinnah, H.A. Uric Acid in Parkinson’s Disease: What Is the Connection? Mov. Disord. 2022, 37, 2173–2183. [Google Scholar] [CrossRef] [PubMed]
- Otani, N.; Hoshiyama, E.; Ouchi, M.; Takekawa, H.; Suzuki, K. Uric acid and neurological disease: A narrative review. Front. Neurol. 2023, 14, 1164756. [Google Scholar] [CrossRef] [PubMed]
- Viggiano, D.; Gigliotti, G.; Vallone, G.; Giammarino, A.; Nigro, M.; Capasso, G. Urate-Lowering Agents in Asymptomatic Hyperuricemia: Role of Urine Sediment Analysis and Musculoskeletal Ultrasound. Kidney Blood Press. Res. 2018, 43, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Maiuolo, J.; Oppedisano, F.; Gratteri, S.; Muscoli, C.; Mollace, V. Regulation of uric acid metabolism and excretion. Int. J. Cardiol. 2016, 213, 8–14. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, Y.; Gao, L.; Yu, M.; Jiang, L.; Zhu, Q. Association of red blood cell count, hemoglobin concentration, and inflammatory indices with cognitive impairment severity in Alzheimer’s disease. Sci. Rep. 2025, 15, 17425. [Google Scholar] [CrossRef]
- Nigro, M.; Viggiano, D.; Ragone, V.; Trabace, T.; di Palma, A.; Rossini, M.; Capasso, G.; Gesualdo, L.; Gigliotti, G. A cross-sectional study on the relationship between hematological data and quantitative morphological indices from kidney biopsies in different glomerular diseases. BMC Nephrol. 2018, 19, 62. [Google Scholar] [CrossRef]
- Dobre, M.; Gaussoin, S.A.; Bates, J.T.; Chonchol, M.B.; Cohen, D.L.; Hostetter, T.H.; Raphael, K.L.; Taylor, A.A.; Lerner, A.J.; Wright, J.T.; et al. Serum Bicarbonate Concentration and Cognitive Function in Hypertensive Adults. Clin. J. Am. Soc. Nephrol. 2018, 13, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Nieoullon, A. Dopamine and the regulation of cognition and attention. Prog. Neurobiol. 2002, 67, 53–83. [Google Scholar] [CrossRef] [PubMed]
- Felger, J.C.; Treadway, M.T. Inflammation Effects on Motivation and Motor Activity: Role of Dopamine. Neuropsychopharmacology 2017, 42, 216–241. [Google Scholar] [CrossRef]
- Deigendesch, N.; Sironi, L.; Kutza, M.; Wischnewski, S.; Fuchs, V.; Hench, J.; Frank, A.; Nienhold, R.; Mertz, K.D.; Cathomas, G.; et al. Correlates of critical illness-related encephalopathy predominate postmortem COVID-19 neuropathology. Acta Neuropathol. 2020, 140, 583–586. [Google Scholar] [CrossRef]
- Schneider, W.J.; Newman, D.A. Intelligence is multidimensional: Theoretical review and implications of specific cognitive abilities. Hum. Resour. Manag. Rev. 2015, 25, 12–27. [Google Scholar] [CrossRef]
- Kubu, C.S.; Frazier, T.; Lapin, B.; Naugle, R. An empirically based proposal to identify a short battery to detect neuropsychological impairment in a general adult practice. Clin. Neuropsychol. 2022, 36, 1405–1421. [Google Scholar] [CrossRef] [PubMed]
Variable | Value |
---|---|
Age (years) | 58 ± 19 (median ± IQR) |
SBP (mmHg) | 133 ± 18 |
DBP (mmHg) | 76 ± 10 |
Urea (mg/dL) | 44 ± 24 |
Creatinine (mg/dL) | 1 ± 0.56 |
eGFR (mL/min) | 8 0 ± 31 |
Uric Acid (mg/dL) | 4.5 ± 1.3 |
Na (mEq/L) | 137 ± 2.1 |
K (mEq/L) | 4.1 ± 0.4 |
CRP (fold increase above normal value) | 13 ± 12 |
Hb (g/dL) | 13 ± 1.9 |
HCO3− | 26 ± 3.2 |
CT Score | 6 ± 4 |
P/F Ratio | 288 ± 96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buonincontri, V.; Fiorito, C.; Viggiano, D.; Boccellino, M.; Romano, C.P. Therapeutic Monitoring of Post-COVID-19 Cognitive Impairment Through Novel Brain Function Assessment. COVID 2025, 5, 166. https://doi.org/10.3390/covid5100166
Buonincontri V, Fiorito C, Viggiano D, Boccellino M, Romano CP. Therapeutic Monitoring of Post-COVID-19 Cognitive Impairment Through Novel Brain Function Assessment. COVID. 2025; 5(10):166. https://doi.org/10.3390/covid5100166
Chicago/Turabian StyleBuonincontri, Veronica, Chiara Fiorito, Davide Viggiano, Mariarosaria Boccellino, and Ciro Pasquale Romano. 2025. "Therapeutic Monitoring of Post-COVID-19 Cognitive Impairment Through Novel Brain Function Assessment" COVID 5, no. 10: 166. https://doi.org/10.3390/covid5100166
APA StyleBuonincontri, V., Fiorito, C., Viggiano, D., Boccellino, M., & Romano, C. P. (2025). Therapeutic Monitoring of Post-COVID-19 Cognitive Impairment Through Novel Brain Function Assessment. COVID, 5(10), 166. https://doi.org/10.3390/covid5100166