MMS19 and IFIH1 Host Genetic Variants Associate with SARS-CoV-2 Infection in Elderly Residents of Long-Term Care Facilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Ethics
2.3. Single-Nucleotide Polymorphism Genotyping
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Levin, A.T.; Hanage, W.P.; Owusu-Boaitey, N.; Cochran, K.B.; Walsh, S.P.; Meyerowitz-Katz, G. Assessing the age specificity of infection fatality rates for COVID-19: Systematic review, meta-analysis, and public policy implications. Eur. J. Epidemiol. 2020, 35, 1123–1138. [Google Scholar] [CrossRef] [PubMed]
- Meis-Pinheiro, U.; Lopez-Segui, F.; Walsh, S.; Ussi, A.; Santaeugenia, S.; Garcia-Navarro, J.A.; San-Jose, A.; Andreu, A.L.; Campins, M.; Almirante, B. Clinical characteristics of COVID-19 in older adults. A retrospective study in long-term nursing homes in Catalonia. PLoS ONE 2021, 16, e0255141. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Alhambra, D.; Balló, E.; Coma, E.; Mora, N.; Aragón, M.; Prats-Uribe, A.; Fina, F.; Benítez, M.; Guiriguet, C.; Fàbregas, M.; et al. Filling the gaps in the characterization of the clinical management of COVID-19: 30-day hospital admission and fatality rates in a cohort of 118 150 cases diagnosed in outpatient settings in Spain. Int. J. Epidemiol. 2020, 49, 1930–1939. [Google Scholar] [CrossRef] [PubMed]
- Bar-On, Y.M.; Goldberg, Y.; Mandel, M.; Bodenheimer, O.; Freedman, L.; Kalkstein, N.; Mizrahi, B.; Alroy-Preis, S.; Ash, N.; Milo, R.; et al. Protection of BNT162b2 Vaccine Booster against Covid-19 in Israel. N. Engl. J. Med. 2021, 385, 1393–1400. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, J.E.; Kosmicki, J.A.; Damask, A.; Sharma, D.; Roberts, G.H.L.; Justice, A.E.; Banerjee, N.; Coignet, M.V.; Yadav, A.; Leader, J.B.; et al. Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease. Nat. Genet. 2022, 54, 382–392. [Google Scholar] [CrossRef]
- Hu, J.; Li, C.; Wang, S.; Li, T.; Zhang, H. Genetic variants are identified to increase risk of COVID-19 related mortality from UK Biobank data. Hum. Genom. 2021, 15, 10. [Google Scholar] [CrossRef]
- Namkoong, H.; Edahiro, R.; Takano, T.; Nishihara, H.; Shirai, Y.; Sonehara, K.; Tanaka, H.; Azekawa, S.; Mikami, Y.; Lee, H.; et al. DOCK2 is involved in the host genetics and biology of severe COVID-19. Nature 2022, 609, 754–760. [Google Scholar] [CrossRef]
- Zeberg, H.; Pääbo, S. A genomic region associated with protection against severe COVID-19 is inherited from Neandertals. Proc. Natl. Acad. Sci. USA 2021, 118, e2026309118. [Google Scholar] [CrossRef]
- Zeberg, H.; Pääbo, S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature 2020, 587, 610–612. [Google Scholar] [CrossRef]
- Zhou, S.; Butler-Laporte, G.; Nakanishi, T.; Morrison, D.R.; Afilalo, J.; Afilalo, M.; Laurent, L.; Pietzner, M.; Kerrison, N.; Zhao, K.; et al. A Neanderthal OAS1 isoform protects individuals of European ancestry against COVID-19 susceptibility and severity. Nat. Med. 2021, 27, 659–667. [Google Scholar] [CrossRef]
- Niemi, M.E.K.; Daly, M.J.; Ganna, A. The human genetic epidemiology of COVID-19. Nat. Rev. Genet. 2022, 23, 533–546. [Google Scholar] [CrossRef]
- Pairo-Castineira, E.; Rawlik, K.; Bretherick, A.D.; Qi, T.; Wu, Y.; Nassiri, I.; McConkey, G.A.; Zechner, M.; Klaric, L.; Griffiths, F.; et al. GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19. Nature 2023, 617, 764–768. [Google Scholar] [CrossRef] [PubMed]
- Mathur, R.; Rentsch, C.T.; Morton, C.E.; Hulme, W.J.; Schultze, A.; MacKenna, B.; Eggo, R.M.; Bhaskaran, K.; Wong, A.Y.S.; Williamson, E.J.; et al. Ethnic differences in SARS-CoV-2 infection and COVID-19-related hospitalisation, intensive care unit admission, and death in 17 million adults in England: An observational cohort study using the OpenSAFELY platform. Lancet 2021, 397, 1711–1724. [Google Scholar] [CrossRef]
- Wu, P.; Ding, L.; Li, X.; Liu, S.; Cheng, F.; He, Q.; Xiao, M.; Wu, P.; Hou, H.; Jiang, M.; et al. Trans-ethnic genome-wide association study of severe COVID-19. Commun. Biol. 2021, 4, 1034. [Google Scholar] [CrossRef]
- Trigueros, M.; Pradenas, E.; Palacin, D.; Munoz-Lopez, F.; Avila-Nieto, C.; Trinite, B.; Bonet-Simo, J.M.; Isnard, M.; Moreno, N.; Marfil, S.; et al. Reduced humoral response 3 months following BNT162b2 vaccination in SARS-CoV-2 uninfected residents of long-term care facilities. Age Ageing 2022, 51, afac101. [Google Scholar] [CrossRef]
- Torti, S.V.; Torti, F.M. Iron and cancer: More ore to be mined. Nat. Rev. Cancer 2013, 13, 342–355. [Google Scholar] [CrossRef]
- Pujantell, M.; Franco, S.; Galván-Femenía, I.; Badia, R.; Castellví, M.; Garcia-Vidal, E.; Clotet, B.; de Cid, R.; Tural, C.; Martínez, M.A.; et al. ADAR1 affects HCV infection by modulating innate immune response. Antivir. Res. 2018, 156, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Franco, S.; Horneros, J.; Soldevila, L.; Ouchi, D.; Galván-Femenía, I.; de Cid, R.; Tenesa, M.; Bechini, J.; Perez, R.; Llibre, J.M.; et al. Single nucleotide polymorphisms in PNPLA3, ADAR-1, and IFIH1 are associated with advanced liver fibrosis in patients co-infected with HIV-1/HCV. AIDS 2021, 35, 2497–2502. [Google Scholar] [CrossRef]
- Ribero, M.S.; Jouvenet, N.; Dreux, M.; Nisole, S. Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathog. 2020, 16, e1008737. [Google Scholar] [CrossRef]
- Solé, X.; Guinó, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef] [PubMed]
- Maio, N.; Lafont, B.A.P.; Sil, D.; Li, Y.; Bollinger, J.M.; Krebs, C.; Pierson, T.C.; Linehan, W.M.; Rouault, T.A. Fe-S cofactors in the SARS-CoV-2 RNA-dependent RNA polymerase are potential antiviral targets. Science 2021, 373, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Maio, N.; Raza, K.; Li, Y.; Zhang, D.-L.; Bollinger, J.M.; Krebs, C.; Rouault, T.A. An iron–sulfur cluster in the zinc-binding domain of the SARS-CoV-2 helicase modulates its RNA-binding and -unwinding activities. Proc. Natl. Acad. Sci. USA 2023, 120, e2303860120. [Google Scholar] [CrossRef] [PubMed]
- Maiti, A.K. The African-American population with a low allele frequency of SNP rs1990760 (T allele) in IFIH1 predicts less IFN-beta expression and potential vulnerability to COVID-19 infection. Immunogenetics 2020, 72, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Amado-Rodríguez, L.; del Riego, E.S.; de Ona, J.G.; Alonso, I.L.; Gil-Pena, H.; López-Martínez, C.; Martín-Vicente, P.; Lopez-Vazquez, A.; Lopez, A.G.; Cuesta-Llavona, E.; et al. Effects of IFIH1 rs1990760 variants on systemic inflammation and outcome in critically ill COVID-19 patients in an observational translational study. eLife 2022, 11, e73012. [Google Scholar] [CrossRef]
- Della Mina, E.; Rodero, M.P.; Crow, Y.J. Polymorphisms in IFIH1: The good and the bad. Nat. Immunol. 2017, 18, 708–709. [Google Scholar] [CrossRef] [PubMed]
- Rüter, J.; Pallerla, S.R.; Meyer, C.G.; Casadei, N.; Sonnabend, M.; Peter, S.; Nurjadi, D.; Linh, L.T.K.; Fendel, R.; Göpel, S.; et al. Host genetic loci LZTFL1 and CCL2 associated with SARS-CoV-2 infection and severity of COVID-19. Int. J. Infect. Dis. 2022, 122, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Stehling, O.; Vashisht, A.A.; Mascarenhas, J.; Jonsson, Z.O.; Sharma, T.; Netz, D.J.A.; Pierik, A.J.; Wohlschlegel, J.A.; Lill, R. MMS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Science 2012, 337, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Weon, J.L.; Yang, S.W.; Potts, P.R. Cytosolic Iron-Sulfur Assembly Is Evolutionarily Tuned by a Cancer-Amplified Ubiquitin Ligase. Mol. Cell 2018, 69, 113–125.e6. [Google Scholar] [CrossRef]
- Moxley, K.; Benbrook, D.; Queimado, L.; Zuna, R.; Thompson, D.; McCumber, M.; Premkumar, P.; Thavathiru, E.; Hines, L.; Moore, K. The role of single nucleotide polymorphisms of the ERCC1 and MMS19 genes in predicting platinum-sensitivity, progression-free and overall survival in advanced epithelial ovarian cancer. Gynecol. Oncol. 2013, 130, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Karyakarte, R.P.; Das, R.; Rajmane, M.V.; Dudhate, S.; Agarasen, J.; Pillai, P.; Chandankhede, P.M.; Labhshetwar, R.S.; Gadiyal, Y.; Kulkarni, P.P.; et al. Chasing SARS-CoV-2 XBB.1.16 Recombinant Lineage in India and the Clinical Profile of XBB.1.16 Cases in Maharashtra, India. Cureus 2023, 15, e39816. [Google Scholar] [CrossRef] [PubMed]
- Callaway, E. COVID’s future: Mini-waves rather than seasonal surges. Nature 2023, 617, 229–230. [Google Scholar] [CrossRef] [PubMed]
SARS-CoV-2 Infected | SARS-CoV-2 Uninfected | p-Value | |
---|---|---|---|
N (%) | 81 (83.5) | 16 (16.5) | |
Age, years | 87 (81–90) | 80 (74–91) | 0.1668 |
Female | 65 (80.2) | 8 (50) | 0.0104 2 |
AGM level 1 | 0.1460 2 | ||
1 | 0 | 0 | |
2 | 4 | 3 | |
3 | 38 | 6 | |
4 | 39 | 7 | |
Albumin (g/L) | 37.55 (35.9–39.75) | 38.2 (36.93–39.5) | 0.2725 |
Alanine aminotransferase (U/L) | 11 (8.5–14) | 12.5 (9.25–17.75) | 0.3694 |
Aspartate aminotransferase (U/L) | 17 (14–20) | 18 (15.25–21.25) | 0.3431 |
Creatine kinase (U/L) | 42.5 (33.25–71) | 47 (34.5–73.25) | 0.7907 |
High-density lipoprotein (mg/dL) | 46.2 (40.73–56.53) | 42.4 (36–47.8) | 0.1135 |
Total cholesterol (mg/dL) | 193 (162–228) | 198.5 (131.8–230.8) | 0.6147 |
Creatinine mg/dL | 0.81 (0.675–1.035) | 0.82 (0.6925–1.25) | 0.8186 |
Alkaline phosphatase (U/L) | 78 (66.25–104) | 89 (72.25–112.8) | 0.2704 |
Ferritin (ng/mL) | 66.5 (34–144.3) | 108 (50–195.8) | 0.1604 |
Fibrinogen (mg/L) | 484 (415–539.5) | 471.5 (386.3–535.5) | 0.8820 |
Phosphate (mmol/L) | 3.4 (3.1–3.8) | 3.4 (3.225–3.6) | 0.9087 |
Gamma-glutamyltransferase (U/L) | 17 (13–26) | 25.5 (15–32) | 0.1615 |
Glucose (mg/dL) | 92 (83–106) | 111 (90–136) | 0.0329 |
Hematocrit (%) | 38.2 (35.55–40.35) | 37.25 (32.88–40.3) | 0.5044 |
Hemoglobin (g/dL) | 33.5 (33–34.1) | 33.95 (33.33–34.45) | 0.0891 |
Lactate dehydrogenase (U/L) | 171 (143.8–187.8) | 172.5 (156.5–192.5) | 0.7683 |
Leucocyte count (×109/L) | 6.2 (5–7) | 6.3 (4.97–7.8) | 0.8605 |
Lymphocyte count (×109/L) | 1.7 (1.35–2.05) | 1.75 (1.225–2.35) | 0.8263 |
Magnesium (mg/dL) | 2.06 (1.898–2.188) | 2.03 (1.893–2.115) | 0.2356 |
Platelet (×109/L) | 205 (168–249.5) | 180 (145.8–221.5) | 0.1236 |
Potassium (mmol/L) | 4.32 (4.153–4.53) | 4.39 (4.073–4.588) | 0.6842 |
Serum protein (g/L) | 65.95 (63.15–68.78) | 65.35 (61.18–68.98) | 0.7870 |
Sodium (mmol/L) | 140.9 (139.1–142) | 140 (138.6–141.6) | 0.2790 |
Prothrombin time (s) | 11.75 (11.2–12.4) | 11.8 (11.1–13.2) | 0.6207 |
Triglycerides (mg/dL) | 115.5 (81.5–148.8) | 111 (88.25–165.5) | 0.8935 |
Partial thromboplastin Time (s) | 30.05 (28.53–33.15) | 30.55 (28.8–35.68) | 0.3548 |
Urea (mg/dL) | 40 (34–51) | 43.5 (32–53) | 0.7094 |
SNP | Gene | Chr: pos | MAF | HW p-Value | Alleles | COVID-19 (n = 81) | Uninfected (n = 16) | OR (95% CI) | p-Value | p-Value Bootstrap | Model | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1/2 | 1/1 | 1/2 | 2/2 | 1/1 | 1/2 | 2/2 | |||||||||
rs1127313 | ADAR-1 | Chr1: 154583949 | 0.48 | 0.11 | G/A | 18 | 47 | 16 | 4 | 10 | 2 | 0.91 (0.25–3.34) | 0.89 | 0.98 | D |
rs1990760 | IFIH1 | Chr2: 162267541 | 0.43 | 0.84 | T/C | 28 | 35 | 18 | 4 | 11 | 1 | 3.57 (1.04–12.29) | 0.034 | 0.031 | OD |
rs2236575 | MMS19 | Chr10: 97465981 | 0.46 | 0.55 | T/A | 25 | 39 | 16 | 1 | 12 | 3 | 6.57 (0.80–53.87) | 0.029 | 0.046 | D |
rs4767027 | OAS-1 | Chr 12: 112921352 | 0.38 | 0.40 | C/T | 30 | 37 | 14 | 9 | 5 | 2 | 0.43 (0.14–1.33) | 0.14 | 0.14 | D |
rs10774671 | OAS-1 | Chr 12: 112919388 | 0.40 | 0.53 | A/G | 27 | 38 | 15 | 9 | 5 | 2 | 0.33 (0.10–1.07) | 0.061 | 0.050 | D |
rs1293767 | OAS-2 | Chr 12: 112987349 | 0.37 | 0.51 | G/C | 33 | 35 | 13 | 7 | 7 | 2 | 0.81 (0.26–2.49) | 0.71 | 0.65 | D |
rs10735079 | OAS-3 | Chr 12: 112942203 | 0.42 | 0.84 | A/G | 26 | 39 | 16 | 7 | 7 | 2 | 0.60 (0.19–1.90) | 0.39 | 0.40 | D |
rs12979860 | IFNL3 | Chr 19: 39248147 | 0.29 | 0.14 | C/T | 42 | 31 | 8 | 10 | 3 | 3 | 0.40 (0.10–1.58) | 0.17 | 0.19 | OD |
rs4803217 | IFNL3 | Chr 19: 39243580 | 0.27 | 0.44 | C/A | 43 | 31 | 7 | 10 | 4 | 2 | 0.51 (0.14–1.81) | 0.28 | 0.31 | OD |
rs1060555 | TNFAIP8L1 | Chr 19: 4652810 | 0.32 | 0.17 | C/G | 36 | 38 | 7 | 5 | 11 | 0 | 1.29 (0.38–4.35) | 0.68 | 0.71 | D |
rs2236757 | IFNAR2 | Chr 21: 33252612 | 0.30 | 0.09 | G/A | 41 | 28 | 11 | 10 | 5 | 1 | 0.41 (0.12–1.42) | 0.14 | 0.13 | D |
rs738409 | PNPLA3 | Chr 22: 43928847 | 0.24 | 1.00 | C/G | 48 | 28 | 5 | 7 | 9 | 0 | 2.16 (0.69–6.80) | 0.18 | 0.16 | D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco, S.; Trigueros, M.; Palacín, D.; Bonet-Simó, J.M.; Isnard, M.d.M.; Moreno, N.; Mateu, L.; Prat, N.; Massanella, M.; Martinez, M.A., on behalf of the CoronAVI@S [M1] Study. MMS19 and IFIH1 Host Genetic Variants Associate with SARS-CoV-2 Infection in Elderly Residents of Long-Term Care Facilities. COVID 2024, 4, 1245-1252. https://doi.org/10.3390/covid4080089
Franco S, Trigueros M, Palacín D, Bonet-Simó JM, Isnard MdM, Moreno N, Mateu L, Prat N, Massanella M, Martinez MA on behalf of the CoronAVI@S [M1] Study. MMS19 and IFIH1 Host Genetic Variants Associate with SARS-CoV-2 Infection in Elderly Residents of Long-Term Care Facilities. COVID. 2024; 4(8):1245-1252. https://doi.org/10.3390/covid4080089
Chicago/Turabian StyleFranco, Sandra, Macedonia Trigueros, Dolors Palacín, Josep Maria Bonet-Simó, Maria del Mar Isnard, Nemesio Moreno, Lourdes Mateu, Nuria Prat, Marta Massanella, and Miguel Angel Martinez on behalf of the CoronAVI@S [M1] Study. 2024. "MMS19 and IFIH1 Host Genetic Variants Associate with SARS-CoV-2 Infection in Elderly Residents of Long-Term Care Facilities" COVID 4, no. 8: 1245-1252. https://doi.org/10.3390/covid4080089
APA StyleFranco, S., Trigueros, M., Palacín, D., Bonet-Simó, J. M., Isnard, M. d. M., Moreno, N., Mateu, L., Prat, N., Massanella, M., & Martinez, M. A., on behalf of the CoronAVI@S [M1] Study. (2024). MMS19 and IFIH1 Host Genetic Variants Associate with SARS-CoV-2 Infection in Elderly Residents of Long-Term Care Facilities. COVID, 4(8), 1245-1252. https://doi.org/10.3390/covid4080089