COVID-2019—A Personal Account of an Academic Institute’s Response to the Pandemic
Abstract
:1. Introduction
1.1. The Pandemic Begins
1.2. Research Begins
1.3. Helping the Community
1.4. Unexpected Problems
1.5. Working with Industry
1.6. Vaccine Development and Availability
2. Lessons Learned
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Statement on the Second Meeting of the International Health Regulations (2005) Emergency Committee Regarding the Outbreak of Novel Coronavirus (2019-nCoV). Available online: https://www.who.int/news/item/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov) (accessed on 8 July 2024).
- World Health Organization. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 8 July 2024).
- McNamara, T.; Richt, J.A.; Glickman, L. A Critical Needs Assessment for Research in Companion Animals and Livestock Following the Pandemic of COVID-19 in Humans. Vector Borne Zoonotic Dis. 2020, 20, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Valdivia-Granda, W.A.; Richt, J.A. What We Need to Consider During and After the SARS-CoV-2 Pandemic. Vector Borne Zoonotic Dis. 2020, 20, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Arthropod Containment Guidelines, Version 3.2. Vector-Borne Zoonotic Dis. 2019, 19, 152–173. [CrossRef] [PubMed]
- Balaraman, V.; Drolet, B.S.; Gaudreault, N.N.; Wilson, W.C.; Owens, J.; Bold, D.; Swanson, D.A.; Jasperson, D.C.; Noronha, L.E.; Richt, J.A.; et al. Susceptibility of Midge and Mosquito Vectors to SARS-CoV-2. J. Med. Entomol. 2021, 58, 1948–1951. [Google Scholar] [CrossRef] [PubMed]
- Balaraman, V.; Drolet, B.S.; Mitzel, D.N.; Wilson, W.C.; Owens, J.; Gaudreault, N.N.; Meekins, D.A.; Bold, D.; Trujillo, J.D.; Noronha, L.E.; et al. Mechanical transmission of SARS-CoV-2 by house flies. Parasites Vectors 2021, 14, 214. [Google Scholar] [CrossRef] [PubMed]
- Kosciejew, M. A Documentary History of the Immunity (or Vaccine) Passport: Health Certificates of Public Health, Personal Identity and Power from the Plague to the Coronavirus Pandemic. Soc. Hist. Med. 2023, 36, 110–138. [Google Scholar] [CrossRef]
- Kwon, T.; Gaudreault, N.N.; Richt, J.A. Environmental Stability of SARS-CoV-2 on Different Types of Surfaces under Indoor and Seasonal Climate Conditions. Pathogens 2021, 10, 227. [Google Scholar] [CrossRef] [PubMed]
- Carossino, M.; Ip, H.S.; Richt, J.A.; Shultz, K.; Harper, K.; Loynachan, A.T.; Del Piero, F.; Balasuriya, U.B.R. Detection of SARS-CoV-2 by RNAscope((R)) in situ hybridization and immunohistochemistry techniques. Arch. Virol. 2020, 165, 2373–2377. [Google Scholar] [CrossRef]
- Gaudreault, N.N.; Trujillo, J.D.; Carossino, M.; Meekins, D.A.; Morozov, I.; Madden, D.W.; Indran, S.V.; Bold, D.; Balaraman, V.; Kwon, T.; et al. SARS-CoV-2 infection, disease and transmission in domestic cats. Emerg. Microbes Infect. 2020, 9, 2322–2332. [Google Scholar] [CrossRef]
- Huang, Y.S.; Vanlandingham, D.L.; Bilyeu, A.N.; Sharp, H.M.; Hettenbach, S.M.; Higgs, S. SARS-CoV-2 failure to infect or replicate in mosquitoes: An extreme challenge. Sci. Rep. 2020, 10, 11915. [Google Scholar] [CrossRef]
- Munoz-Fontela, C.; Dowling, W.E.; Funnell, S.G.P.; Gsell, P.S.; Riveros-Balta, A.X.; Albrecht, R.A.; Andersen, H.; Baric, R.S.; Carroll, M.W.; Cavaleri, M.; et al. Animal models for COVID-19. Nature 2020, 586, 509–515. [Google Scholar] [CrossRef]
- Meekins, D.A.; Morozov, I.; Trujillo, J.D.; Gaudreault, N.N.; Bold, D.; Carossino, M.; Artiaga, B.L.; Indran, S.V.; Kwon, T.; Balaraman, V.; et al. Susceptibility of swine cells and domestic pigs to SARS-CoV-2. Emerg. Microbes Infect. 2020, 9, 2278–2288. [Google Scholar] [CrossRef]
- Gaudreault, N.N.; Carossino, M.; Morozov, I.; Trujillo, J.D.; Meekins, D.A.; Madden, D.W.; Cool, K.; Artiaga, B.L.; McDowell, C.; Bold, D.; et al. Experimental re-infected cats do not transmit SARS-CoV-2. Emerg. Microbes Infect. 2021, 10, 638–650. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.S.Y.; Mok, B.W.; Campisi, L.; Jordan, T.; Yildiz, S.; Parameswaran, S.; Wayman, J.A.; Gaudreault, N.N.; Meekins, D.A.; Indran, S.V.; et al. TOP1 inhibition therapy protects against SARS-CoV-2-induced lethal inflammation. Cell 2021, 184, 2618–2632 e2617. [Google Scholar] [CrossRef]
- Huang, Y.S.; Bilyeu, A.N.; Hsu, W.W.; Hettenbach, S.M.; Willix, J.L.; Stewart, S.C.; Higgs, S.; Vanlandingham, D.L. Treatment with dry hydrogen peroxide accelerates the decay of severe acute syndrome coronavirus-2 on non-porous hard surfaces. Am. J. Infect. Control 2021, 49, 1252–1255. [Google Scholar] [CrossRef] [PubMed]
- Kwon, T.; Gaudreault, N.N.; Richt, J.A. Seasonal Stability of SARS-CoV-2 in Biological Fluids. Pathogens 2021, 10, 540. [Google Scholar] [CrossRef]
- Meekins, D.A.; Gaudreault, N.N.; Richt, J.A. Natural and Experimental SARS-CoV-2 Infection in Domestic and Wild Animals. Viruses 2021, 13, 1993. [Google Scholar] [CrossRef]
- Pardi, N.; Hogan, M.J.; Pelc, R.S.; Muramatsu, H.; Andersen, H.; DeMaso, C.R.; Dowd, K.A.; Sutherland, L.L.; Scearce, R.M.; Parks, R.; et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 2017, 543, 248–251. [Google Scholar] [CrossRef]
- Audino, T.; Berrone, E.; Grattarola, C.; Giorda, F.; Mattioda, V.; Martelli, W.; Pintore, A.; Terracciano, G.; Cocumelli, C.; Lucifora, G.; et al. Potential SARS-CoV-2 Susceptibility of Cetaceans Stranded along the Italian Coastline. Pathogens 2022, 11, 1096. [Google Scholar] [CrossRef] [PubMed]
- Bold, D.; Roman-Sosa, G.; Gaudreault, N.N.; Zayat, B.; Pogranichniy, R.M.; Richt, J.A. Development of an Indirect ELISA for the Detection of SARS-CoV-2 Antibodies in Cats. Front. Vet. Sci. 2022, 9, 864884. [Google Scholar] [CrossRef]
- Escalera, A.; Gonzalez-Reiche, A.S.; Aslam, S.; Mena, I.; Laporte, M.; Pearl, R.L.; Fossati, A.; Rathnasinghe, R.; Alshammary, H.; van de Guchte, A.; et al. Mutations in SARS-CoV-2 variants of concern link to increased spike cleavage and virus transmission. Cell Host Microbe 2022, 30, 373–387 e377. [Google Scholar] [CrossRef] [PubMed]
- Gaudreault, N.N.; Cool, K.; Trujillo, J.D.; Morozov, I.; Meekins, D.A.; McDowell, C.; Bold, D.; Carossino, M.; Balaraman, V.; Mitzel, D.; et al. Susceptibility of sheep to experimental co-infection with the ancestral lineage of SARS-CoV-2 and its alpha variant. Emerg. Microbes Infect. 2022, 11, 662–675. [Google Scholar] [CrossRef] [PubMed]
- Haddock, E.; Callison, J.; Seifert, S.N.; Okumura, A.; Tang-Huau, T.L.; Leventhal, S.S.; Lewis, M.C.; Lovaglio, J.; Hanley, P.W.; Shaia, C.; et al. Three-Week Old Pigs Are Not Susceptible to Productive Infection with SARS-COV-2. Microorganisms 2022, 10, 407. [Google Scholar] [CrossRef] [PubMed]
- Higgs, S.; Huang, Y.S.; Hettenbach, S.M.; Vanlandingham, D.L. SARS-CoV-2 and Arthropods: A Review. Viruses 2022, 14, 985. [Google Scholar] [CrossRef] [PubMed]
- Kleinerman, G.; Gross, S.; Topol, S.; Ariel, E.; Volokh, G.; Melloul, S.; Mergy, S.E.; Malamud, Y.; Gilboa, S.; Gal, Y.; et al. Low serological rate of SARS-CoV-2 in cats from military bases in Israel. Comp. Immunol. Microbiol. Infect. Dis. 2022, 90–91, 101905. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Fontela, C.; Widerspick, L.; Albrecht, R.A.; Beer, M.; Carroll, M.W.; de Wit, E.; Diamond, M.S.; Dowling, W.E.; Funnell, S.G.P.; Garcia-Sastre, A.; et al. Advances and gaps in SARS-CoV-2 infection models. PLoS Pathog. 2022, 18, e1010161. [Google Scholar] [CrossRef] [PubMed]
- Ozer, K.; Yilmaz, A.; Carossino, M.; Yuzbasioglu Ozturk, G.; Erdogan Bamac, O.; Tali, H.E.; Mahzunlar, E.; Cizmecigil, U.Y.; Aydin, O.; Tali, H.B.; et al. Clinical, virological, imaging and pathological findings in a SARS CoV-2 antibody positive cat. J. Vet. Sci. 2022, 23, e52. [Google Scholar] [CrossRef] [PubMed]
- Rathnasinghe, R.; Jangra, S.; Ye, C.; Cupic, A.; Singh, G.; Martinez-Romero, C.; Mulder, L.C.F.; Kehrer, T.; Yildiz, S.; Choi, A.; et al. Characterization of SARS-CoV-2 Spike mutations important for infection of mice and escape from human immune sera. Nat. Commun. 2022, 13, 3921. [Google Scholar] [CrossRef] [PubMed]
- Santa Maria, F.; Huang, Y.S.; Vanlandingham, D.L.; Bringmann, P. Inactivation of SARS-CoV-2 in All Blood Components Using Amotosalen/Ultraviolet A Light and Amustaline/Glutathione Pathogen Reduction Technologies. Pathogens 2022, 11, 521. [Google Scholar] [CrossRef]
- Vandegrift, K.J.; Yon, M.; Surendran Nair, M.; Gontu, A.; Ramasamy, S.; Amirthalingam, S.; Neerukonda, S.; Nissly, R.H.; Chothe, S.K.; Jakka, P.; et al. SARS-CoV-2 Omicron (B.1.1.529) Infection of Wild White-Tailed Deer in New York City. Viruses 2022, 14, 2770. [Google Scholar] [CrossRef]
- Vandegrift, K.J.; Yon, M.; Surendran-Nair, M.; Gontu, A.; Amirthalingam, S.; Nissly, R.H.; Levine, N.; Stuber, T.; DeNicola, A.J.; Boulanger, J.R.; et al. Detection of SARS-CoV-2 Omicron variant (B.1.1.529) infection of white-tailed deer. bioRxiv 2022. [Google Scholar] [CrossRef]
- Yilmaz, A.; Turan, N.; Kocazeybek, B.S.; Dinc, H.O.; Tali, H.E.; Aydin, O.; Tali, H.B.; Yilmaz, S.G.; Konukoglu, D.; Borekci, S.; et al. Development of in House ELISAs to Detect Antibodies to SARS-CoV-2 in Infected and Vaccinated Humans by Using Recombinant S, S1 and RBD Proteins. Diagnostics 2022, 12, 3085. [Google Scholar] [CrossRef] [PubMed]
- Cool, K.; Gaudreault, N.N.; Morozov, I.; Trujillo, J.D.; Meekins, D.A.; McDowell, C.; Carossino, M.; Bold, D.; Mitzel, D.; Kwon, T.; et al. Infection and transmission of ancestral SARS-CoV-2 and its alpha variant in pregnant white-tailed deer. Emerg. Microbes Infect. 2022, 11, 95–112. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Gaudreault, N.N.; Meekins, D.A.; Perera, K.D.; Bold, D.; Trujillo, J.D.; Morozov, I.; McDowell, C.D.; Chang, K.O.; Richt, J.A. Effects of Spike Mutations in SARS-CoV-2 Variants of Concern on Human or Animal ACE2-Mediated Virus Entry and Neutralization. Microbiol. Spectr. 2022, 10, e0178921. [Google Scholar] [CrossRef] [PubMed]
- Schirtzinger, E.E.; Kim, Y.; Davis, A.S. Improving human coronavirus OC43 (HCoV-OC43) research comparability in studies using HCoV-OC43 as a surrogate for SARS-CoV-2. J. Virol. Methods 2022, 299, 114317. [Google Scholar] [CrossRef] [PubMed]
- Burke, B.; Rocha, S.M.; Zhan, S.; Eckley, M.; Reasoner, C.; Addetia, A.; Lewis, J.; Fagre, A.; Charley, P.A.; Richt, J.A.; et al. Regulatory T cell-like response to SARS-CoV-2 in Jamaican fruit bats (Artibeus jamaicensis) transduced with human ACE2. PLoS Pathog. 2023, 19, e1011728. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Warner Jenkins, G.; Kim, Y.; Stanfield, R.L.; Singh, A.; Martinez-Yamout, M.; Kroon, G.J.; Torres, J.L.; Jackson, A.M.; Kelley, A.; et al. The smallest functional antibody fragment: Ultralong CDR H3 antibody knob regions potently neutralize SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2023, 120, e2303455120. [Google Scholar] [CrossRef] [PubMed]
- Kwon, T.; Gaudreault, N.N.; Cool, K.; McDowell, C.D.; Morozov, I.; Richt, J.A. Stability of SARS-CoV-2 in Biological Fluids of Animals. Viruses 2023, 15, 761. [Google Scholar] [CrossRef] [PubMed]
- Kwon, T.; Gaudreault, N.N.; Meekins, D.A.; McDowell, C.D.; Cool, K.; Richt, J.A. Ancestral Lineage of SARS-CoV-2 Is More Stable in Human Biological Fluids than Alpha, Beta, and Omicron Variants of Concern. Microbiol. Spectr. 2023, 11, e0330122. [Google Scholar] [CrossRef] [PubMed]
- Morozov, I.; Gaudreault, N.N.; Trujillo, J.D.; Indran, S.V.; Cool, K.; Kwon, T.; Meekins, D.A.; Balaraman, V.; Artiaga, B.L.; Madden, D.W.; et al. Preliminary Study on the Efficacy of a Recombinant, Subunit SARS-CoV-2 Animal Vaccine against Virulent SARS-CoV-2 Challenge in Cats. Vaccines 2023, 11, 1831. [Google Scholar] [CrossRef]
- Thakkar, R.; Agarwal, D.K.; Ranaweera, C.B.; Ishiguro, S.; Conda-Sheridan, M.; Gaudreault, N.N.; Richt, J.A.; Tamura, M.; Comer, J. De novo design of a stapled peptide targeting SARS-CoV-2 spike protein receptor-binding domain. RSC Med. Chem. 2023, 14, 1722–1733. [Google Scholar] [CrossRef]
- Thieulent, C.J.; Dittmar, W.; Balasuriya, U.B.R.; Crossland, N.A.; Wen, X.; Richt, J.A.; Carossino, M. Mouse-Adapted SARS-CoV-2 MA10 Strain Displays Differential Pulmonary Tropism and Accelerated Viral Replication, Neurodissemination, and Pulmonary Host Responses in K18-hACE2 Mice. mSphere 2023, 8, e0055822. [Google Scholar] [CrossRef]
- Vajdi, A.; Cohnstaedt, L.; Noronha, L.; Mitzel, D.; Wilson, W.; Scoglio, C. A Non-Markovian Model to Assess Contact Tracing for the Containment of COVID-19. IEEE Trans. Netw. Sci. Eng. 2024, 11, 197–211. [Google Scholar] [CrossRef]
- Kwon, T.; Osterrieder, N.; Gaudreault, N.N.; Richt, J.A. Fomite Transmission of SARS-CoV-2 and Its Contributing Factors. Pathogens 2023, 12, 364. [Google Scholar] [CrossRef]
- Cool, K.; Gaudreault, N.N.; Trujillo, J.D.; Morozov, I.; McDowell, C.D.; Bold, D.; Kwon, T.; Balaraman, V.; Assato, P.; Madden, D.W.; et al. Experimental co-infection of calves with SARS-CoV-2 Delta and Omicron variants of concern. Emerg. Microbes Infect. 2024, 13, 2281356. [Google Scholar] [CrossRef]
- Henneman, J.R.; McQuade, E.A.; Sullivan, R.R.; Downard, J.; Thackrah, A.; Hislop, M. Analysis of Range and Use of a Hybrid Hydrogen Peroxide System for Biosafety Level 3 and Animal Biosafety Level 3 Agriculture Laboratory Decontamination. Appl. Biosaf. 2022, 27, 7–14. [Google Scholar] [CrossRef]
- Hislop, M.; Grinstead, F.; Henneman, J.R. Hybrid Hydrogen Peroxide for Viral Disinfection. In Disinfection of Viruses; Nims, R., Ijaz, M.K., Eds.; IntechOpen: London, UK, 2022. [Google Scholar]
- Juergensmeyer, M.; Adetunji, S.A. Safety in Chemical and Biomedical Laboratories: Guidelines for the Use of Head Covers by Female Muslim Scientists. Appl. Biosaf. 2022, 27, 1–6. [Google Scholar] [CrossRef]
- Lee, C.; Henneman, J.R. Dry Hydrogen Peroxide for Viral Inactivation. In Disinfection of Viruses; Nims, R., Ijaz, M.K., Eds.; IntechOpen: London, UK, 2021. [Google Scholar]
- Rempel, D.; Henneman, J.; Agalloco, J.; Crittenden, J.; Consortium, N.D. Hydrogen Peroxide Methods for Decontaminating N95 Filtering Facepiece Respirators. Appl. Biosaf. 2021, 26, 71–79. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Higgs, S. COVID-2019—A Personal Account of an Academic Institute’s Response to the Pandemic. COVID 2024, 4, 1061-1071. https://doi.org/10.3390/covid4070073
Higgs S. COVID-2019—A Personal Account of an Academic Institute’s Response to the Pandemic. COVID. 2024; 4(7):1061-1071. https://doi.org/10.3390/covid4070073
Chicago/Turabian StyleHiggs, Stephen. 2024. "COVID-2019—A Personal Account of an Academic Institute’s Response to the Pandemic" COVID 4, no. 7: 1061-1071. https://doi.org/10.3390/covid4070073
APA StyleHiggs, S. (2024). COVID-2019—A Personal Account of an Academic Institute’s Response to the Pandemic. COVID, 4(7), 1061-1071. https://doi.org/10.3390/covid4070073