Examining the Role of Social Determinants of Health and COVID-19 Risk in 28 African Countries
Abstract
:1. Introduction
2. Methods
2.1. Design and Setting
2.2. Country-Level COVID-19 Data Source
2.3. Country-Level Social Determinants of Health Data Source, Measures
2.4. Data Processing
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Study Countries
3.2. Multivariate Analysis of Correlates for COVID-19 Case and Death Rates in the 28 Study Countries
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- COVID WHO. Dashboard. World Health Organzation (WHO). Available online: https://data.who.int/dashboard/covid19 (accessed on 1 August 2022).
- Okonji, E.F.; Okonji, O.C.; Mukumbang, F.C.; Van Wyk, B. Understanding varying COVID-19 mortality rates reported in Africa compared to Europe, Americas and Asia. Trop. Med. Int. Health 2021, 26, 716–719. [Google Scholar] [CrossRef]
- Maeda, J.M.; Nkengasong, J.N. The puzzle of the COVID-19 pandemic in Africa. Science 2021, 371, 27–28. [Google Scholar] [CrossRef] [PubMed]
- Mwananyanda, L.; Gill, C.J.; MacLeod, W.; Kwenda, G.; Pieciak, R.; Mupila, Z.; Lapidot, R.; Mupeta, F.; Forman, L.; Ziko, L. COVID-19 deaths in Africa: Prospective systematic postmortem surveillance study. BMJ 2021, 372, n334. [Google Scholar] [CrossRef]
- Moise, I.K.; Verity, J.F.; Kangmennaang, J. Identifying youth-friendly service practices associated with adolescents’ use of reproductive healthcare services in post-conflict Burundi: A cross-sectional study. Int. J. Health Geogr. 2017, 16, 2. [Google Scholar] [CrossRef] [PubMed]
- Moise, I.K. Causes of Morbidity and Mortality among Neonates and Children in Post-Conflict Burundi: A Cross-Sectional Retrospective Study. Children 2018, 5, 125. [Google Scholar] [CrossRef] [PubMed]
- Marbot, O. Coronavirus: Unpacking the Theories behind Africa’s Low Infection Rate. Africa Report. 5 May 2020. Available online: https://www.theafricareport.com/27470/coronavirus-unpacking-the-theories-behind-africas-low-infection-rate/ (accessed on 15 July 2022).
- Harding, A. Coronavirus in South Africa: Scientists explore surprise theory for low death rate. BBC News, 3 September 2020. [Google Scholar]
- Winning, A. Puzzled scientists seek reasons behind Africa’s low fatality rates from pandemic. Reuters, 29 September 2020. [Google Scholar]
- Makoni, M. COVID-19 vaccine trials in Africa. Lancet Respir. Med. 2020, 8, e79–e80. [Google Scholar] [CrossRef]
- Cabore, J.W.; Karamagi, H.C.; Kipruto, H.K.; Mungatu, J.K.; Asamani, J.A.; Droti, B.; Titi-Ofei, R.; Seydi, A.B.W.; Kidane, S.N.; Balde, T.; et al. COVID-19 in the 47 countries of the WHO African region: A modelling analysis of past trends and future patterns. Lancet Glob. Health 2022, 10, e1099–e1114. [Google Scholar] [CrossRef]
- Bradshaw, D.; Dorrington, R.; Moultrie, T.; Groenewald, P.; Moultrie, H. Underestimated COVID-19 mortality in WHO African region. Lancet Glob. Health 2022, 10, e1559. [Google Scholar] [CrossRef]
- Soko, N.D.; Dlamini, S.; Ntsekhe, M.; Dandara, C. The COVID-19 Pandemic and Explaining Outcomes in Africa: Could Genomic Variation Add to the Debate? OMICS J. Integr. Biol. 2022, 26, 594–607. [Google Scholar] [CrossRef]
- Rice, B.L.; Annapragada, A.; Baker, R.E.; Bruijning, M.; Dotse-Gborgbortsi, W.; Mensah, K.; Miller, I.F.; Motaze, N.V.; Raherinandrasana, A.; Rajeev, M.; et al. Variation in SARS-CoV-2 outbreaks across sub-Saharan Africa. Nat. Med. 2021, 27, 447–453. [Google Scholar] [CrossRef]
- Singini, G.C.; Manda, S.O.M. Inter-Country COVID-19 Contagiousness Variation in Eight African Countries. Front. Public Health 2022, 10, 796501. [Google Scholar] [CrossRef] [PubMed]
- Dalal, J.; Triulzi, I.; James, A.; Nguimbis, B.; Dri, G.G.; Venkatasubramanian, A.; Noubi Tchoupopnou Royd, L.; Botero Mesa, S.; Somerville, C.; Turchetti, G.; et al. COVID-19 mortality in women and men in sub-Saharan Africa: A cross-sectional study. BMJ Glob. Health 2021, 6, e007225. [Google Scholar] [CrossRef] [PubMed]
- Messner, W.; Payson, S.E. Variation in COVID-19 outbreaks at the US state and county levels. Public Health 2020, 187, 15–18. [Google Scholar] [CrossRef]
- Samadizadeh, S.; Masoudi, M.; Rastegar, M.; Salimi, V.; Shahbaz, M.B.; Tahamtan, A. COVID-19: Why does disease severity vary among individuals? Respir. Med. 2021, 180, 106356. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; St. Pierre, J.M.; Pickering, T.A.; Demirjian, N.L.; Fields, B.K.K.; Desai, B.; Gholamrezanezhad, A. Coronavirus disease 2019 (COVID-19): A modeling study of factors driving variation in case fatality rate by country. Int. J. Environ. Res. Public Health 2020, 17, 8189. [Google Scholar] [CrossRef]
- Onovo, A.A.; Kalaiwo, A.; Obanubi, C.; Odezugo, G.; Estill, J.; Keiser, O. Estimates of the COVID-19 Infection Fatality Rate for 48 African Countries: A Model-Based Analysis. BioMed 2021, 1, 63–79. [Google Scholar] [CrossRef]
- Zheng, Z.; Peng, F.; Xu, B.; Zhao, J.; Liu, H.; Peng, J.; Li, Q.; Jiang, C.; Zhou, Y.; Liu, S. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J. Infect. 2020, 81, e16–e25. [Google Scholar]
- Prasannan, L.; Rochelson, B.; Shan, W.; Nicholson, K.; Solmonovich, R.; Kulkarni, A.; Lewis, D.; Greenberg, M.; Nimaroff, M.; Blitz, M.J. Social determinants of health and coronavirus disease 2019 in pregnancy. Am. J. Obstet. Gynecol. MFM 2021, 3, 100349. [Google Scholar] [CrossRef]
- Abrams, E.M.; Szefler, S.J. COVID-19 and the impact of social determinants of health. Lancet Respir. Med. 2020, 8, 659–661. [Google Scholar] [CrossRef]
- Moise, I. Variation in Risk of COVID-19 Infection and Predictors of Social Determinants of Health in Miami–Dade County, Florida. Prev. Chronic Dis. 2020, 17, E124. [Google Scholar] [CrossRef]
- Ngepah, N. What lessons can Africa learn from the social determinants of COVID-19 spread, to better prepare for the current and future pandemics in the continent? Afr. Dev. Rev. 2021, 33, S45–S59. [Google Scholar] [CrossRef] [PubMed]
- Rojas, D.; Melo, A.; Moise, I.K.; Saavedra, J.; Szapocznik, J. The Association Between the Social Determinants of Health and HIV Control in Miami-Dade County ZIP Codes, 2017. J. Racial Ethn. Health Disparities 2021, 8, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Singu, S.; Acharya, A.; Challagundla, K.; Byrareddy, S.N. Impact of Social Determinants of Health on the Emerging COVID-19 Pandemic in the United States. Front. Public Health 2020, 8, 406. [Google Scholar] [CrossRef] [PubMed]
- Mwisongo, A.; Nabyonga-Orem, J. Global health initiatives in Africa—Governance, priorities, harmonisation and alignment. BMC Health Serv. Res. 2016, 16, 212. [Google Scholar] [CrossRef] [PubMed]
- El-Sadr, W.M.; Justman, J. Africa in the Path of COVID-19. N. Engl. J. Med. 2020, 383, e11. [Google Scholar] [CrossRef] [PubMed]
- Ihekweazu, C.; Agogo, E. Africa’s response to COVID-19. BMC Med. 2020, 18, 151. [Google Scholar] [CrossRef] [PubMed]
- Kamis, C.; Stolte, A.; West, J.S.; Fishman, S.H.; Brown, T.; Brown, T.; Farmer, H.R. Overcrowding and COVID-19 mortality across U.S. counties: Are disparities growing over time? SSM-Popul. Health 2021, 15, 100845. [Google Scholar] [CrossRef]
- Louis-Jean, J.; Cenat, K.; Njoku, C.V.; Angelo, J.; Sanon, D. Coronavirus (COVID-19) and racial disparities: A perspective analysis. J. Racial Ethn. Health Disparities 2020, 7, 1039–1045. [Google Scholar] [CrossRef]
- Tran, B.X.; Ha, G.H.; Nguyen, L.H.; Vu, G.T.; Hoang, M.T.; Le, H.T.; Latkin, C.A.; Ho, C.S.H.; Ho, R.C.M. Studies of novel coronavirus disease 19 (COVID-19) pandemic: A global analysis of literature. Int. J. Environ. Res. Public Health 2020, 17, 4095. [Google Scholar] [CrossRef]
- Abdelhafiz, A.S.; Mohammed, Z.; Ibrahim, M.E.; Ziady, H.H.; Alorabi, M.; Ayyad, M.; Sultan, E.A. Knowledge, perceptions, and attitude of Egyptians towards the novel coronavirus disease (COVID-19). J. Community Health 2020, 45, 881–890. [Google Scholar] [CrossRef]
- Koma, W.; Artiga, S.; Claxton, G.J.; Rae, M.; Neuman, T.; Michaud, J.; Kates, J. Low-income and communities of color at higher risk of serious illness if infected with coronavirus. KFF, 7 May 2020. [Google Scholar]
- Kavanagh, M.M.; Erondu, N.A.; Tomori, O.; Dzau, V.J.; Okiro, E.A.; Maleche, A.; Aniebo, I.C.; Rugege, U.; Holmes, C.B.; Gostin, L.O. Access to lifesaving medical resources for African countries: COVID-19 testing and response, ethics, and politics. Lancet 2020, 395, 1735–1738. [Google Scholar] [CrossRef] [PubMed]
- Wallace, R.; Chaves, L.F.; Bergmann, L.R.; Ayres, C.; Hogerwerf, L.; Kock, R.; Wallace, R.G. Clear-Cutting Disease Control: Capital-Led Deforestation, Public Health Austerity, and Vector-Borne Infection; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Redding, D.W.; Atkinson, P.M.; Cunningham, A.A.; Lo Iacono, G.; Moses, L.M.; Wood, J.L.N.; Jones, K.E. Impacts of environmental and socio-economic factors on emergence and epidemic potential of Ebola in Africa. Nat. Commun. 2019, 10, 4531. [Google Scholar] [CrossRef] [PubMed]
- Waitzkin, H. Confronting the Upstream Causes of COVID-19 and Other Epidemics to Follow. Int. J. Health Serv. 2021, 51, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Berman, P.; Cameron, M.A.; Gaurav, S.; Gotsadze, G.; Hasan, M.Z.; Jenei, K.; Keidar, S.; Kornreich, Y.; Lovato, C.; Patrick, D.M. Improving the response to future pandemics requires an improved understanding of the role played by institutions, politics, organization, and governance. PLOS Glob. Public Health 2023, 3, e0001501. [Google Scholar] [CrossRef]
- Nuwagira, E.; Muzoora, C. Is Sub-Saharan Africa prepared for COVID-19? Trop. Med. Health 2020, 48, 18. [Google Scholar] [CrossRef]
- Braveman, P.; Gottlieb, L. The social determinants of health: It’s time to consider the causes of the causes. Public Health Rep. 2014, 129 (Suppl. S2), 19–31. [Google Scholar] [CrossRef]
- MEASURE DHS. MEASURE DHS: Demographic and Health Surveys; DHS Survey Types; MEASURE DHS, ICF International: Calverton, MD, USA, 2013. [Google Scholar]
- Moise, I.K.; Kangmennaang, J.; Halwiindi, H.; Grigsby-Toussaint, D.S.; Fuller, D.O. Increase in Obesity Among Women of Reproductive Age in Zambia, 2002–2014. J. Womens Health 2019, 28, 1679–1687. [Google Scholar] [CrossRef]
- Ozodiegwu, I.D.; Ambrose, M.; Battle, K.E.; Bever, C.; Diallo, O.; Galatas, B.; Runge, M.; Gerardin, J. Beyond national indicators: Adapting the Demographic and Health Surveys’ sampling strategies and questions to better inform subnational malaria intervention policy. Malar. J. 2021, 20, 122. [Google Scholar] [CrossRef]
- Islam, S. The human development index and per capita GDP. Appl. Econ. Lett. 1995, 2, 166–167. [Google Scholar] [CrossRef]
- Ghosh, J.; Moise, I.K.; Kalipeni, E. The role of regional integration in foreign direct investment in Southern Africa. In Advances in Geoeconomics; Routledge: London, UK, 2017; pp. 151–159. [Google Scholar]
- Moise, I.K. Geographic gender differences in traumatic unintentional injury hospitalization and youth drinking. Drug Alcohol. Depend. 2019, 205, 107701. [Google Scholar] [CrossRef]
- Kolak, M.; Bhatt, J.; Park, Y.H.; Padrón, N.A.; Molefe, A. Quantification of Neighborhood-Level Social Determinants of Health in the Continental United States. JAMA Netw. Open 2020, 3, e1919928. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.; Wilson, M. COVID-19: A potential public health problem for homeless populations. Lancet Public Health 2020, 5, e186–e187. [Google Scholar] [CrossRef] [PubMed]
- DHS Program. Description of the Demographic and Health Surveys Individual Recode Data File; MEASURE DHS, ICF International: Calverton, MD, USA, 2008. [Google Scholar]
- The DHS Program. Demographic and Health Surveys. 2017. Available online: https://dhsprogram.com/ (accessed on 19 August 2019).
- Belmin, C.; Hoffmann, R.; Elkasabi, M.; Pichler, P.-P. LivWell: A sub-national Dataset on the Living Conditions of Women and their Well-being for 52 Countries. Sci. Data 2022, 9, 719. [Google Scholar] [CrossRef] [PubMed]
- Smits, J.; Permanyer, I. The Subnational Human Development Database. Sci. Data 2019, 6, 190038. [Google Scholar] [CrossRef] [PubMed]
- Kummu, M.; Taka, M.; Guillaume, J.H.A. Gridded global datasets for Gross Domestic Product and Human Development Index over 1990–2015. Sci. Data 2018, 5, 180004. [Google Scholar] [CrossRef] [PubMed]
- ESRI Inc. ArcGIS Desktop: Release 10; Environmental Systems Research Institute: Redlands, CA, USA, 2010. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows, Version 26.0; IBM Corp.: Armonk, NY, USA, 2013. [Google Scholar]
- Rollston, R.; Galea, S. COVID-19 and the Social Determinants of Health. Am. J. Health Promot. 2020, 34, 687–689. [Google Scholar] [CrossRef] [PubMed]
- Dukhovnov, D.; Barbieri, M. County-level socio-economic disparities in COVID-19 mortality in the USA. Int. J. Epidemiol. 2022, 51, 418–428. [Google Scholar] [CrossRef]
- Nartey, A. Afterword: Social determinants of health: Insights from COVID-19 in Ghana and sub-Saharan Africa. In Communicative Perspectives on COVID-19 in Ghana; Routledge: New York, NY, USA, 2023; pp. 234–245. [Google Scholar]
- Emina, J.; Beguy, D.; Zulu, E.M.; Ezeh, A.C.; Muindi, K.; Elung’ata, P.; Otsola, J.K.; Yé, Y. Monitoring of Health and Demographic Outcomes in Poor Urban Settlements: Evidence from the Nairobi Urban Health and Demographic Surveillance System. J. Urban. Health 2011, 88, 200–218. [Google Scholar] [CrossRef]
- Schröder, M.; Bossert, A.; Kersting, M.; Aeffner, S.; Coetzee, J.; Timme, M.; Schlüter, J. COVID-19 in South Africa: Outbreak despite interventions. Sci. Rep. 2021, 11, 4956. [Google Scholar] [CrossRef]
- Blumberg, L.H.; Jassat, W.; Mendelson, M.; Cohen, C. The COVID-19 crisis in South Africa: Protecting the vulnerable. S. Afr. Med. J. 2020, 110, 825–826. [Google Scholar] [CrossRef]
- Madhi, S.A.; Nel, J. Epidemiology of severe COVID-19 from South Africa. Lancet HIV 2021, 8, e524–e526. [Google Scholar] [CrossRef] [PubMed]
- Parker, A.; Koegelenberg, C.F.N.; Moolla, M.S.; Louw, E.H.; Mowlana, A.; Nortjé, A.; Ahmed, R.; Brittain, N.; Lalla, U.; Allwood, B.W. High HIV prevalence in an early cohort of hospital admissions with COVID-19 in Cape Town, South Africa. SAMJ S. Afr. Med. J. 2020, 110, 982–987. [Google Scholar] [CrossRef]
- Stiegler, N.; Bouchard, J.-P. South Africa: Challenges and successes of the COVID-19 lockdown. Ann. Médico-Psychol. Rev. Psychiatr. 2020, 178, 695–698. [Google Scholar] [CrossRef] [PubMed]
- Milan, S.; Treré, E. The Rise of the Data Poor: The COVID-19 Pandemic Seen From the Margins. Soc. Media Soc. 2020, 6, 2056305120948233. [Google Scholar] [CrossRef] [PubMed]
- Rader, B.; Scarpino, S.V.; Nande, A.; Hill, A.L.; Adlam, B.; Reiner, R.C.; Pigott, D.M.; Gutierrez, B.; Zarebski, A.E.; Shrestha, M. Crowding and the shape of COVID-19 epidemics. Nat. Med. 2020, 26, 1829–1834. [Google Scholar] [CrossRef]
- Zhang, Z.; Zeb, A.; Alzahrani, E.; Iqbal, S. Crowding effects on the dynamics of COVID-19 mathematical model. Adv. Differ. Equ. 2020, 2020, 675. [Google Scholar] [CrossRef] [PubMed]
- Rader, B.; Nande, A.; Adlam, B.; Hill, A.L.; Reiner, R.C.; Pigott, D.M.; Gutierrez, B. COVID-19 data working group; Brownstein, J.S.; Castro, M.C.; et al. Crowding and the epidemic intensity of COVID-19 transmission. medRxiv 2020. [Google Scholar] [CrossRef]
- Brown, K.A.; Jones, A.; Daneman, N.; Chan, A.K.; Schwartz, K.L.; Garber, G.E.; Costa, A.P.; Stall, N.M. Association between nursing home crowding and COVID-19 infection and mortality in Ontario, Canada. JAMA Intern. Med. 2021, 181, 229–236. [Google Scholar] [CrossRef]
- Ríos, V.; Denova-Gutiérrez, E.; Barquera, S. Association between living in municipalities with high crowding conditions and poverty and mortality from COVID-19 in Mexico. PLoS ONE 2022, 17, e0264137. [Google Scholar] [CrossRef]
- Solymári, D.; Kairu, E.; Czirják, R.; Tarrósy, I. The impact of COVID-19 on the livelihoods of Kenyan slum dwellers and the need for an integrated policy approach. PLoS ONE 2022, 17, e0271196. [Google Scholar] [CrossRef]
- Corburn, J.; Vlahov, D.; Mberu, B.; Riley, L.; Caiaffa, W.T.; Rashid, S.F.; Ko, A.; Patel, S.; Jukur, S.; Martínez-Herrera, E.; et al. Slum Health: Arresting COVID-19 and Improving Well-Being in Urban Informal Settlements. J. Urban Health 2020, 97, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Neiderud, C.-J. How urbanization affects the epidemiology of emerging infectious diseases. Infect. Ecol. Epidemiol. 2015, 5, 27060. [Google Scholar] [CrossRef]
- Varshney, K.; Glodjo, T.; Adalbert, J. Overcrowded housing increases risk for COVID-19 mortality: An ecological study. BMC Res. Notes 2022, 15, 126. [Google Scholar] [CrossRef]
- Solymári, D.; Kairu, E.; Czirják, R.; Tarrósy, I. Caring Interventions for the Most Vulnerable Populations in Economically Disadvantaged Areas during the Coronavirus (COVID-19) Pandemic by Non-Governmental Organizations in Kenya. Soc. Sci. 2023, 12, 284. [Google Scholar] [CrossRef]
- Anjorin, A.A. The coronavirus disease 2019 (COVID-19) pandemic: A review and an update on cases in Africa. Asian Pac. J. Trop. Med. 2020, 13, 199–203. [Google Scholar] [CrossRef]
- Nguimkeu, P.; Tadadjeu, S. Why is the number of COVID-19 cases lower than expected in Sub-Saharan Africa? A cross-sectional analysis of the role of demographic and geographic factors. World Dev. 2021, 138, 105251. [Google Scholar] [CrossRef] [PubMed]
- Bamgboye, E.L.; Omiye, J.A.; Afolaranmi, O.J.; Davids, M.R.; Tannor, E.K.; Wadee, S.; Niang, A.; Were, A.; Naicker, S. COVID-19 Pandemic: Is Africa Different? J. Natl. Med. Assoc. 2021, 113, 324–335. [Google Scholar] [CrossRef]
- Bouba, Y.; Tsinda, E.K.; Fonkou, M.D.M.; Mmbando, G.S.; Bragazzi, N.L.; Kong, J.D. The Determinants of the Low COVID-19 Transmission and Mortality Rates in Africa: A Cross-Country Analysis. Front. Public Health 2021, 9, 751197. [Google Scholar] [CrossRef]
- Tsinda, E.K.; Mmbando, G.S. Recent updates on the possible reasons for the low incidence and morbidity of COVID-19 cases in Africa. Bull. Natl. Res. Cent. 2021, 45, 133. [Google Scholar] [CrossRef]
- Moise, I.K.; Kalipeni, E.; Jusrut, P.; Iwelunmor, J.I. Assessing the reduction in infant mortality rates in Malawi over the 1990–2010 decades. Glob. Public Health 2017, 12, 757–779. [Google Scholar] [CrossRef]
- Bicego, G.T.; Boerma, J.T. Maternal education and child survival: A comparative study of survey data from 17 countries. Soc. Sci. Med. 1993, 36, 1207–1227. [Google Scholar] [CrossRef] [PubMed]
- Dallolio, L.; Di Gregori, V.; Lenzi, J.; Franchino, G.; Calugi, S.; Domenighetti, G.; Fantini, M.P. Socio-economic factors associated with infant mortality in Italy: An ecological study. Int. J. Equity Health 2012, 11, 45. [Google Scholar] [CrossRef]
- Kalipeni, E. Determinants of infant mortality in Malawi: A spatial perspective. Soc. Sci. Med. 1993, 37, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Connor, J.; Madhavan, S.; Mokashi, M.; Amanuel, H.; Johnson, N.R.; Pace, L.E.; Bartz, D. Health risks and outcomes that disproportionately affect women during the COVID-19 pandemic: A review. Soc. Sci. Med. 2020, 266, 113364. [Google Scholar] [CrossRef] [PubMed]
- Flor, L.S.; Friedman, J.; Spencer, C.N.; Cagney, J.; Arrieta, A.; Herbert, M.E.; Stein, C.; Mullany, E.C.; Hon, J.; Patwardhan, V.; et al. Quantifying the effects of the COVID-19 pandemic on gender equality on health, social, and economic indicators: A comprehensive review of data from March, 2020, to September, 2021. Lancet 2022, 399, 2381–2397. [Google Scholar] [CrossRef]
- Wahrendorf, M.; Rupprecht, C.J.; Dortmann, O.; Scheider, M.; Dragano, N. Erhöhtes Risiko eines COVID-19-bedingten Krankenhausaufenthaltes für Arbeitslose: Eine Analyse von Krankenkassendaten von 1,28 Mio. Versicherten in Deutschland. Bundesgesundheitsblatt-Gesundheitsforsch.-Gesundheitsschutz 2021, 64, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Gaffney, A.W.; Hawks, L.; Bor, D.H.; Woolhandler, S.; Himmelstein, D.U.; McCormick, D. 18.2 Million Individuals at Increased Risk of Severe COVID-19 Illness Are Un- or Underinsured. J. Gen. Intern. Med. 2020, 35, 2487–2489. [Google Scholar] [CrossRef]
- Oh, T.K.; Choi, J.-W.; Song, I.-A. Socioeconomic disparity and the risk of contracting COVID-19 in South Korea: An NHIS-COVID-19 database cohort study. BMC Public Health 2021, 21, 144. [Google Scholar] [CrossRef]
- Patel, J.A.; Nielsen, F.B.H.; Badiani, A.A.; Assi, S.; Unadkat, V.A.; Patel, B.; Ravindrane, R.; Wardle, H. Poverty, inequality and COVID-19: The forgotten vulnerable. Public Health 2020, 183, 110–111. [Google Scholar] [CrossRef]
- Déglise, C.; Suggs, L.S.; Odermatt, P. SMS for disease control in developing countries: A systematic review of mobile health applications. J. Telemed. Telecare 2012, 18, 273–281. [Google Scholar] [CrossRef]
- Okano, J.T.; Ponce, J.; Krönke, M.; Blower, S. Lack of ownership of mobile phones could hinder the rollout of mHealth interventions in Africa. eLife 2022, 11, e79615. [Google Scholar] [CrossRef] [PubMed]
- Moise, I.K.; Ivanova, N.; Wilson, C.; Wilson, S.; Halwindi, H.; Spika, V.M. Lessons from digital technology-enabled health interventions implemented during the coronavirus pandemic to improve maternal and birth outcomes: A global scoping review. BMC Pregnancy Childbirth 2023, 23, 195. [Google Scholar] [CrossRef] [PubMed]
- Anto-Ocrah, M.; Latulipe, R.J.; Mark, T.E.; Adler, D.; Zaihra, T.; Lanning, J.W. Exploring association of mobile phone access with positive health outcomes and behaviors amongst post-partum mothers in rural Malawi. BMC Pregnancy Childbirth 2022, 22, 485. [Google Scholar] [CrossRef] [PubMed]
- Moon, Z.; Zuchowski, M.; Moss-Morris, R.; Hunter, M.S.; Norton, S.; Hughes, L.D. Disparities in access to mobile devices and e-health literacy among breast cancer survivors. Support. Care Cancer 2022, 30, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Ferrell, K.W.; Woodard, L.M.; Woodard, T.J. Role of medication therapy management in preexposure prophylaxis therapy for HIV prevention. J. Pharm. Pract. 2015, 28, 10–12. [Google Scholar] [CrossRef]
- Friedman, R.H.; Kazis, L.E.; Jette, A.; Smith, M.B.; Stollerman, J.; Torgerson, J.; Carey, K. A telecommunications system for monitoring and counseling patients with hypertension: Impact on medication adherence and blood pressure control. Am. J. Hypertens. 1996, 9, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Pintye, J.; Rogers, Z.; Kinuthia, J.; Mugwanya, K.K.; Abuna, F.; Lagat, H.; Sila, J.; Kemunto, V.; Baeten, J.M.; John-Stewart, G.; et al. Two-Way Short Message Service (SMS) Communication May Increase Pre-Exposure Prophylaxis Continuation and Adherence Among Pregnant and Postpartum Women in Kenya. Glob. Health Sci. Pract. 2020, 8, 55–67. [Google Scholar] [CrossRef]
- Prüss-Ustün, A.; Bartram, J.; Clasen, T.; Colford, J.M., Jr.; Cumming, O.; Curtis, V.; Bonjour, S.; Dangour, A.D.; De France, J.; Fewtrell, L.; et al. Burden of disease from inadequate water, sanitation and hygiene in low- and middle-income settings: A retrospective analysis of data from 145 countries. Trop. Med. Int. Health 2014, 19, 894–905. [Google Scholar] [CrossRef]
- Boisson, S.; Engels, D.; Gordon, B.A.; Medlicott, K.O.; Neira, M.P.; Montresor, A.; Solomon, A.W.; Velleman, Y. Water, sanitation and hygiene for accelerating and sustaining progress on neglected tropical diseases: A new Global Strategy 2015–20. Int. Health 2016, 8 (Suppl. S1), i19–i21. [Google Scholar] [CrossRef]
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473. [Google Scholar] [CrossRef]
- Donde, O.O.; Atoni, E.; Muia, A.W.; Yillia, P.T. COVID-19 pandemic: Water, sanitation and hygiene (WASH) as a critical control measure remains a major challenge in low-income countries. Water Res. 2021, 191, 116793. [Google Scholar] [CrossRef] [PubMed]
- Khatib, M.N.; Sinha, A.; Mishra, G.; Quazi, S.Z.; Gaidhane, S.; Saxena, D.; Gaidhane, A.M.; Bhardwaj, P.; Sawleshwarkar, S.; Zahiruddin, Q.S. WASH to control COVID-19: A rapid review. Front. Public Health 2022, 10, 976423. [Google Scholar] [CrossRef] [PubMed]
- Howard, G.; Bartram, J.; Brocklehurst, C.; Colford, J.M., Jr.; Costa, F.; Cunliffe, D.; Dreibelbis, R.; Eisenberg, J.N.S.; Evans, B.; Girones, R.; et al. COVID-19: Urgent actions, critical reflections and future relevance of ‘WaSH’: Lessons for the current and future pandemics. J. Water Health 2020, 18, 613–630. [Google Scholar] [CrossRef]
- Heo, M.H.; Kwon, Y.D.; Cheon, J.; Kim, K.B.; Noh, J.W. Association between the Human Development Index and Confirmed COVID-19 Cases by Country. Healthcare 2022, 10, 1417. [Google Scholar] [CrossRef] [PubMed]
- Buheji, M.; AlDerazi, A.; Ahmed, D.; Bragazzi, N.L.; Jahrami, H.; Hamadeh, R.R.; BaHammam, A.S. The association between the initial outcomes of COVID-19 and the human development index: An ecological study. Hum. Syst. Manag. 2022, 41, 303–313. [Google Scholar] [CrossRef]
- Liu, K.; He, M.; Zhuang, Z.; He, D.; Li, H. Unexpected positive correlation between human development index and risk of infections and deaths of COVID-19 in Italy. One Health 2020, 10, 100174. [Google Scholar] [CrossRef]
- Armstrong, A.d.C.; Baggio, J.A.O.; Carmo, R.F.d.; Machado, M.F.; Santos, A.D.d.; Souza, C.D.F.d. COVID-19 in Brazil: Spatial risk, social vulnerability, human development, clinical manifestations and predictors of mortality—A retrospective study with data from 59 695 individuals. Epidemiol. Infect. 2021, 149, e100. [Google Scholar] [CrossRef]
- Ali, R.; Samin, P. The global distribution of COVID-19 vaccine: The role of macro-socioeconomics measures. medRxiv 2022. [Google Scholar] [CrossRef]
- Roghani, A. The relationship between macro-socioeconomics determinants and COVID-19 vaccine distribution. AIMS Public Health 2021, 8, 655–664. [Google Scholar] [CrossRef]
Social Determinants of Health Measures | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Country | Residency (% Households) | Wealth Index (% Households) | Educational Status (% Head of Households) | Sanitation (% Households) | Overcrowding (% Households) | ||||||
n | Rural | Urban | Poor | Average | No Education | Primary | Secondary or Higher | Place to Wash Hands | Soap or Detergent Present | >3 People per Sleeping Room | |
Benin | 14,423 | 55 | 45 | 36.9 | 18.9 | 51.8 | 22.2 | 24.5 | 55.5 | 20.4 | 22.5 |
Burkina Faso | 14,156 | 69.4 | 30.6 | 37.3 | 19.3 | 76.1 | 13 | 10.9 | 80.9 | 17.4 | 18.6 |
Burundi | 15,977 | 81.2 | 18.8 | 41.3 | 18.1 | 47.2 | 39.7 | 13.1 | 98.5 | 7.5 | 13.7 |
Cameroon | 17,223 | 44.8 | 55.2 | 33.2 | 22.5 | 19.4 | 32.9 | 46 | 95.2 | 46.4 | 15.7 |
Côte d’Ivoire | 4466 | 58.6 | 41.4 | 42.6 | 21.8 | 57.4 | 20.3 | 22.1 | 84.8 | 28.7 | 24.1 |
DR Congo | 18,171 | 70.1 | 29.9 | 49.3 | 19.6 | 14.7 | 32.5 | 52.8 | 92.6 | 37.3 | 28.2 |
Egypt | 28,175 | 50.4 | 49.6 | 34.4 | 16.7 | 25.3 | 15.6 | 59.1 | 97 | 90.8 | 8.4 |
Ethiopia | 16,650 | 68.6 | 31.4 | 42.2 | 12.4 | 52.1 | 28 | 19.6 | 54.3 | 24.3 | 45.6 |
Gambia | 11,835 | 50.2 | 49.8 | 45.7 | 15.1 | 67.1 | 7.4 | 25.3 | 98.9 | 66.9 | 21.3 |
Ghana | 6215 | 49.8 | 50.2 | 41.7 | 21.8 | 28.3 | 14.1 | 57.6 | 90.2 | 40.2 | 20.2 |
Guinea | 7912 | 65.9 | 34.1 | 42.2 | 18.8 | 68.4 | 9.8 | 21.3 | 70.2 | 34 | 21.2 |
Kenya | 36,430 | 61.8 | 38.2 | 44.2 | 18.8 | 20.9 | 45.6 | 33.5 | 62.4 | 44.5 | 28.2 |
Lesotho | 9333 | 70.2 | 29.8 | 42.6 | 19.9 | 17.3 | 53.1 | 27.8 | 7.5 | 47.2 | 15.5 |
Liberia | 9402 | 63 | 37 | 58.4 | 19.7 | 38.3 | 21.3 | 40.4 | 26.3 | 38.3 | 25.6 |
Malawi | 9510 | 81.1 | 18.9 | 39 | 19.1 | 15.8 | 56.1 | 27.5 | 84.2 | 14.7 | 19.4 |
Mali | 26,361 | 69 | 31 | 38.3 | 19.6 | 69.4 | 12.8 | 17 | 74 | 24.9 | 21.2 |
Mozambique | 13,919 | 63.4 | 36.6 | 33.7 | 20.2 | 29.6 | 50.9 | 17.5 | 98.6 | 39.1 | 18.9 |
Namibia | 9840 | 51.6 | 48.4 | 37 | 20.4 | 17.6 | 28.3 | 53.7 | 94.6 | 60.1 | 13 |
Nigeria | 40,427 | 58.5 | 41.5 | 37.4 | 22.1 | 30.7 | 21.2 | 48 | 79.3 | 36.4 | 20.8 |
Rwanda | 12,699 | 77.2 | 22.8 | 42.5 | 18.4 | 25.5 | 60.9 | 13.6 | 76.6 | 54.1 | 11.4 |
Senegal | 12,598 | 62.1 | 37.9 | 52 | 20.1 | 70.6 | 14.2 | 13.4 | 39 | 56.4 | 20.2 |
Sierra Leone | 4592 | 63.8 | 36.2 | 39.7 | 18.3 | 66 | 9.4 | 24.5 | 89 | 35.8 | 23.7 |
South Africa | 9548 | 40.8 | 59.2 | 42.8 | 21.3 | 13.4 | 21.1 | 64 | 87.2 | 48.9 | 8.7 |
Tanzania | 12,561 | 71.1 | 28.9 | 34.1 | 20.4 | 20.8 | 60.4 | 18.7 | 77.2 | 59.5 | 17.6 |
Togo | 19,588 | 61.9 | 38.1 | 37.1 | 22.4 | 35.4 | 27.8 | 36.8 | 80.4 | 63.5 | 21.9 |
Uganda | 11,083 | 77.2 | 22.8 | 43.3 | 18.4 | 16.3 | 52 | 30.5 | 57.6 | 45.8 | 26.6 |
Zambia | 12,831 | 63.3 | 36.7 | 44.6 | 20.4 | 9.7 | 42.7 | 45.7 | 52.4 | 40.5 | 25.1 |
Zimbabwe | 10,534 | 58.8 | 41.2 | 32.9 | 16.8 | 6.6 | 31.4 | 61.1 | 97.4 | 45.6 | 15.4 |
Coefficient | Std. Error | p-Value | Odds Ratio 95% Wald CI | |
---|---|---|---|---|
Social Determinants of Health (SDoH) measures | ||||
Geography | ||||
Population living in urban areas (%) | −0.042 | 0.048 | 0.384 | 0.959 (0.874–1.053) |
Wealth | ||||
Human Development Index | −2.387 | 6.525 | 0.715 | 0.092 (0.000–32,925.611) |
Education | ||||
Women education (%) | 0.089 | 0.054 | 0.102 | 1.093 (0.982–1.215) |
Sanitation | ||||
Households, quality water access, %) | 0.143 | 0.055 | 0.009 | 1.153 (1.036–1.284) |
Employment | ||||
Women currently working (%) | −0.041 | 0.046 | 0.379 | 0.96 (0.877–1.051) |
Healthcare access | ||||
Not having health insurance (%), | 0.232 | 0.059 | 0.001 | 1.262 (1.124–1.417) |
Crowding | ||||
Average number of householders (>than 3) | −1.735 | 1.069 | 0.105 | 0.176 (0.022–1.433) |
Access to Information | ||||
Women, mobile phone (%) | 0.089 | 0.046 | 0.053 | 1.093 (0.999–1.195) |
Women listening to the radio at least once a week (%) | 0.061 | 0.057 | 0.284 | 1.063 (0.951–1.188) |
Coefficient | Std. Error | p-Value | Odds Ratio 95% Wald CI | |
---|---|---|---|---|
Social Determinants of Health (SDoH) measures | ||||
Geography | ||||
Population living in urban areas (%) | −0.001 | 0.0010 | 0.166 | 0.999 (0.997–1.001 |
Wealth | ||||
Human Development Index | −0.182 | 0.1309 | 0.165 | 0.834 (0.645–1.078) |
Education | ||||
Women education (%) | 0.003 | 0.0011 | 0.014 | 1.003 (1.001–1.005) |
Sanitation | ||||
Households with high quality water access, %) | 0.004 | 0.0011 | 0.001 | 1.004 (1.002–1.006) |
Employment | ||||
Women currently working (%) | −0.001 | 0.0009 | 0.247 | 0.999 (0.997–1.001) |
Healthcare Access | ||||
Insurance coverage (%), | 0.001 | 0.0012 | 0.370 | 1.001 (0.999–1.003) |
Crowding | ||||
Average number of householders (> than 3) | −0.042 | 0.0214 | 0.051 | 0.959 (0.920–1.000) |
Access to Information | ||||
Women owning a mobile phone (%) | 0.001 | 0.0009 | 0.181 | 1.001 (0.999–1.003) |
Women listening to the radio at least once a week (%) | 0.002 | 0.0011 | 0.058 | 1.002 (1.000–1.004) |
Healthcare System Measures |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moise, I.K.; Ortiz-Whittingham, L.R.; Owolabi, K.; Halwindi, H.; Miti, B.A. Examining the Role of Social Determinants of Health and COVID-19 Risk in 28 African Countries. COVID 2024, 4, 87-101. https://doi.org/10.3390/covid4010009
Moise IK, Ortiz-Whittingham LR, Owolabi K, Halwindi H, Miti BA. Examining the Role of Social Determinants of Health and COVID-19 Risk in 28 African Countries. COVID. 2024; 4(1):87-101. https://doi.org/10.3390/covid4010009
Chicago/Turabian StyleMoise, Imelda K., Lola R. Ortiz-Whittingham, Kazeem Owolabi, Hikabasa Halwindi, and Bernard A. Miti. 2024. "Examining the Role of Social Determinants of Health and COVID-19 Risk in 28 African Countries" COVID 4, no. 1: 87-101. https://doi.org/10.3390/covid4010009
APA StyleMoise, I. K., Ortiz-Whittingham, L. R., Owolabi, K., Halwindi, H., & Miti, B. A. (2024). Examining the Role of Social Determinants of Health and COVID-19 Risk in 28 African Countries. COVID, 4(1), 87-101. https://doi.org/10.3390/covid4010009