Efficacy of a Polyphenolic, Standardized Green Tea Extract for the Treatment of COVID-19 Syndrome: A Proof-of-Principle Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Compassionate Clinical Trial
2.2. Dose and Method of Administration
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Appendix A
Appendix B
References
- Worldometer [Internet] [Cited 2021 Jan 18] Volunteers. Coronavirus Update (Live): 95,960,392 Cases and 2,048, 061 Deaths from COVID-19 Virus Pandemic. Available online: https://www.worldometers.info/coronavirus/ (accessed on 29 March 2021).
- Nagata, T.; Sakai, S. Differences in caffeine, flavanols and amino acids contents in leaves of cultivated species of Camellia. Jpn. J. Breed. 1984, 34, 459–467. [Google Scholar] [CrossRef][Green Version]
- Bernatoniene, J.; Kopustinskiene, D.M. The Role of Catechins in Cellular Responses to Oxidative Stress. Molecules 2018, 23, 965. [Google Scholar] [CrossRef][Green Version]
- Reygaert, W.C. Green Tea Catechins: Their Use in Treating and Preventing Infectious Diseases. BioMed Res. Int. 2018, 2018, 1–9. [Google Scholar] [CrossRef]
- Ohishi, T.; Goto, S.; Monira, P.; Isemura, M.; Nakamura, Y. Anti-inflammatory Action of Green Tea. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2016, 15, 74–90. [Google Scholar] [CrossRef]
- Wang, J.; Fan, S.M.; Zhang, J. Epigallocatechin-3-gallate ameliorates lipopolysaccharide-induced acute lung injury by suppression of TLR4/NF-κB signaling activation. Braz. J. Med. Biol. Res. 2019, 52, e8092. [Google Scholar] [CrossRef] [PubMed]
- Patra, S.K.; Rizzi, F.; Silva, A.; O Rugina, D.; Bettuzzi, S. Molecular targets of (-)-epigallocatechin-3-gallate (EGCG): Specificity and interaction with membrane lipid rafts. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2008, 59, 217–235. [Google Scholar]
- Tachibana, H.; Koga, K.; Fujimura, Y.; Yamada, K. A receptor for green tea polyphenol EGCG. Nat. Struct. Mol. Biol. 2004, 11, 380–381. [Google Scholar] [CrossRef] [PubMed]
- Umeda, D.; Yano, S.; Yamada, K.; Tachibana, H. Green Tea Polyphenol Epigallocatechin-3-gallate Signaling Pathway through 67-kDa Laminin Receptor. J. Biol. Chem. 2008, 283, 3050–3058. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Henry, B.M.; de Oliveira, M.H.S.; Benoit, S.; Plebani, M.; Lippi, G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin. Chem. Lab. Med. 2020, 58, 1021–1028. [Google Scholar] [CrossRef] [PubMed][Green Version]
- A Matthay, M.; McAuley, D.F.; Ware, L.B. Clinical trials in acute respiratory distress syndrome: Challenges and opportunities. Lancet Respir. Med. 2017, 5, 524–534. [Google Scholar] [CrossRef]
- Matthay, M.A.; Zimmerman, G.A. Acute Lung Injury and the Acute Respiratory Distress Syndrome. Am. J. Respir. Cell Mol. Biol. 2005, 33, 319–327. [Google Scholar] [CrossRef]
- Ling, J.-X.; Wei, F.; Li, N.; Li, J.-L.; Chen, L.-J.; Liu, Y.-Y.; Luo, F.; Xiong, H.-R.; Hou, W.; Yang, Z.-Q. Amelioration of influenza virus-induced reactive oxygen species formation by epigallocatechin gallate derived from green tea. Acta Pharmacol. Sin. 2012, 33, 1533–1541. [Google Scholar] [CrossRef][Green Version]
- Yang, F.; De Villiers, W.J.S.; McClain, C.J.; Varilek, G.W. Green Tea Polyphenols Block Endotoxin-Induced Tumor Necrosis Factor-Production and Lethality in a Murine Model. J. Nutr. 1998, 128, 2334–2340. [Google Scholar] [CrossRef]
- Bae, H.-B.; Li, M.; Kim, J.-P.; Kim, S.-J.; Jeong, C.-W.; Lee, H.-G.; Kim, W.-M.; Kim, H.-S.; Kwak, S.-H. The Effect of Epigallocatechin Gallate on Lipopolysaccharide-Induced Acute Lung Injury in a Murine Model. Inflammation 2009, 33, 82–91. [Google Scholar] [CrossRef]
- Liu, W.; Dong, M.; Bo, L.; Li, C.; Liu, Q.; Li, Y.; Ma, L.; Xie, Y.; Fu, E.; Mu, D.; et al. Epigallocatechin-3-gallate Ameliorates Seawater Aspiration-Induced Acute Lung Injury via Regulating Inflammatory Cytokines and Inhibiting JAK/STAT1 Pathway in Rats. Mediat. Inflamm. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Di Paola, R.; Mazzon, E.; Muià, C.; Crisafulli, C.; Genovese, T.; Di Bella, P.; Esposito, E.; Menegazzi, M.; Meli, R.; Suzuki, H.; et al. Green tea polyphenol extract attenuates zymosan-induced non-septic shock in mice. Shock 2006, 26, 402–409. [Google Scholar] [CrossRef]
- Di Paola, R.; Mazzon, E.; Muià, C.; Genovese, T.; Menegazzi, M.; Zaffini, R.; Suzuki, H.; Cuzzocrea, S. Green tea polyphenol extract attenuates lung injury in experimental model of carrageenan-induced pleurisy in mice. Respir. Res. 2005, 6, 66. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Liang, O.D.; Kleibrink, B.E.; Schuette-Nuetgen, K.; Khatwa, U.U.; Mfarrej, B.; Subramaniam, M. Green tea epigallo-catechin-galleate ameliorates the development of obliterative airway disease. Exp. Lung Res. 2011, 37, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Donà, M.; Dell’Aica, I.; Calabrese, F.; Benelli, R.; Morini, M.; Albini, A.; Garbisa, S. Neutrophil Restraint by Green Tea: Inhibition of Inflammation, Associated Angiogenesis, and Pulmonary Fibrosis. J. Immunol. 2003, 170, 4335–4341. [Google Scholar] [CrossRef][Green Version]
- Takano, K.; Nakaima, K.; Nitta, M.; Shibata, A.F.; Nakagawa, H. Inhibitory Effect of (−)-Epigallocatechin 3-Gallate, a Polyphenol of Green Tea, on Neutrophil Chemotaxis in Vitro and in Vivo. J. Agric. Food Chem. 2004, 52, 4571–4576. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, O.; Ruan, L.; Hou, X.; Cui, Y.; Wang, J.M.; Le, Y. The green tea polyphenol (−)-epigallocatechin-3-gallate inhibits leukocyte activation by bacterial formylpeptide through the receptor FPR. Int. Immunopharmacol. 2009, 9, 1126–1130. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ashok, M.; Li, J.; Yang, H.; Sama, A.E.; Wang, H. A Major Ingredient of Green Tea Rescues Mice from Lethal Sepsis Partly by Inhibiting HMGB1. PLoS ONE 2007, 2, e1153. [Google Scholar] [CrossRef][Green Version]
- Li, W.; Zhu, S.; Li, J.; Assa, A.; Jundoria, A.; Xu, J.; Fan, S.; Eissa, N.T.; Tracey, K.J.; Sama, A.E.; et al. EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages. Biochem. Pharmacol. 2011, 81, 1152–1163. [Google Scholar] [CrossRef][Green Version]
- Byun, E.-H.; Omura, T.; Yamada, K.; Tachibana, H. Green tea polyphenol epigallocatechin-3-gallate inhibits TLR2 signaling induced by peptidoglycan through the polyphenol sensing molecule 67-kDa laminin receptor. FEBS Lett. 2011, 585, 814–820. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hofbauer, R.; Frass, M.; Gmeiner, B.; Handler, S.; Speiser, W.; Kapiotis, S. The green tea extract epigallocatechin gallate is able to reduce neutrophil transmigration through monolayers of endothelial cells. Wien. Klin. Wochenschr. 1999, 111, 278–282. [Google Scholar]
- Marinovic, M.; Morandi, A.; Otton, R. Green tea catechins alone or in combination alter functional parameters of human neutrophils via suppressing the activation of TLR-4/NFκB p65 signal pathway. Toxicol. Vitr. 2015, 29, 1766–1778. [Google Scholar] [CrossRef]
- Kawai, K. Comment on Inhibitory Effect of (−)-Epigallocatechin 3-Gallate, a Polyphenol of Green Tea, on Neutrophil Chemotaxis in Vitro and in Vivo. J. Agric. Food Chem. 2005, 53, 1306. [Google Scholar] [CrossRef]
- Xu, J.; Xu, Z.; Zheng, W. A Review of the Antiviral Role of Green Tea Catechins. Molecules 2017, 22, 1337. [Google Scholar] [CrossRef][Green Version]
- Ohgitani, E.; Shin-Ya, M.; Ichitani, M.; Kobayashi, M.; Takihara, T.; Kawamoto, M.; Kinugasa, H.; Mazda, O. Significant inactivation of SARS-CoV-2 by a green tea catechin, a catechin-derivative and galloylated theaflavins in vitro. BioRxiv 2020. Available online: https://www.biorxiv.org/ (accessed on 5 February 2021). [CrossRef]
- Ohgitani, E.; Shin-Ya, M.; Ichitani, M.; Kobayashi, M.; Takihara, T.; Kawamoto, M.; Kinugasa, H.; Mazda, O. Rapid inactivation in vitro of SARS-CoV-2 in saliva by black tea and green tea. BioRxiv 2020. Available online: https://www.biorxiv.org/ (accessed on 5 February 2021). [CrossRef]
- Yamada, H.; Ohashi, K.; Atsumi, T.; Okabe, H.; Shimizu, T.; Nishio, S.; Li, X.D.; Kosuge, K.; Watanabe, H.; Hara, Y. Effects of tea catechin inhalation on methicillin-resistant Staphylococcus aureus in elderly patients in a hospital ward. J. Hosp. Infect. 2003, 53, 229–231. [Google Scholar] [CrossRef] [PubMed]
- Yamada, H.; Tateishi, M.; Harada, K.; Ohashi, T.; Shimizu, T.; Atsumi, T.; Komagata, Y.; Iijima, H.; Komiyama, K.; Watanabe, H. A Randomized Clinical Study of Tea Catechin Inhalation Effects on Methicillin-Resistant Staphylococcus aureus in Disabled Elderly Patients. J. Am. Med. Dir. Assoc. 2006, 7, 79–83. [Google Scholar] [CrossRef]
- Peterson, L. COVID-19 and Flavonoids: In Silico Molecular Dynamics Docking to the Active Catalytic Site of SARS-CoV and SARS-CoV-2 Main Protease. SSRN Electron. J. 2020. Available online: https://ssrn.com/abstract=3599426 (accessed on 10 January 2021). [CrossRef]
- Mhatre, S.; Srivastava, T.; Naik, S.; Patravale, V. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine 2021, 85, 153286. [Google Scholar] [CrossRef]
- Menegazzi, M.; Campagnari, R.; Bertoldi, M.; Crupi, R.; Di Paola, R.; Cuzzocrea, S. Protective Effect of Epigallocatechin-3-Gallate (EGCG) in Diseases with Uncontrolled Immune Activation: Could Such a Scenario Be Helpful to Counteract COVID-19? Int. J. Mol. Sci. 2020, 21, 5171. [Google Scholar] [CrossRef] [PubMed]
- Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U. Scientific opinion on the safety of green tea catechins. EFSA J. 2018, 16, e05239. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hu, J.; Webster, D.; Cao, J.; Shao, A. The safety of green tea and green tea extract consumption in adults – Results of a systematic review. Regul. Toxicol. Pharmacol. 2018, 95, 412–433. [Google Scholar] [CrossRef] [PubMed]
- Bocchi, L.; Savi, M.; Naponelli, V.; Vilella, R.; Sgarbi, G.; Baracca, A.; Solaini, G.; Bettuzzi, S.; Rizzi, F.; Stilli, D. Long-Term Oral Administration of Theaphenon-E Improves Cardiomyocyte Mechanics and Calcium Dynamics by Affecting Phospholamban Phosphorylation and ATP Production. Cell. Physiol. Biochem. 2018, 47, 1230–1243. [Google Scholar] [CrossRef]
- Brausi, M.; Rizzi, F.; Bettuzzi, S. Chemoprevention of Human Prostate Cancer by Green Tea Catechins: Two Years Later. A Follow-up Update. Eur. Urol. 2008, 54, 472–473. [Google Scholar] [CrossRef]
- Hara, Y. Tea catechins and their applications as supplements and pharmaceutics. Pharmacol. Res. 2011, 64, 100–104. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov NIH US National Library of Medicine [Internet]. [Cited 2021 Jan 19]. Available online: https://clinicaltrials.gov/ct2/results?cond=&term=Polyphenon+E&cntry=&state=&city=&dist (accessed on 10 January 2021).
- Tatti, S.; Swinehart, J.M.; Thielert, C.; Tawfik, H.; Mescheder, A.; Beutner, K.R. Sinecatechins, a Defined Green Tea Extract, in the Treatment of External Anogenital Warts. Obstet. Gynecol. 2008, 111, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Del Valle, D.M.; Kim-Schulze, S.; Huang, H.-H.; Beckmann, N.D.; Nirenberg, S.; Wang, B.; Lavin, Y.; Swartz, T.H.; Madduri, D.; Stock, A.; et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med. 2020, 26, 1636–1643. [Google Scholar] [CrossRef]
- WHO Solidarity Trial Consortium. Repurposed Antiviral Drugs for Covid-19—Interim WHO Solidarity Trial Results. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- The RECOVERY Collaborative Group Effect of Hydroxychloroquine in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2020, 383, 2030–2040. [CrossRef] [PubMed]
- Mancuso, P.; Venturelli, F.; Vicentini, M.; Perilli, C.; Larosa, E.; Bisaccia, E.; Bedeschi, E.; Zerbini, A.; Rossi, P.G. Temporal profile and determinants of viral shed-ding and of viral clearance confirmation on nasopharyngeal swabs from SARS-CoV-2-positive subjects: A population-based prospective cohort study in Reggio Emilia, Italy. BMJ Open 2020, 10, e040380. [Google Scholar] [CrossRef]
Patient number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Symptoms: | ||||||||||
Difficulty breathing | yes | yes | yes | yes | ||||||
Cough | yes | yes | yes | yes | yes | yes | yes | yes | yes | |
Tiredness 30 d after | yes | yes | ||||||||
No sense of smell | yes | yes | ||||||||
No sense of taste | yes | yes | ||||||||
Signs: | ||||||||||
Fever (Temperature) | >38 °C | >38 °C | >38 °C | >38 °C | >38 °C | >38 °C | >38 °C | >38 °C | >38 °C | |
Pneumonia CT score | 10–15% | 10–15% | 10–15% | 40% | ||||||
Hospitalized | no | no | no | no | no | no | no | no | yes | no |
Patient demographics: | ||||||||||
Age | 74 | 73 | 50 | 53 | 47 | 27 | 55 | 28 | 66 | 38 |
Gender | M | F | M | M | F | F | F | F | F | F |
Comorbidities | yes | yes | yes | |||||||
Other treatments: | ||||||||||
Steroids | yes 10 days | yes 10 days | ||||||||
Azithromycin 500 mg | Yes 10 days | yes 10 days | yes 4 days | yes 4 days | ||||||
Low Mol Weight Heparin | yes 10 days | yes 10 days | yes 10 days | yes 10 days | ||||||
Hydroxychloroquine 400 mg once, plus 200 mg later | yes 5 days | |||||||||
Methylprednisolone 32 mg, one shot | yes 2 days |
Time | Time | ||||||||||||||
Patient Number | Blood Withdr. | White | Hb | PLT | Neutro | Limph | Mono | Eosin | ESR | AAT | CRP | IL-6 | Swab Result | T0–2nd swab | T0–T1 |
×103/µL | gr/dL | ×103/µL | % | % | % | % | mm | mg/dL | mg/L | pg/L | |||||
1 | T0 | 7.35 | 13.5 | 242 | 82.4 | 10.6 | 6.9 | 0 | 55 | 165 | 5.65 | 26.03 | pos | ||
T1 | 6.77 | 13.3 | 179 | 86.1 | 9.4 | 4.1 | 0.2 | 18 | 139 | 0.41 | 1.5 | NEG | 6 | 9 | |
2 | T0 | 6.06 | 13.7 | 295 | 62.4 | 27.1 | 9.2 | 0.8 | 71 | 235 | 27.9 | 55.5 | pos | ||
T1 | 9.27 | 14.3 | 325 | 83.7 | 11.5 | 4 | 0.3 | 20 | 158 | 0.76 | 5.21 | NEG | 6 | 9 | |
3 | T0 | 4.99 | 15.3 | 315 | 71.6 | 22.4 | 5.6 | 0 | 29 | 114 | 0.4 | 6 | pos | ||
T1 | 5.03 | 14.3 | 254 | 51.4 | 38.4 | 7.8 | 1.4 | 16 | 97 | 0.61 | 24.19 | POS | 6 | 9 | |
4 | T0 | 8.33 | 14.9 | 269 | 73.8 | 19.6 | 4.7 | 1.7 | 38 | 170 | 23 | 69.08 | pos | ||
T1 | 8.65 | 15.5 | 460 | 59.6 | 28.4 | 7.6 | 3.7 | 55 | 155 | 6.33 | 9.9 | NEG | 10 | 7 | |
5 | T0 | 4.7 | 10.9 | 275 | 49.4 | 35.5 | 12.6 | 2.3 | 74 | 166 | 15 | 8.25 | pos | ||
T1 | 9.3 | 10.4 | 395 | 54.7 | 33.9 | 8.6 | 2.6 | 38 | 114 | 0.61 | 2.87 | NEG | 13 | 15 | |
6 | T0 | 6.63 | 13.8 | 197 | 41.8 | 48 | 9.4 | 0.3 | 22 | 207 | 3.72 | 7.82 | pos | ||
T1 | 5.91 | 13.4 | 261 | 59.9 | 33.2 | 4.5 | 1.8 | 19 | 230 | 6.54 | 4.34 | NEG | 10 | 12 | |
7 | T0 | 7.27 | 13.1 | 205 | 58.8 | 32.3 | 8 | 0.8 | 6 | 120 | 3.72 | 184.95 | pos | ||
T1 | 8.13 | 13.6 | 265 | 63.3 | 29.4 | 6.2 | 0.7 | 10 | 116 | 0.42 | 3 | POS | (*) 4 (*) | 7 | |
8 | T0 | 7.12 | 12.3 | 277 | 61.5 | 25.6 | 9.6 | 2.7 | 6 | 127 | 1 | 12.75 | pos | ||
T1 | 7.41 | 11.7 | 258 | 61.9 | 23.9 | 10.5 | 3.2 | 2 | 81 | 0.39 | 12.75 | NEG | 6 | 9 | |
9 | T0 | 4.16 | 14.2 | 142 | 59.2 | 35.3 | 5 | 0 | 78 | 254 | 18 | 124.42 | pos | ||
T1 | 7.63 | 12.5 | ND | 66.1 | 23.3 | 7.6 | 2.5 | ND | ND | 13.3 | 14.76 | NEG | 10 | 8 | |
10 | T0 | 5.13 | 13.4 | 192 | 61.2 | 30.6 | 7.6 | 0.4 | 34 | 151 | 0.53 | 17.37 | pos | ||
T1 | 6.26 | 13 | 210 | 65.3 | 28.1 | 5.9 | 0.5 | 21 | 136 | 0.29 | 194.05 | POS | 6 | 7 | |
Normal range | 4–10 | 13.5–18.0 | 150–400 | 40–75 | 15–45 | 3–12 | 1–8 | 2–25 | 90–200 | < 5.00 | 0–10 | ||||
Mean T0 | 6.174 | 13.51 | 240.9 | 62.21 | 28.7 | 7.86 | 0.9 | 41.3 | 170.9 | 9.89 | 51.22 | 8.7 (**) | 9.2 | ||
Mean T1 | 7.414 | 13.28 | 289.667 | 65.2 | 25.95 | 6.68 | 1.69 | 22.11 | 136.22 | 2.97 | 7.26 | 6–13 (days) | 7–15 (days) | ||
SD T0 | 1.377 | 1.256 | 54.836 | 11.705 | 10.226 | 2.448 | 1.68 | 23.56 | 137.89 | 2.99 | 9.59 | ||||
SD T1 | 1.53 | 1.5 | 89.202 | 11.326 | 9.353 | 2.125 | 0.9 | 41.3 | 170.9 | 9.89 | 51.22 | ||||
T-test for paired data, bilateral, 2 tails | <0.05 | <0.05 | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bettuzzi, S.; Gabba, L.; Cataldo, S. Efficacy of a Polyphenolic, Standardized Green Tea Extract for the Treatment of COVID-19 Syndrome: A Proof-of-Principle Study. COVID 2021, 1, 2-12. https://doi.org/10.3390/covid1010002
Bettuzzi S, Gabba L, Cataldo S. Efficacy of a Polyphenolic, Standardized Green Tea Extract for the Treatment of COVID-19 Syndrome: A Proof-of-Principle Study. COVID. 2021; 1(1):2-12. https://doi.org/10.3390/covid1010002
Chicago/Turabian StyleBettuzzi, Saverio, Luigi Gabba, and Simona Cataldo. 2021. "Efficacy of a Polyphenolic, Standardized Green Tea Extract for the Treatment of COVID-19 Syndrome: A Proof-of-Principle Study" COVID 1, no. 1: 2-12. https://doi.org/10.3390/covid1010002