Viral Infection, COVID-19 in Pregnancy and Lactating Women: What Is Known?
Abstract
:1. Introduction
2. Methods
3. Pathogenesis of Viral Infections in Pregnancy
4. Viral Infection and Maternal Health
5. COVID-19 Virus Infection
6. Pathophysiology of COVID-19 Infection in Pregnancy
6.1. Changes in the Respiratory System
6.2. Changes in the Immune System
6.3. ACE2 Expression Increased during Pregnancy
7. Effects of Viral Infection on the Fetus
8. Care of Pregnant Patients with COVID-19
9. COVID-19 Infection, Pregnancy, and Therapy
9.1. Steroids
9.2. Azithromycin
9.3. Heparin
9.4. Chloroquine, Chloroquine Phosphate, and Hydroxychloroquine
9.5. Interferon
9.6. Antivirals
9.7. Monoclonal Antibody Therapy
10. The Management of SARS-CoV-2 in Neonatal Intensive Care Units
11. SARS-CoV-2 Infection and Breastfeeding
12. Vaccine and Pregnancy
13. Conclusions
14. Take Home Messages
- There are still no certain data on whether pregnancy increases susceptibility to COVID-19. Although the data were initially unclear whether pregnant people are at increased risk for serious complications from COVID-19, other evidence suggests an increased risk.
- Intrauterine transmission of SARS-CoV-2 has been documented [6], but appears to be rare. The reasons for this are unknown but may be related to the decreased expression of the ACE2 receptor and the TMPRSS2 serine protease that are required for SARS-CoV-2 cell entry. The role of other molecules such as neuropilin-1 (NRP1), has recently been demonstrated.
- Several pregnancy outcome studies suggest that premature birth may occur more often among babies born to individuals with COVID-19, although the results have been inconsistent.
- Hospitalization in an intensive care unit, invasive ventilation, extracorporeal membrane oxygenation, and death were all more likely among pregnant people than among non-pregnant women of reproductive age.
- Transmission via breast milk appears to be unlikely.
- Almost all vaccines are allowed during pregnancy if the benefits are expected to outweigh the potential risks, with the exception of live attenuated vaccines, which are contraindicated due to the theoretical risks of the virus crossing the placenta and infecting the fetus. Therefore, pregnant women who meet the criteria for receiving the COVID-19 vaccine can choose to be vaccinated.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Racicot, K.; Mor, G. Risks associated with viral infection during pregnancy. J. Clin. Investig. 2017, 127, 1591–1599. [Google Scholar] [CrossRef] [Green Version]
- Salzberger, B.; Myerson, D.; Boeckh, M. Circulating cytomegalovirus (CMV)-infected endothelial cells in marrow transplant patients with CMV disease and CMV infection. J. Infect. Dis. 1997, 176, 778–781. [Google Scholar] [CrossRef] [Green Version]
- Fisher, S.; Genbacev, O.; Maidji, E.; Pereira, L. Human cytomegalovirus infection of placental cytotrophoblasts in vitro and in utero: Implications for transmission and pathogenesis. J. Virol. 2000, 74, 6808–6820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tallarek, A.C.; Urbschat, C.; Brito, L.F. Inefficient Placental Virus Replication and Absence of Neonatal Cell-Specific Immunity Upon Sars-CoV-2 Infection During Pregnancy. Front. Immunol. 2021, 12, 698578. [Google Scholar] [CrossRef]
- Jamieson, D.J.; Theiler, R.N.; Rasmussen, S.A. Emerging infections and pregnancy. Emerg. Infect. Dis. 2006, 12, 1638–1643. [Google Scholar] [CrossRef] [PubMed]
- Price, M.E.; Fisher-Hoch, S.P.; Craven, R.B.; McCormick, J.B. A prospective study of maternal and fetal outcome in acute Lassa fever infection during pregnancy. BMJ 1988, 297, 584–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Racicot, K.; Aldo, P.; El-Guindy, A.; Kwon, J.Y.; Romero, R.; Mor, G. Cutting edge: Fetal/placental type I IFN can affect maternal survival fetal viral load during viral infection. J. Immunol. 2017, 198, 3029–3032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haake, D.A.; Zakowski, P.C.; Haake, D.L.; Bryson, Y.J. Early treatment with acyclovir for varicella pneumonia in otherwise healthy adults: Retrospective controlled study and review. Rev. Infect. Dis. 1990, 12, 788–798. [Google Scholar] [CrossRef]
- Paryani, S.G.; Arvin, A.M. Intrauterine infection with varicella-zoster virus after maternal varicella. N. Engl. J. Med. 1986, 314, 1542–1546. [Google Scholar] [CrossRef] [PubMed]
- Atmar, R.L.; Englund, J.A.; Hammill, H. Complications of measles during pregnancy. Clin. Infect. Dis. 1992, 14, 217–226. [Google Scholar] [CrossRef]
- Christensen, P.; Schmidt, H.; Bang, H.; Andersen, J.M.; Jordal, B.; Jensen, O. An epidemic of measles in southern Greenland, 1951; measles in virgin soil. II. The epidemic proper. Acta Med. Scand. 1953, 144, 430–449. [Google Scholar] [CrossRef]
- Anderson, B.L.; Rouse, D.J.; Fitzsimmons, C. Clinical characteristics of pregnant women with influenza-like illness during the 2009 H1N1 pandemic and use of a standardized management algorithm. Am. J. Obstet. Gynecol. 2011, 204 (Suppl. S1), S31–S37. [Google Scholar] [CrossRef] [Green Version]
- Ellington, S.R.; Hartman, L.K.; Acosta, M.; Martinez-Romo, M.; Rubinson, L.; Jamieson, D.J.; Louie, J. Pandemic 2009 influenza A (H1N1) in 71 critically ill pregnant women in California. Am. J. Obstet. Gynecol. 2011, 204 (Suppl. S1), S21–S30. [Google Scholar] [CrossRef]
- Jamieson, D.J.; Honein, M.A.; Rasmussen, S.A.; Williams, J.L.; Swerdlow, D.L.; Biggerstaff, M.S.; Lindstrom, S.; Louie, J.K.; Christ, C.M.; Bohm, S.R. H1N1 2009 influenza virus infection during pregnancy in the USA. Lancet 2009, 374, 451–458. [Google Scholar] [CrossRef]
- Louie, J.K.; Acosta, M.; Jamieson, D.J.; Honein, M.A.; California Pandemic (H1N1) Working Group. Severe 2009 H1N1 influenza in pregnant and postpartum women in California. N. Engl. J. Med. 2010, 362, 27–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, S.A.; Kissin, D.M.; Yeung, L.F.; MacFarlane, K.; Chu, S.Y.; Turcios-Ruiz, R.M.; Mitchell, E.W.; Williams, J.; Fry, A.M.; Hageman, J.; et al. Preparing for influenza after 2009 H1N1: Special considerations for pregnant women and newborns. Am. J. Obstet. Gynecol. 2011, 204 (Suppl. S1), S13–S20. [Google Scholar] [CrossRef] [PubMed]
- Compton, T.; Nowlin, D.M.; Cooper, N.R. Initiation of human cytomegalovirus infection requires initial interaction with cell surface heparan sulfate. Virology 1993, 193, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Feire, A.L.; Koss, H.; Compton, T. Cellular integrins function as entry receptors for human cytomegalovirus via a highly conserved disintegrin- like domain. Proc. Natl. Acad. Sci. USA 2004, 101, 15470–15475. [Google Scholar] [CrossRef] [Green Version]
- Isaacson, M.K.; Feire, A.L.; Compton, T. Epidermal growth factor receptor is not required for human cytomegalovirus entry or signaling. J. Virol. 2007, 81, 6241–6247. [Google Scholar] [CrossRef] [Green Version]
- Vanarsdall, A.L.; Wisner, T.W.; Lei, H.; Kazlauskas, A.; Johnson, D.C. PDGF receptor-α does not promote HCMV entry into epithelial and endothelial cells but increased quantities stimulate entry by an abnormal pathway. PLoS Pathog. 2012, 8, e1002905. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.; Maidji, E.; McDonagh, S.; Genbacev, O.; Fisher, S. Human cytomegalovirus transmission from the uterus to the placenta correlates with the presence of pathogenic bacteria and maternal immunity. J. Virol. 2003, 77, 13301–13314. [Google Scholar] [CrossRef] [Green Version]
- Finger-Jardim, F.; Teixeira, L.O.; de Oliveira, G.R.; Barral, M.F.; da Hora, V.P.; Gonçalves, C.V.; Soares, M.A.; de Martinez, A.M. Herpes simplex virus: Prevalence in placental tissue and incidence in neonatal cord blood samples. J. Med. Virol. 2014, 86, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Avgil, M.; Ornoy, A. Herpes simplex virus and Epstein-Barr virus infections in pregnancy: Consequences of neonatal or intrauterine infection. Reprod. Toxicol. 2006, 21, 436–445. [Google Scholar] [CrossRef]
- Granat, M.; Morag, A.; Margalioth, E.J.; Leviner, E.; Ornoy, A. Fetal outcome following primary herpetic gingivostomatitis in early pregnancy. Morphological study and updated appraisal. ISR J. Med. Sci. 1986, 22, 455–459. [Google Scholar] [PubMed]
- Grönroos, M.; Honkonen, E.; Terho, P.; Punnonen, R. Cervical and serum IgA and serum IgG antibodies to Chlamydia trachomatis and herpes simplex virus in threatened abortion: A prospective study. Br. J. Obstet. Gynaecol. 1983, 90, 167–170. [Google Scholar] [CrossRef]
- Koi, H.; Zhang, J.; Makrigiannakis, A.; Getsios, S.; MacCalman, C.D.; Strauss, J.F., 3rd; Parry, S. Syncytiotrophoblast is a barrier to maternal-fetal transmission of herpes simplex virus. Biol. Reprod. 2002, 67, 1572–1579. [Google Scholar] [CrossRef] [Green Version]
- Parry, S.; Holder, J.; Halterman, M.W.; Weitzman, M.D.; Davis, A.R.; Federoff, H.; Strauss, J.F., 3rd. Transduction of human trophoblastic cells by replication-deficient recombinant viral vectors. Promoting cellular differentiation affects virus entry. Am. J. Pathol. 1998, 152, 1521–1529. [Google Scholar]
- Bello, O.O.; Akinajo, O.R.; Odubamowo, K.H.; Oluwasola, T.A. Lassa fever in pregnancy: Report of 2 cases seen at the University College Hospital, Ibadan. Case Rep. Obstet. Gynecol. 2016, 2016, 9673683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, N.; Li, W.; Kang, Q.; Zeng, W.; Feng, L.; Wu, J. No SARS-CoV-2 detected in amniotic fluid in mid-pregnancy. Lancet Infect. Dis. 2020, 3099, 19–20. [Google Scholar] [CrossRef]
- Ferrazzi, E.; Frigerio, L.; Savasi, V.; Vergani, P.; Prefumo, F.; Barresi, S.; Bianchi, S.; Ciriello, E.; Facchinetti, F.; Gervasi, M.T. Vaginal delivery in SARS-CoV-2 infected pregnant women in Northern Italy: A retrospective analysis. BJOG 2020, 127, 1116–1121. [Google Scholar] [CrossRef]
- Yang, P.; Wang, X.; Liu, P.; Wei, C.; He, B.; Zheng, J.; Zhao, D. Clinical characteristics and risk assessment of newborns born to mothers with COVID-19. J. Clin. Virol. 2020, 127, 104356. [Google Scholar] [CrossRef]
- Wu, C.; Yang, W.; Wu, X.; Zhang, T.; Zhao, Y.; Ren, W.; Xia, J. Clinical Manifestation and Laboratory Characteristics of SARS-CoV-2 Infection in Pregnant Women. Virol. Sin. 2020, 35, 305–310. [Google Scholar] [CrossRef] [Green Version]
- Mayor, S. Covid-19: Nine in 10 pregnant women with infection when admitted for delivery are asymptomatic, small study finds. BMJ 2020, 369, m1485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabesch, M.; Roth, S.; Brandstetter, S.; Häusler, S.; Juraschko, E.; Weigl, M.; Wellmann, S.; Lang, T.; Schmidt, B.; Salzberger, B. Successful containment of COVID-19 outbreak in a large maternity and perinatal center while continuing clinical service. Pediatr. Allergy Immunol. 2020, 31, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Guo, J.; Fan, C.; Juan, J.; Yu, X.; Li, J.; Feng, L.; Li, C.; Chen, H.; Qiao, Y. Coronavirus disease 2019 (COVID-19) in pregnant women: A report based on 116 cases. Am. J. Obstet. Gynecol. 2020, 223, 111-e1. [Google Scholar] [CrossRef]
- Cao, D.; Liao, E.; Cao, D.; Gao, Y.; Sun, G.; Shao, Y. Clinical analysis of ten pregnant women with COVID-19 in Wuhan, China: A retrospective study. Int. J. Infect. Dis. 2020, 95, 294–300. [Google Scholar] [CrossRef]
- Tingle, J. COVID-19 safety in maternity care: Lessons for the whole NHS. Br. J. Nurs. 2020, 29, 486–487. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.T.; Tappis, H.; Spilotros, N.; Krause, S.; Knaster, S.; Inter-Agency Working Group on Reproductive Health in Crises. Not a luxury: A call to maintain sexual and reproductive health in humanitarian and fragile settings during the COVID-19 pandemic. Lancet Glob. Health 2020, 8, e760–e761. [Google Scholar] [CrossRef]
- Tang, K.; Gaoshan, J.; Ahonsi, B. Sexual and reproductive health (SRH): A key issue in the emergency response to the coronavirus disease (COVID- 19) outbreak. Reprod. Health 2020, 17, 59. [Google Scholar] [CrossRef]
- Buekens, P.; Alger, J.; Bréart, G.; Cafferata, M.L.; Harville, E.; Tomasso, G. A call for action for COVID-19 surveillance and research during pregnancy. Lancet Glob. Health 2020, 8, e877–e878. [Google Scholar] [CrossRef]
- Capello, F.; Liverani, A.; Valletta, E. Speciale COVID-19. Quad. ACP 2020, 3, 1–11. [Google Scholar]
- Breindahl, M.; Zachariassen, G.; Christensen, P.S.; Hinriksen, T.B. Dilemmas and Priorities in the Neonatal Intensive Care Unit during the COVID-19 Pandemic. Dan. Med. J. 2020, 67, 3–5. [Google Scholar]
- De Rose, D.U.; Reposi, M.P.; Amadio, P.; Auriti, C.; Dall’Oglio, I.; Corsetti, T.; Dotta, A.; Salvatori, G. Use of Disinfectant Wipes to Sanitize Milk’s Containers of Human Milk Bank During COVID-19 Pandemic. J. Hum. Lact. 2020, 36, 547–549. [Google Scholar] [CrossRef] [PubMed]
- Royal College of Obstetricians and Gynaecologists; The Royal College of Midwives UK; Royal College of Paediatrics and Child Health; Royal College of Anaesthetists & Obstetric Anaesthetists’ Association. Coronavirus (COVID-19) Infection in Pregnancy Information for Healthcare Professionals; Royal College of Obstetricians and Gynaecologists; The Royal College of Midwives UK; Royal College of Paediatrics and Child Health; Royal College of Anaesthetists & Obstetric Anaesthetists’ Association: London, UK, 2020. [Google Scholar]
- World Health Organization (WHO). FREQUENTLY ASKED QUESTIONS: Breastfeeding and COVID-19 For health care workers. J Hum. Lact. 2020, 36, 392–396. [Google Scholar]
- Società Italiana di Ginecologia e Ostetricia (SIGO); Associazione Ostetrici Ginecologi Ospedalieri Italiani (AOGOI); Associazione Ginecologi Universitari Italiani (AGUI); Federazione Nazionale degli Ordini della Professione di Ostetrica (FNOPO); Società Italiana di Neonatologia (SIN). Gravidanza e Parto in Epoca COVID-19: Consigli Pratici. 2020, pp. 1–9. Available online: www.sigo.it (accessed on 19 July 2021).
- Danza, A.; Ruiz-Irastorza, G.; Khamashta, M. Pregnancy in systemic autoimmune diseases: Myths, certainties and doubts. Med. Clin. 2016, 147, 306–312. [Google Scholar] [CrossRef]
- Pazos, M.; Sperling, R.S.; Moran, T.M.; Kraus, T.A. The influence of pregnancy on systemic immunity. Immunol. Res. 2012, 54, 254–261. [Google Scholar] [CrossRef]
- Zoller, A.L.; Schnell, F.J.; Kersh, G.J. Murine pregnancy leads to reduced proliferation of maternal thymocytes and decreased thymic emigration. Immunology 2007, 121, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Kraus, T.A.; Engel, S.M.; Sperling, R.S.; Kellerman, L.; Lo, Y.; Wallenstein, S.; Escribese, M.M.; Garrido, J.L.; Singh, T.; Loubeau, M.; et al. Characterizing the pregnancy immune phenotype: Results of the viral immunity and pregnancy (VIP) study. J. Clin. Immunol. 2012, 32, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.L.; Passaretti, C.; Anker, M.; Olukoya, P.; Pekosz, A. The impact of sex, gender and pregnancy on 2009 H1N1 disease. Biol. Sex Differ. 2010, 1, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siston, A.M.; Rasmussen, S.A.; Honein, M.A.; Fry, A.M.; Seib, K.; Callaghan, W.M.; Louie, J.; Doyle, T.J.; Crockett, M.; Lynfield, R.; et al. Pandemic 2009 influenza A(H1N1) virus illness among pregnant women in the United States. JAMA 2010, 303, 1517–1525. [Google Scholar] [CrossRef]
- Turner, A.J.; Hooper, N.M. The angiotensin-converting enzyme gene family: Genomics and pharmacology. Trends Pharmacol. Sci. 2002, 23, 177–183. [Google Scholar] [CrossRef]
- Zisman, L.S.; Keller, R.S.; Weaver, B.; Lin, Q.; Speth, R.; Bristow, M.R.; Canver, C.C. Increased angiotensin-(1-7)-forming activity in failing human heart ventricles: Evidence for upregulation of the angiotensin-converting enzyme homologue ACE2. Circulation 2003, 108, 1707–1712. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, M.; Kleine-Weber, H.; Krüger, N.; Müller, M.; Drosten, C.; Pöhlmann, S. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Levy, A.; Yagil, Y.; Bursztyn, M.; Barkalifa, R.; Scharf, S.; Yagil, C. ACE2 expression and activity are enhanced during pregnancy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R1953–R1961. [Google Scholar] [CrossRef] [Green Version]
- Valdés, G.; Neves, L.A.; Anton, L. Distribution of angiotensin-(1-7) and ACE2 in human placentas of normal and pathological pregnancies. Placenta 2006, 27, 200–207. [Google Scholar] [CrossRef]
- Jing, Y.; Run-Qian, L.; Hao-Ran, W. Potential influence of COVID-19/ACE2 on the female reproductive system. Mol. Hum. Reprod. 2020, 26, 367–373. [Google Scholar] [CrossRef]
- Li, M.; Chen, L.; Zhang, J.; Xiong, C.; Li, X. The SARS-CoV-2 receptor ACE2 expression of maternal-fetal interface and fetal organs by single-cell transcriptome study. PLoS ONE 2020, 15, e0230295. [Google Scholar] [CrossRef] [Green Version]
- Pique-Regi, R.; Romero, R.; Tarca, A. Does the human placenta express the canonical cell entry mediators for SARS-CoV-2? Elife 2020, 9, e58716. [Google Scholar] [CrossRef]
- Barthold, S.W.; Beck, D.S.; Smith, A.L. Mouse hepatitis virus and host determinants of vertical transmission and maternally-derived passive immunity in mice. Arch. Virol. 1988, 100, 171–183. [Google Scholar] [CrossRef]
- Dong, L.; Tian, J.; He, S. Possible vertical transmission of SARS-CoV-2 from an infected mother to her newborn. JAMA 2020, 323, 1846–1848. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.; Xu, C.; Fan, J. Antibodies in infants born to mothers with COVID-19 pneumonia. JAMA 2020, 323, 1848–1849. [Google Scholar] [CrossRef]
- Hosier, H.; Farhadian, S.F.; Morotti, R.A. SARS-CoV-2 infection of the placenta. J. Clin. Invest. 2020, 130, 4947–4953. [Google Scholar] [CrossRef]
- Baud, D.; Greub, G.; Favre, G. Second-trimester miscarriage in a pregnant woman with SARS-CoV-2 infection. JAMA 2020, 323, 2198–2200. [Google Scholar] [CrossRef]
- Kirtsman, M.; Diambomba, Y.; Poutanen, S.M. Probable congenital SARS-CoV-2 infection in a neonate born to a woman with active SARS-CoV-2 infection. CMAJ 2020, 192, E647–E650. [Google Scholar] [CrossRef]
- Patanè, L.; Morotti, D.; Giunta, M.R. Vertical transmission of COVID-19: SARS-CoV-2 RNA on the fetal side of the placenta in pregnancies with COVID-19 positive mothers and neonates at birth. Am. J. Obstet. Gynecol. MFM 2020, 2, 100145. [Google Scholar] [CrossRef]
- Vivanti, A.J.; Vauloup-Fellous, C.; Prevot, S. Transplacental transmission of SARS-CoV-2 infection. Nat. Commun. 2020, 11, 3572. [Google Scholar] [CrossRef]
- Zhao, X.; Jiang, Y.; Zhao, Y.; Xi, H.; Liu, C.; Qu, F.; Feng, X. Analysis of the susceptibility to COVID-19 in pregnancy and recommendations on potential drug screening. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1209–1220. [Google Scholar] [CrossRef]
- Kyrou, I.; Randeva, H.S.; Spandidos, D.A.; Karteris, E. Not only ACE2-the quest for additional host cell mediators of SARS-CoV-2 infection: Neuropilin-1 (NRP1) as a novel SARS-CoV-2 host cell entry mediator implicated in COVID-19. Signal. Transduct. Target Ther. 2021, 6, 21. [Google Scholar] [CrossRef]
- Muldoon, K.M.; Fowler, K.B.; Pesch, M.H.; Schleiss, M.R. SARS-CoV-2: Is it the newest spark in the TORCH? J. Clin. Virol. 2020, 2020 127, 104372. [Google Scholar] [CrossRef]
- Chen, H.; Guo, J.; Wang, C.; Luo, F.; Yu, X.; Zhang, W.; Li, J.; Zhao, D.; Xu, D.; Gong, Q.; et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 2020, 395, 809–815. [Google Scholar] [CrossRef] [Green Version]
- Salaun, B.; Romero, P.; Lebecque, S. Toll-like receptors’ two-edged sword: When immunity meets apoptosis. Eur. J. Immunol. 2007, 37, 3311–3318. [Google Scholar] [CrossRef]
- Madsen-Bouterse, S.A.; Romero, R.; Tarca, A.L.; Kusanovic, J.P.; Espinoza, J.; Kim, C.J.; Kim, J.; Edwin, S.S.; Gomez, R.; Draghici, S. The transcriptome of the fetal inflammatory response syndrome. Am. J. Reprod. Immunol. 2010, 63, 73–92. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.K.; Shikes, R.H.; Sze, C.I.; Leslie, K.K.; McDuffie, R.J.; Romero, R.; Gibbs, R.S. Histologic inflammation in the maternal and fetal compartments in a rabbit model of acute intra-amniotic infection. Am. J. Obstet. Gynecol. 2000, 183, 1088–1093. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Smith, S.E.; Malkova, N.; Tse, D.; Su, Y.; Patterson, P.H. Activation of the maternal immune system alters cerebellar development in the offspring. Brain. Behav. Immun. 2009, 23, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.E.; Li, J.; Garbett, K.; Mirnics, K.; Patterson, P.H. Maternal immune activation alters fetal brain development through interleukin-6. J. Neurosci. 2007, 27, 10695–10702. [Google Scholar] [CrossRef] [Green Version]
- Sardu, C.; Gambardella, J.; Morelli, M.B.; Wang, X.; Marfella, R.; Santulli, G. Hypertension, thrombosis, kidney failure, and diabetes: Is COVID-19 an endothelial disease? A comprehensive evaluation of clinical and basic evidence. J. Clin. Med. 2020, 9, 1417. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.J.; Wei, Z.Y.; Qian, H.Y.; Huang, J.; Lodato, R.; Castriotta, R.J. Pathophysiological characteristics and therapeutic approaches for pulmonary injury and cardiovascular complications of coronavirus disease 2019. Cardiovasc. Pathol. 2020, 47, 107228. [Google Scholar] [CrossRef] [PubMed]
- Iba, T.; Levy, J.H.; Levi, M.; Connors, J.M.; Thachil, J. Coagulopathy of coronavirus disease 2019. Crit. Care Med. 2020, 48, 1358–1364. [Google Scholar] [CrossRef]
- Kirollos, S.; Skilton, M.; Patel, S.; Arnott, C. A systematic review of vascular structure and function in pre-eclampsia: Non-invasive assessment and mechanistic links. Front. Cardiovasc. Med. 2019, 6, 166. [Google Scholar] [CrossRef]
- Valdespino-Vázquez, M.Y.; Helguera-Repetto, C.A.; León-Juárez, M.; Villavicencio-Carrisoza, O.; Flores-Pliego, A.; Moreno-Verduzco, E.R.; Díaz-Pérez, D.L.; Villegas-Mota, I.; Carrasco-Ramírez, E.; López-Martínez, I.E.; et al. Fetal and placental infection with SARS-CoV-2 in early pregnancy. J. Med. Virol. 2021, 93, 4480–4487. [Google Scholar] [CrossRef] [PubMed]
- Elshafeey, F.; Magdi, R.; Hindi, N.; Elshebiny, M.; Farrag, N.; Mahdy, S.; Sabbour, M.; Gebril, S.; Nasser, M.; Kamel, M.; et al. A systematic scoping review of COVID-19 during pregnancy and childbirth. Int. J. Gynecol. Obstet. 2020, 150, 47–52. [Google Scholar] [CrossRef]
- Bardon, V.F.; Salomon, L.J.; Leruez-Ville, M.; Ville, Y. How should we treat pregnant women infected with SARS-CoV-2? BJOG 2020, 127, 1050–1052. [Google Scholar] [CrossRef] [Green Version]
- Abbas, A.M.; Ahmed, O.A.; Shaltout, A.S. Hydatidiform mole in the era of COVID-19 pandemic. Is there an association? Am. J. Reprod. Immunol. 2020, 84, e13253. [Google Scholar] [CrossRef] [PubMed]
- Joneborg, U.; Marion, L. Current clinical features of complete e partial hydatiform mole in Sweden. J. Reprod. Med. 2014, 59, 51. [Google Scholar] [PubMed]
- Villar, A.S.; Gunier, R.B.; Thiruvengadam, R.; Rauch, S.; Kholin, A.; Roggero, P.; Prefumo, F.; Silva do Vale, M.; Cardona-Perez, J.A. Maternal and Neonatal Morbidity and Mortality Among Pregnant Women With and Without COVID-19 Infection: The INTERCOVID Multinational Cohort Study. JAMA Pediatr. 2021, 175, 817–826. [Google Scholar] [CrossRef] [PubMed]
- COVIDSurg Collaborative Group. GlobalSurg Collaborative. Timing of surgery following SARS-CoV-2 infection: An international prospective cohort study. Anaesthesia 2021, 76, 748–758. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Public health management of persons, including healthcare workers, having had contact with COVID-19 cases in the European Union. ECDC 2020. [Google Scholar] [CrossRef]
- Kang, Y.; Deng, L.; Zhang, D.; Wang, Y.; Wang, G.; Mei, L.; Zhou, G.; Shu, H. A practice of anesthesia scenario design for emergency cesarean section in patients with COVID-19 infection based on the role of standard patient. Biosci. Trends. 2020, 14, 222–226. [Google Scholar] [CrossRef] [Green Version]
- COVIDSurg Collaborative Group; GlobalSurg Collaborative. SARS-CoV-2 vaccination modelling for safe surgery to save lives: Data from an international prospective cohort study. Br. J. Surg. 2021, znab10. [Google Scholar] [CrossRef]
- Berard, A.; Sheehy, O.; Zhao, J.-P.; Vinet, E.; Quach, C.; Kassai, B.; Bernatsky, S. Available medications used as potential therapeutics for COVID-19: What are the known safety profiles in pregnancy. PLoS ONE 2021, 16, e0251746. [Google Scholar] [CrossRef]
- Palmsten, K.; Bandoli, G.; Vazquez-Benitez, G.; Xi, M.; Johnson, D.L.; Xu, R.; Chambers, C.D. Oral corticosteroid use during pregnancy and risk of preterm birth. Rheumatology 2020, 59, 1262–1271. [Google Scholar] [CrossRef]
- Carmichael, S.L.; Shaw, G.M. Maternal corticosteroid use and risk of selected congenital anomalies. Am. J. Med. Genet. 1999, 86, 242–244. [Google Scholar] [CrossRef]
- Carmichael, S.L.; Shaw, G.M.; Ma, C.; Werler, M.M.; Rasmussen, S.A.; Lammer, E.J.; National Birth Defects Prevention, S. Maternal corticosteroid use and orofacial clefts. Am. J. Obstet. Gynecol. 2007, 197, 585-e1. [Google Scholar] [CrossRef] [PubMed]
- Pradat, P.; Robert-Gnansia, E.; Di Tanna, G.L.; Rosano, A.; Lisi, A.; Mastroiacovo, P. First trimester exposure to corticosteroids and oral clefts. Birth Defects Res. A Clin. Mol. Teratol. 2003, 67, 968–970. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Pinilla, E.; Martinez-Frias, M.L. Corticosteroids during pregnancy and oral clefts: A case-control study. Teratology 1998, 58, 2–5. [Google Scholar] [CrossRef]
- Park-Wyllie, L.; Mazzotta, P.; Pastuszak, A.; Moretti, M.E.; Beique, L.; Hunnisett, L.; Friesen, M.H.; Jacobson, S.; Kasapinovic, S.; Chang, D.; et al. Birth defects after maternal exposure to corticosteroids: Prospective cohort study and meta-analysis of epidemiological studies. Teratology 2000, 62, 385–392. [Google Scholar] [CrossRef]
- Bandoli, G.; Palmsten, K.; Forbess Smith, C.J.; Chambers, C.D. A Review of Systemic Corticosteroid Use in Pregnancy and the Risk of Select Pregnancy and Birth Outcomes. Rheum. Dis. Clin. N. Am. 2017, 43, 489–502. [Google Scholar] [CrossRef]
- Skuladottir, H.; Wilcox, A.J.; Ma, C.; Lammer, E.J.; Rasmussen, S.A.; Werler, M.M.; Shaw, G.M.; Carmichael, S.L. Corticosteroid use and risk of orofacial clefts. Birth Defects Res. A Clin. Mol. Teratol. 2014, 100, 499–506. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Gilbert, R.; O’Callaghan, F.; Li, L. Associations between macrolide antibiotics prescribing during pregnancy and adverse child outcomes in the UK: Population based cohort study. BMJ 2020, 368, m331. [Google Scholar] [CrossRef] [Green Version]
- Kallen, B.; Danielsson, B.R. Fetal safety of erythromycin. An update of Swedish data. Eur. J. Clin. Pharmacol. 2014, 70, 355–360. [Google Scholar] [CrossRef]
- Ginsberg, J.S.; Hirsh, J.; Turner, D.C.; Levine, M.N.; Burrows, R. Risks to the fetus of anticoagulant therapy during pregnancy. Thromb. Haemost. 1989, 61, 197–203. [Google Scholar] [CrossRef]
- Shlomo, M.; Gorodischer, R.; Daniel, S.; Wiznitzer, A.; Matok, I.; Fishman, B.; Koren, G.; Levy, A. The Fetal Safety of Enoxaparin Use During Pregnancy: A Population-Based Retrospective Cohort Study. Drug Saf. 2017, 40, 1147–1155. [Google Scholar] [CrossRef]
- Keyaerts, E.; Vijgen, L.; Maes, P.; Neyts, J.; Van Ranst, M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem. Biophys. Res. Commun. 2004, 323, 264–268. [Google Scholar] [CrossRef]
- Keyaerts, E.; Li, S.; Vijgen, L.; Rysman, E.; Verbeeck, J.; Van Ranst, M.; Maes, P. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrob. Agents Chemother. 2009, 53, 3416–3421. [Google Scholar] [CrossRef] [Green Version]
- Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J. 2005, 2, 69. [Google Scholar] [CrossRef] [Green Version]
- Klumpp, T.G. Safety of chloroquine in pregnancy. JAMA 1965, 191, 765. [Google Scholar] [CrossRef]
- Lacroix, I.; Benévént, J.; Damase-Michel, G. Chloroquine and hydroxychloroquine during pregnancy: What do we know? Therapie 2020, 75, 384–385. [Google Scholar] [CrossRef]
- Moriguchi, H.; Sato, C. Treatment of SARS with human interferons. Lancet 2003, 362, 1159. [Google Scholar] [CrossRef]
- Yazdani, B.P.; Matok, I.; Garcia, B.F.; Koren, G. A systematic review of the fetal safety of interferon alpha. Reprod. Toxicol. 2012, 33, 265–268. [Google Scholar] [CrossRef]
- Chu, C.M.; Cheng, V.C.; Hung, I.F.; Wong, M.M.; Chan, K.H.; Chan, K.S.; Kao, R.Y.; Poon, L.L.; Wong, C.L.; Guan, Y.; et al. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax 2004, 59, 252–256. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Shen, R.; Guo, X. Molecular modeling evaluation of the binding abilities of ritonavir and lopinavir to Wuhan pneumonia coronavirus proteases. bioRxiv 2020. [Google Scholar] [CrossRef]
- Powis, K.M.; Kitch, D.; Ogwu, A.; Hughes, M.D.; Lockman, S.; Leidner, J.; van Widenfelt, E.; Moffat, C.; Moyo, S.; Makhema, J.; et al. Increased risk of preterm delivery among HIV-infected women randomized to protease versus nucleoside reverse transcriptase inhibitor-based HAART during pregnancy. J. Infect. Dis. 2011, 204, 506–514. [Google Scholar] [CrossRef]
- Jorgensen, S.C.J.; Kebriaei, R.; Dresser, L.D. Remdesivir: Review of Pharmacology, Pre-clinical Data, and Emerging Clinical Experience for COVID-19. Pharmacotherapy 2020, 40, 659–671. [Google Scholar] [CrossRef]
- Burwick, R.M.; Yawetz, S.; Stephenson, K.E.; Collier, A.-R.Y.; Sen, P.; Blackburn, B.G.; Kojic, E.M.; Hirshberg, A.; Suarez, J.F.; Sobieszczyk, M.E. Compassionate Use of Remdesivir in Pregnant Women with Severe Covid-19. Clin. Infect. Dis. 2020, 2020, ciaa1466. [Google Scholar] [CrossRef]
- Jiménez-Lozano, I.; Caro-Teller, J.M.; Fernández-Hidalgo, N.; Miarons, M.; Frick, M.A.; Badia, E.B.; Serrano, B.; Parramon-Teixidó, C.J.; Camba-Longueira, F.; Moral-Pumarega, M.T. Safety of tocilizumab in COVID-19 pregnant women and their newborn: A retrospective study. J. Clin. Pharm. Ther. 2021, 46, 1062–1070. [Google Scholar] [CrossRef]
- REMAP-CAP Investigators. Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19. N. Engl. J. Med. 2021, 384, 1491–1502. [Google Scholar] [CrossRef]
- WHO. Meeting of the Strategic Advisory Group of Experts on Immunization. April 2015: Conclusions and recommendations. Relev. Epidemiol. Hebd. 2015, 90, 261–278. [Google Scholar]
- Centers for Disease Control and Prevention. Guidelines for Vaccinating Pregnant Women. October 2012. Available online: http://www.cdc.gov/vaccines/pubs/downloads/b_preg_guide.pdf (accessed on 6 November 2012).
- Centers for Disease Control and Prevention (CDC). Updated recommendations for use of tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis vaccine (Tdap) in pregnant women—Advisory Committee on Immunization Practices (ACIP). MWR Morb. Mortal. Wkly. Rep. 2013, 62, 131–135. [Google Scholar]
- Mast, E.E.; Margolis, H.S.; Fiore, A.E. A comprehensive immunization strategy to eliminate transmission of hepatitis B virus infection in the United States: Recommendations of the Advisory Committee on Immunization Practices (ACIP) part 1: Immunization of infants, children, and adolescents. MMWR Morb. Mortal. Wkly. Rep. 2007, 56, 1267. [Google Scholar]
- World Health Organization. Vaccines against influenza. WHO position paper. Wkly. Epidemiol. Rec. 2012, 47, 461–476. [Google Scholar]
Risk Related COVID-19 | Vaccine in Pregnancy | Medications |
---|---|---|
Severe COVID-19 Hospitalized Increased risk for intensive care unit (ICU) admission and mechanical ventilation | Missing data on safety and efficacy during pregnancy | Scarce evidence available |
Population | Vaccine | Type of Vaccine |
---|---|---|
All pregnant women | Influenza Tetanus Diphtheria, and acellular Pertussis COVID-19 | Inactive Toxoid, Inactive Current vaccine |
Pregnant women at risk | Hepatitis A e B Meningococcal Pneumococcal Human Papilloma Virus Tetanus and Diphteria COVID-19 | Inactive Inactive Inactive Inactive Toxoid Current vaccine |
Postpartum | Measles, Mumps, and Rubella Varicella | Live Live |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciarambino, T.; Crispino, P.; Giordano, M. Viral Infection, COVID-19 in Pregnancy and Lactating Women: What Is Known? COVID 2021, 1, 230-245. https://doi.org/10.3390/covid1010019
Ciarambino T, Crispino P, Giordano M. Viral Infection, COVID-19 in Pregnancy and Lactating Women: What Is Known? COVID. 2021; 1(1):230-245. https://doi.org/10.3390/covid1010019
Chicago/Turabian StyleCiarambino, Tiziana, Pietro Crispino, and Mauro Giordano. 2021. "Viral Infection, COVID-19 in Pregnancy and Lactating Women: What Is Known?" COVID 1, no. 1: 230-245. https://doi.org/10.3390/covid1010019
APA StyleCiarambino, T., Crispino, P., & Giordano, M. (2021). Viral Infection, COVID-19 in Pregnancy and Lactating Women: What Is Known? COVID, 1(1), 230-245. https://doi.org/10.3390/covid1010019