Does Changing a Scale’s Context Impact Its Psychometric Properties? A Comparison Using the PERMA-Profiler and the Workplace PERMA-Profiler
Abstract
:1. Introduction
2. Methods
2.1. Participants and Procedure
2.2. Measures
2.3. Statistical Analyses
3. Results
4. Discussion
4.1. Limitations and Future Directions
4.2. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butler, J.; Kern, M.L. The PERMA-Profiler: A brief multidimensional measure of flourishing. Int. J. Wellbeing 2016, 6, 1–48. [Google Scholar] [CrossRef]
- Kern, M.L. The Workplace PERMA Profiler. 2013. Available online: https://www.peggykern.org/uploads/5/6/6/7/56678211/workplace_perma_profiler_102014.pdf (accessed on 3 March 2024).
- Seligman, M.E.P. Flourish: A Visionary New Understanding of Happiness and Well-Being; Simon & Schuster: New York, NY, USA, 2011. [Google Scholar]
- Dagenais-Desmarais, V.; Savoie, A. What is psychological well-being, really? A grassroots approach from the organizational sciences. J. Happiness Stud. 2012, 13, 659–684. [Google Scholar] [CrossRef]
- Luthans, F.L.; Avolio, B.J.; Avey, J.A. Psychological Capital Questionnaire (PsyCap); [Database Record]; APA PsycTests: 2007. Available online: https://doi.org/10.1037/t06483-000 (accessed on 3 March 2024).
- Lorenz, T.; Beer, C.; Pütz, J.; Heinlitz, K. Measuring psychological capital: Construction and validation of the Compound PsyCap Scale (CPC-12). PLoS ONE 2016, 11, e0152892. [Google Scholar] [CrossRef]
- Culbertson, S.S.; Fullagar, C.J.; Mills, M.J. Feeling good and doing great: The relationship between psychological capital and well-being. J. Occup. Health Psychol. 2010, 15, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Ryff, C.D. Happiness is everything or is it? Explorations on the meaning of psychological wellbeing. J. Personal. Soc. Psychol. 1989, 57, 1069–1081. [Google Scholar] [CrossRef]
- Watanabe, K.; Kawakami, N.; Adachi, H.; Matsumoto, K.; Imamura, K.; Matsumoto, K.; Yamagami, F.; Fusejima, A.; Muraoka, T.; Kagami, T.; et al. The Japanese Workplace PERMA-Profiler: A validation study among Japanese workers. J. Occup. Health 2018, 60, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.P.; Suh, C.; Yang, J.W.; Ye, B.J.; Lee, C.K.; Son, B.C.; Choi, M. Korean translation and validation of the Workplace Positive emotion, Engagement, Relationships, Meaning, and Accomplishment (PERMA)-Profiler. Ann. Occup. Environ. Med. 2019, 31, e17. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, W.P.; Hu, X.; Garden, R.; Xie, X. Toward a more PERMA(nent) conceptualization of worker well-being? A cross-cultural study of the Workplace PERMA-Profiler. J. Pers. Pscyhol. 2021, 21, 94–100. [Google Scholar] [CrossRef]
- Jimenez, W.P.; Hu, X.; Garden, R.; Zeytonli, A. The potential and peculiarities of PERMA: A meta-analysis of two well-being measures with working samples. J. Pers. Psychol. 2024, 23, 49–57. [Google Scholar] [CrossRef]
- Holder, M.D.; Klassen, A. Temperament and happiness in children. J. Happiness Stud. 2010, 11, 419–439. [Google Scholar] [CrossRef]
- Lyubomirsky, S.; Lepper, H.S. A measure of subjective happiness: Preliminary reliability and construct validation. Soc. Indic. Res. 1999, 46, 137–155. [Google Scholar] [CrossRef]
- Tkach, C.; Lyubomirsky, S. How do people pursue happiness?: Relating personality, happiness-increasing strategies, and well-being. J. Happiness Stud. 2006, 7, 183–225. [Google Scholar] [CrossRef]
- Layous, K.; Nelson, S.K.; Oberle, E.; Schonert-Reichl, K.A.; Lyubomirsky, S. Kindness counts: Prompting prosocial behavior in preadolescents boosts peer acceptance and well-being. PLoS ONE 2012, 7, e51380. [Google Scholar] [CrossRef] [PubMed]
- Tóth, M.D.; Ihionvien, S.; Leduc, C.; Aust, B.; Amann, B.L.; Cresswell-Smith, J.; Reich, H.; Cully, G.; Sanches, S.; Fanaj, N.; et al. Evidence for the effectiveness of interventions to reduce mental health related stigma in the workplace: A systematic review. BMJ Open 2023, 13, e067126. [Google Scholar] [CrossRef] [PubMed]
- Di Sante, J.; Akeson, B.; Gossack, A.; Knäuper, B. Efficacy of ACT-based treatments for dysregulated eating behaviours: A systematic review and meta-analysis. Appetite 2022, 171, 105929. [Google Scholar] [CrossRef] [PubMed]
- Peer, E.; Vosgerau, J.; Acquisti, A. Reputation as a sufficient condition for data quality on Amazon Mechanical Turk. Behav. Res. Methods 2014, 46, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Rhemtulla, M.; Brosseau-Liard, P.E.; Savalei, V. When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychol. Methods 2012, 17, 354–373. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.A. Confirmatory Factor Analysis for Applied Research, 2nd ed.; Guilford Press: New York, NY, USA, 2015. [Google Scholar]
- Vandenberg, R.J.; Lance, C.E. A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations. Organ. Res. Methods 2000, 3, 4–70. [Google Scholar] [CrossRef]
- Chmielewski, M.; Kucker, S.C. An MTurk crisis? Shifts in data quality and the impact on study results. Soc. Psychol. Personal. Sci. 2019, 11, 464–473. [Google Scholar] [CrossRef]
- Kees, J.; Berry, C.; Burton, S.; Sheehan, K. An analysis of data quality: Professional panels, student subject pools, and Amazon’s Mechanical Turk. J. Advert. 2017, 46, 141–155. [Google Scholar] [CrossRef]
- Moss, A.J.; Rosenzweig, C.; Robinson, J.; Jaffe, S.N.; Litman, L. Is it ethical to use Mechanical Turk for behavioral research? Relevant data from a representative survey of MTurk participants and wages. Behav. Res. Methods 2023, 55, 4048–4067. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.F.; Keith, M.; Thornton, M.A. Amazon Mechanical Turk for industrial and organizational psychology: Advantages, challenges, and practical recommendations. Ind. Organ. Psychol. 2015, 8, 171–179. [Google Scholar] [CrossRef]
- Smith, S.M.; Roster, C.A.; Golden, L.L.; Albaum, G.S. A multi-group analysis of online survey respondent data quality: Comparing a regular USA consumer panel to MTurk samples. J. Bus. Res. 2016, 69, 3139–3148. [Google Scholar] [CrossRef]
- Coppock, A. Generalizing from survey experiments conducted on Mechanical Turk: A replication approach. Political Sci. Res. Methods 2019, 7, 613–628. [Google Scholar] [CrossRef]
- Nadler, J.; Baumgartner, S.; Washington, M. MTurk for working samples: Evaluation of data quality 2014–2020. N. Am. J. Psychol. 2021, 23, 741–752. [Google Scholar]
- Rouse, S.V. A reliability analysis of Mechanical Turk data. Comput. Hum. Behav. 2015, 43, 304–307. [Google Scholar] [CrossRef]
- Hauser, D.J.; Moss, A.J.; Rosenzweig, C.; Jaffe, S.N.; Robinson, J.; Litman, L. Evaluating CloudResearch’s Approved Group as a solution for problematic data quality on MTurk. Behav. Res. Methods 2023, 55, 3953–3964. [Google Scholar] [CrossRef] [PubMed]
- Bazargan-Hejazi, S.; Shirazi, A.; Wang, A.; Shlobin, N.A.; Karunungan, K.; Shulman, J.; Marzio, R.; Ebrahim, G.; Shay, W.; Slavin, S. Contribution of a positive psychology-based conceptual framework in reducing physician burnout and improving well-being: A systematic review. BMC Med. Educ. 2021, 21, 593. [Google Scholar] [CrossRef]
- Kern, M.L.; Waters, L.; Adler, A.; White, M. Assessing employee wellbeing in schools using a multifaceted approach: Associations with physical health, life satisfaction, and professional thriving. Psychology 2014, 5, 500–513. [Google Scholar] [CrossRef]
Variable | Mean (SD) or n (%) |
---|---|
Age (years) | 35.39 (9.91) |
Gender (female) | 232 (38.60%) |
Race/Ethnicity | |
Black | 80 (13.31%) |
Native American | 1 (0.17%) |
White | 411 (68.39%) |
Asian | 37 (6.16%) |
Hispanic/Latino | 40 (6.66%) |
Multiracial | 31 (5.16%) |
Other/Missing Data | 1 (0.17%) |
Relationship Status | 1 (7.14%) |
Married | 255 (42.43%) |
Separated/Divorced | 50 (8.32%) |
Widowed | 2 (0.33%) |
Never Married | 294 (48.92%) |
Education | |
High-School Diploma or GED | 65 (10.87%) |
Some College or Technical School | 184 (30.77%) |
Bachelor’s Degree | 262 (43.81%) |
Some Graduate School | 22 (3.68%) |
Graduate or Professional Degree | 65 (10.87%) |
Income a | USD 62,000 (39,000) |
PERMA-Profiler (range 0–10) b | |
Positive Emotions | 6.54 (2.40) |
Engagement | 6.75 (1.84) |
Relationships | 7.11 (2.42) |
Meaning | 6.87 (2.57) |
Accomplishment | 6.98 (2.00) |
Workplace PERMA-Profiler (range 0–10) b | |
Positive Emotions | 6.22 (2.52) |
Engagement | 6.21 (2.36) |
Relationships | 7.07 (2.37) |
Meaning | 6.79 (2.58) |
Accomplishment | 7.35 (1.88) |
Model | Χ2 | df | CFI | SRMR | Δχ2 | Δdf | p-Value |
---|---|---|---|---|---|---|---|
PERMA-Profiler | 425.90 | 80 | 0.959 | 0.033 | -- | -- | -- |
Workplace PERMA-Profiler | 495.43 | 80 | 0.948 | 0.041 | -- | -- | -- |
Configural | 1583.83 | 379 | 0.933 | 0.045 | -- | -- | -- |
First-Order Metric | 1695.86 | 389 | 0.927 | 0.056 | 112.03 | 10 | <0.01 |
Second-Order Metric | 1785.24 | 393 | 0.923 | 0.068 | 89.38 | 4 | <0.01 |
Scalar | 2044.46 | 408 | 0.909 | 0.076 | 259.22 | 15 | <0.01 |
Partial Scalar | 1208.52 | 357 | 0.953 | 0.040 | 10.54 | 5 | 0.06 |
Factor Variance | 1260.16 | 362 | 0.950 | 0.049 | 51.64 | 5 | <0.01 |
Partial Factor Variance | 1215.73 | 360 | 0.952 | 0.041 | 7.21 | 3 | 0.06 |
Factor Covariance | 1382.20 | 370 | 0.944 | 0.050 | 166.47 | 10 | <0.01 |
Partial Factor Covariance | 1215.76 | 361 | 0.953 | 0.041 | 0.03 | 1 | 0.86 |
PERMA-Profiler | Workplace PERMA-Profiler | |||||||
---|---|---|---|---|---|---|---|---|
Factor Items a | U-Load | SE | Std Load | Intercept | U-Load | SE | Std Load | Intercept |
Positive Emotions | ||||||||
P1 c | 2.25 | 0.09 | 0.82 | 6.01 | 2.42 | 0.10 | 0.81 | 5.43 |
P2 | 2.15 | 0.08 | 0.88 | 6.79 | 2.28 | 0.08 | 0.89 | 6.65 |
P3 | 2.37 | 0.09 | 0.85 | 6.82 | 2.42 | 0.10 | 0.84 | 6.56 |
Engagement | ||||||||
E1 c | 1.32 | 0.08 | 0.62 | 7.04 | 1.72 | 0.09 | 0.71 | 6.89 |
E2 | 2.22 | 0.09 | 0.88 | 6.96 | 2.79 | 0.10 | 0.93 | 6.18 |
E3 b | 0.84 | 0.10 | 0.33 | 6.25 | 1.82 | 0.11 | 0.63 | 5.53 |
Relationships | ||||||||
R1 c | 1.91 | 0.09 | 0.75 | 6.97 | 2.03 | 0.09 | 0.82 | 7.16 |
R2 c | 2.52 | 0.08 | 0.95 | 7.29 | 2.38 | 0.08 | 0.91 | 6.98 |
R3 | 2.48 | 0.09 | 0.91 | 7.09 | 2.39 | 0.08 | 0.91 | 7.04 |
Meaning | ||||||||
M1 | 2.49 | 0.08 | 0.95 | 6.82 | 2.68 | 0.09 | 0.92 | 6.55 |
M2 | 2.36 | 0.09 | 0.87 | 6.91 | 2.55 | 0.09 | 0.90 | 6.76 |
M3 b,c | 2.66 | 0.09 | 0.94 | 6.88 | 2.21 | 0.09 | 0.84 | 7.02 |
Accomplishment | ||||||||
A1 | 2.13 | 0.08 | 0.89 | 6.51 | 2.12 | 0.08 | 0.89 | 6.84 |
A2 | 1.95 | 0.08 | 0.86 | 6.72 | 1.87 | 0.08 | 0.83 | 7.15 |
A3 b | 1.54 | 0.07 | 0.73 | 7.72 | 1.11 | 0.08 | 0.56 | 8.03 |
Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
1. Positive Emotions | -- | ||||||||
2. W-Positive Emotions | 0.81 | -- | |||||||
3. Engagement | 0.96 | 0.83 | -- | ||||||
4. W-Engagement | 0.70 | 0.91 | 0.79 | -- | |||||
5. Relationships | 0.86 | 0.73 | 0.83 | 0.61 | -- | ||||
6. W-Relationships | 0.67 | 0.86 | 0.67 | 0.76 | 0.61 | -- | |||
7. Meaning | 0.87 | 0.75 | 0.90 | 0.71 | 0.75 | 0.74 | -- | ||
8. W-Meaning | 0.69 | 0.90 | 0.75 | 0.96 | 0.61 | 0.78 | 0.74 | -- | |
9. Accomplishment | 0.91 | 0.79 | 0.93 | 0.73 | 0.76 | 0.78 | 0.93 | 0.74 | -- |
10. W-Accomplishment | 0.68 | 0.82 | 0.74 | 0.81 | 0.65 | 0.81 | 0.72 | 0.85 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rice, S.P.M. Does Changing a Scale’s Context Impact Its Psychometric Properties? A Comparison Using the PERMA-Profiler and the Workplace PERMA-Profiler. Merits 2024, 4, 109-117. https://doi.org/10.3390/merits4020008
Rice SPM. Does Changing a Scale’s Context Impact Its Psychometric Properties? A Comparison Using the PERMA-Profiler and the Workplace PERMA-Profiler. Merits. 2024; 4(2):109-117. https://doi.org/10.3390/merits4020008
Chicago/Turabian StyleRice, Sean P. M. 2024. "Does Changing a Scale’s Context Impact Its Psychometric Properties? A Comparison Using the PERMA-Profiler and the Workplace PERMA-Profiler" Merits 4, no. 2: 109-117. https://doi.org/10.3390/merits4020008
APA StyleRice, S. P. M. (2024). Does Changing a Scale’s Context Impact Its Psychometric Properties? A Comparison Using the PERMA-Profiler and the Workplace PERMA-Profiler. Merits, 4(2), 109-117. https://doi.org/10.3390/merits4020008