Citrus-Derived Carbon Quantum Dots: Synthesis, Characterization, and Safety Evaluation in Zebrafish (Danio rerio) for Potential Biomedical and Nutritional Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Lemon Extract
2.2. Synthesis of CQDs
2.3. Characterization of CQDs
2.4. Experimental Study and Feed Preparation
3. Results and Discussion
3.1. Optical Characterization
3.2. SEM and TEM Image Analysis
3.3. EDX Analysis
3.4. FT-IR Analysis
3.5. Effect of CQD-Supplemented Feed on Zebrafish Growth and Condition Factor
3.5.1. Condition Factor
3.5.2. Growth Performance
3.5.3. Feed Utilization
3.5.4. Comparison with Previous Studies
3.6. Biochemical, Hematological, Enzymatic, and Histological Analyses
3.6.1. Biochemical Parameters
3.6.2. Hematological Parameters
3.6.3. Enzyme Activity
3.6.4. Histological Observations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, V.; Bhatnagar, A.; Jana, R.K. Challenges and opportunities in aquafeed development. Aquac. Int. 2018, 26, 327–345. [Google Scholar]
- Srinivash, M.; Krishnamoorthi, R.; Mahalingam, P.U.; Malaikozhundan, B.; Bharathakumar, S.; Gurushankar, K.; Perumal, A.B. Nanomedicine for drug resistant pathogens and COVID-19 using mushroom nanocomposite inspired with bacteriocin–A review. Inorg. Chem. Commun. 2023, 152, 110682. [Google Scholar] [CrossRef]
- Khan, S.K.; Dutta, J.; Ahmad, I.; Rather, M.A. Nanotechnology in aquaculture: Transforming the future of food security. Food Chem X 2024, 24, 101974. [Google Scholar] [CrossRef]
- El Basuini, M.F.; El-Hais, A.M.; Dawood, M.A.O.; Abou-Zeid, A.E.; El-Damrawy, S.Z. Nano-selenium supplementation in aquafeeds: A new approach to improve growth, antioxidant status and immunity in fish. Aquac. Res. 2017, 48, 3371–3381. [Google Scholar] [CrossRef]
- Altammar, K.A. A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Front. Microbiol. 2023, 14, 1155622. [Google Scholar] [CrossRef]
- Mohapatra, R.; Giri, D.; Vijayakumar, D.; Alagendran, S.; Fernández Saavedra, G.; Jena, J.P.; Sridharan, S.; Karthikeyan, K. Nanomaterials in Biomedical Applications: A Review. J. Adv. Biol. Biotechnol. 2025, 28, 996–1009. [Google Scholar] [CrossRef]
- Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, Y.; Yuhong, J.; Xin, P.; Han, J.L.; Du, Y.; Yu, X.; Zhu, R.; Zhang, M.; Chen, W.; et al. Advances in Nanotechnology for Enhancing the Solubility and Bioavailability of Poorly Soluble Drugs. Drug Des. Dev. Ther. 2024, 18, 1469–1495. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.N.; Baker, G.A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed. 2010, 49, 6726–6744. [Google Scholar] [CrossRef]
- Lim, S.Y.; Shen, W.; Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381. [Google Scholar] [CrossRef]
- Klimov, V.I. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J. Phys. Chem. B 2000, 104, 6112–6123. [Google Scholar] [CrossRef]
- Das, S.; Mondal, S.; Ghosh, D. Carbon quantum dots in bioimaging and biomedicines. Front. Bioeng. Biotechnol. 2024, 11, 1333752. [Google Scholar] [CrossRef]
- Dubey, P.; Soni, R.; Dangi, A.K.; Sharma, A.K. Green Synthesis of Nanoparticles: Current Perspectives, Challenges and Future Directions. J. Nanomater. 2024, 2024, 9914079. [Google Scholar] [CrossRef]
- Shahzadi, K.; Shabbir, S.; Ali, S.; Chaudhary, S.; Yousaf, S.; Iqbal, R. A Review on the Green Synthesis of Silver Nanoparticles Using Plant Extracts: Applications and Future Perspectives. RSC Adv. 2025, 15, 12005–12026. [Google Scholar] [CrossRef] [PubMed]
- Lithi, U.Z.; Ahmed, S.; Rahman, A.; Chowdhury, S. Green Synthesis of Metal and Metal Oxide Nanoparticles Using Plant Extracts: Advances, Applications, and Future Directions. Nanoscale Adv. 2025, 7, 1610–1635. [Google Scholar] [CrossRef]
- Li, H.; Kang, Z.; Liu, Y.; Lee, S.T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 2012, 22, 24230–24253. [Google Scholar] [CrossRef]
- Kumar, V.; Pathak, P.; Bhardwaj, R. Green synthesis of fluorescent carbon quantum dots from lemon juice for in vitro bioimaging. Mater. Today Proc. 2020, 28, 246–251. [Google Scholar] [CrossRef]
- Hu, X.; Ma, W.; Zhang, D.; Tian, Z.; Yang, Y.; Huang, Y.; Hong, Y. Application of Natural Antioxidants as Feed Additives in Aquaculture: A Review. Biology 2025, 14, 87. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Wang, Z.; Fu, J.; Zhang, J.; He, Q.; Lu, H.; Zhou, Q.; Wang, H. Recent Advances in the Synthesis, Characterization, and Application of Carbon Dots in the Field of Wastewater Treatment: A Comprehensive Review. Water 2025, 17, 210. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, Z.; Shi, C.; Yang, X. A Fluorescence Method Based on N, S-Doped Carbon Dots for Detection of Ammonia in Aquaculture Water and Freshness of Fish. Sustainability 2021, 13, 8255. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, J.; Gu, L.; Tang, Y.; Zhang, X.; Huang, X.; Shen, X.; Zhai, W.; Fodjo, E.K.; Kong, C. Ratiometric Fluorescence Immunoassay Based on Carbon Quantum Dots for Sensitive Detection of Malachite Green in Fish. Biosensors 2023, 13, 38. [Google Scholar] [CrossRef]
- Bowley, G.; Kugler, E.; Wilkinson, R.; Lawrie, A.; van Eeden, F.; Chico, T.J.A.; Evans, P.C.; Noël, E.S.; Serbanovic-Canic, J. Zebrafish as a Tractable Model of Human Cardiovascular Disease. Br. J. Pharmacol. 2021, 178, 3988–4006. [Google Scholar] [CrossRef]
- Sharma, M.; Kumar, C.; Arya, S.K.; Puri, S.; Khatri, M. Neurological effects of carbon quantum dots on zebrafish: A review. Neuroscience 2024, 560, 334–346. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gu, Z.; Dong, J.; Zhu, J.; Liu, C.; Li, G.; Lu, M.; Han, J.; Cao, S.; Chen, L.; et al. Green Synthesis of Chlorella-Derived Carbon Dots and Their Fluorescence Imaging in Zebrafish. RSC Adv. 2024, 14, 1459–1463. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Chen, H.; Cheng, X.; Yin, M.; Yao, X.; Ma, J.; Huang, M.; Chen, G.; Liu, H. Zebrafish: An efficient vertebrate model for understanding role of gut microbiota. Mol. Med. 2022, 28, 161. [Google Scholar] [CrossRef] [PubMed]
- Onomu, A.J.; Okuthe, G.E. The role of functional feed additives in enhancing aquaculture sustainability. Fishes 2024, 9, 167. [Google Scholar] [CrossRef]
- Patel, D.; Mehta, R. Nanoparticle-induced gene modulation and growth enhancement in zebrafish. Nanotechnol. Environ. Eng. 2024, 9, 393. [Google Scholar] [CrossRef]
- Santos, M.; Oliveira, F. Growth hormone transgenesis and gene expression in fast-growing zebrafish. Front. Endocrinol. 2024, 15, 1369043. [Google Scholar] [CrossRef]
- Sáez-Plaza, P.; Navas, M.J.; Wybraniec, S.; Michałowski, T.; García-Asuero, A. An Overview of the Kjeldahl Method of Nitrogen Determination. Part II. Sample Preparation, Working Scale, Instrumental Finish, and Quality Control. Crit. Rev. Anal. Chem. 2013, 43, 224–272. [Google Scholar] [CrossRef]
- Jadhao, M.M.; Paliwal, L.J.; Bhave, N.S. Resin. III. Synthesis, characterization, and ion-exchange properties of a 2,2′-dihydroxybiphenyl-formaldehyde copolymer resin. J. Appl. Polym. Sci. 2008, 109, 508–514. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, L.; Cao, F.; Leng, Y. Thermal treatment of hair for the synthesis of sustainable carbon quantum dots and the applications for sensing Hg2+. Sci. Rep. 2016, 6, 35795. [Google Scholar] [CrossRef] [PubMed]
- Rani, U.; Ng, L.Y.; Ng, C.Y.; Mahmoudi, E.; Hairom, N.H.H. Photocatalytic degradation of crystal violet dye using sulphur-doped carbon quantum dots. Mater. Today Proc. 2021, 46, 1934–1939. [Google Scholar] [CrossRef]
- Jing, L.; Ding, Q.; Li, X.; Lou, J.; Liu, Z.; Jiang, Y.; Cheng, Z. Bifunctional collagen fiber/carbon quantum dot fluorescent adsorbent for efficient adsorption and detection of Pb2+. Sci. Total Environ. 2023, 871, 161989. [Google Scholar] [CrossRef]
- Jelinek, R. Characterization and physical properties of carbon-dots. In Carbon Quantum Dots: Synthesis, Properties and Applications; Springer: Cham, Switzerland, 2016; pp. 29–46. [Google Scholar] [CrossRef]
- Milosavljevic, V.; Nguyen, H.V.; Michalek, P. Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization. Chem. Pap. 2015, 69, 192–201. [Google Scholar] [CrossRef]
- Hidayat, R.N.; Widiyandari, H.; Parasdila, H.; Prilita, O.; Astuti, Y.; Mufti, N.; Ogi, T. Green synthesis of ZnO photocatalyst composited carbon quantum dots (CQDs) from lime (Citrus aurantifolia). Catal. Commun. 2024, 187, 106888. [Google Scholar] [CrossRef]
- Wang, R.; Lu, K.Q.; Tang, Z.R.; Xu, Y.J. Recent progress in carbon quantum dots: Synthesis, properties and applications in photocatalysis. J. Mater. Chem. A 2017, 5, 3717–3734. [Google Scholar] [CrossRef]
- Safranko, S.; Stankovic, A.; Hajra, S.; Kim, H.J.; Strelec, I.; Dutour-Sikiric, M.; Jokic, S. Preparation of multifunctional N-doped carbon quantum dots from citrus clementina peel: Investigating targeted pharmacological activities and the potential application for Fe3+ sensing. Pharmaceuticals 2021, 14, 857. [Google Scholar] [CrossRef]
- Chávez-García, D.; Guzman, M.; Sanchez, V.; Cadena-Nava, R.D. Green synthesis of biomass-derived carbon quantum dots for photocatalytic degradation of methylene blue. Beilstein J. Nanotechnol. 2024, 15, 755–766. [Google Scholar] [CrossRef]
- Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.S.; Pathak, P.; Meziani, M.J.; Harruff, B.A.; Wang, X.; Wang, H. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757. [Google Scholar] [CrossRef]
- Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The photoluminescence mechanism in carbon dots: Consensus, debates and challenges. Nano Today 2015, 10, 397–436. [Google Scholar] [CrossRef]
- Malavika, V.; Anumol, R.; Rajan, M.R. Differential quantities of carbon quantum dots incorporated feed on the growth and biochemical traits of zebrafish (Danio rerio). Int. J. Agric. Technol. 2024, 20, 2393–2404. Available online: https://li04.tci-thaijo.org/index.php/IJAT/article/view/5602 (accessed on 4 November 2025).
- Yadav, S.; Choudhary, N.; Sonpal, V.; Paital, A.R. Engineering excitation-independent turn-on fluorescent probe for mercury: Functionalized dendritic silica doped with red-emissive carbon dots towards simultaneous detection and remediation with biosensing application. Chem. Eng. J. 2023, 471, 144715. [Google Scholar] [CrossRef]
- Li, P.; Yang, X.; Zhang, X.; Pan, J.; Tang, W.; Cao, W.; Xing, X. Surface chemistry-dependent antibacterial and antibiofilm activities of polyamine-functionalized carbon quantum dots. J. Mater. Sci. 2020, 55, 16744–16757. [Google Scholar] [CrossRef]
- Jlassi, K.; Eid, K.; Sliem, M.H.; Abdullah, A.M.; Chehimi, M.M.; Krupa, I. Rational synthesis, characterization, and application of environmentally friendly (polymer–carbon dot) hybrid composite film for fast and efficient UV-assisted Cd2+ removal from water. Environ. Sci. Eur. 2020, 32, 12. [Google Scholar] [CrossRef]
- Chen, Q.-L.; Ji, W.-Q.; Chen, S. Direct Synthesis of Multicolor Fluorescent Hollow Carbon Spheres Encapsulating Enriched Carbon Dots. Sci. Rep. 2016, 6, 19382. [Google Scholar] [CrossRef]
- Chen, G.; Wu, S.; Hui, L.; Zhao, Y.; Ye, J.; Tan, Z.; Zeng, W.; Tao, Z.; Yang, L.; Zhu, Y. Assembling carbon quantum dots to a layered carbon for high-density supercapacitor electrodes. Sci. Rep. 2016, 6, 19028. [Google Scholar] [CrossRef] [PubMed]
- Parvin, N.; Mandal, T.K. Synthesis of Highly Fluorescence Nitrogen Doped Carbon Quantum Dots Bioimaging Probe, and its in vivo Clearance and Printing Applications. RSC Adv. 2016, 6, 18134–18140. [Google Scholar] [CrossRef]
- Dong, Y.; Wan, L.; Cai, J.; Fang, Q.; Chi, Y.; Chen, G. Natural carbon-based dots from humic substances. Sci. Rep. 2015, 5, 10037. [Google Scholar] [CrossRef] [PubMed]
- Sabet, M.; Mahdavi, K. Green synthesis of high photoluminescence nitrogen-doped carbon quantum dots from grass via a simple hydrothermal method for removing organic and inorganic water pollutions. Appl. Surf. Sci. 2019, 463, 283–291. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Fekry, N.A.; Abdelfattah, A.M. Removal of uranium (VI) from water by the action of microwave-rapid green synthesized carbon quantum dots from starch-water system and supported onto polymeric matrix. J. Hazard. Mater. 2020, 397, 122770. [Google Scholar] [CrossRef]
- Pant, M.; Kumar, S.; Kiran, K.; Bisht, N.S.; Pande, V.; Dandapat, A. A universal green approach for the synthesis of NPS-codoped carbon quantum dots with enhanced broad-spectrum antibacterial and antioxidant activities. RSC Adv. 2023, 13, 9186–9194. [Google Scholar] [CrossRef]
- Zhai, Z.; Dong, X.; Qi, H.; Tao, R.; Zhang, P. Carbon quantum dots with high photothermal conversion efficiency and their application in photothermal modulated reversible deformation of poly(n-isopropylacrylamide) hydrogel. ACS Appl. Bio Mater. 2023, 6, 3395–3405. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, A.; Hagos, M.; RamaDevi, D.; Basavaiah, K.; Belachew, N. Fluorescent-nitrogen-doped carbon quantum dots derived from citrus lemon juice: Green synthesis, mercury (II) ion sensing, and live cell imaging. ACS Omega 2020, 5, 3889–3898. [Google Scholar] [CrossRef]
- Rajan, M.R.; Rohini, R. Effects of zinc oxide nanoparticles on growth and hematological parameters of Cirrhinus mrigala. J. Water Environ. 2021, 6, 62–71. [Google Scholar] [CrossRef]
- Sangeetha, K.; Rajan, M.R. Evaluation of Different Quantity of Iron Oxide Nanoparticles on Growth, Haematological and Biochemical Characteristics of Koi Carp. Agric. Sci. Dig. 2021, 41, 338–344. [Google Scholar] [CrossRef]
- Rajan, M.R.; Meenakumari, B. Impact of differential quantities of magnesium oxide nanoparticles on growth, haematological and biochemical characteristics of common carp Cyprinus carpio. Int. J. Creat. Res. Thoughts 2023, 11, d811–d822. [Google Scholar]
- Rašković, B.; Stanković, M.; Marković, Z.; Poleksić, V. Histological methods in the assessment of different feed effects on liver and intestine of fish. J. Agric. Sci. 2011, 56, 87–100. [Google Scholar] [CrossRef]
- Rašković, B.; Stanković, M.; Dulić, Z.; Marković, Z.; Lakić, N.; Poleksić, V. Effects of different source and level of protein in feed mixtures on liver and intestine histology of the common carp (Cyprinus carpio, Linnaeus, 1758). Comp. Biochem. Physiol. A 2009, 153, S112. [Google Scholar] [CrossRef]
- Poleksić, V.; Rašković, B.; Marković, Z.; Dulić, Z.; Stanković, M.; Živić, I.; Lakić, N. Effects of different dietary protein sources on intestine and liver morphology of carp yearlings. In Proceedings of the 3rd Serbian Congress for Microscopy; Serbian Microscopy Society: Belgrade, Serbia, 2007; Volume 56, pp. 237–238. [Google Scholar]
- Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013, 496, 498–503. [Google Scholar] [CrossRef] [PubMed]






| No. | Ingredients | Feed 1 (Control) | Feed 2 | Feed 3 | Feed 4 | Feed 5 | Feed 6 |
|---|---|---|---|---|---|---|---|
| 1 | Fish meal | 33.75 | 33.75 | 33.75 | 33.75 | 33.75 | 33.75 |
| 2 | GNOC* | 33.75 | 33.75 | 33.75 | 33.75 | 33.75 | 33.75 |
| 3 | Wheat flour | 11.25 | 11.25 | 11.25 | 11.25 | 11.25 | 11.25 |
| 4 | Tapioca | 11.25 | 11.25 | 11.25 | 11.25 | 11.25 | 11.25 |
| 5 | Fish oil | 2 | 2 | 2 | 2 | 2 | 2 |
| 6 | Sunflower oil | 2 | 2 | 2 | 2 | 2 | 2 |
| 7 | Supplevite mix | 4 | 4 | 4 | 4 | 4 | 4 |
| 8 | Sodium chloride | 1 | 1 | 1 | 1 | 1 | 1 |
| 9 | Sodium benzoate | 1 | 1 | 1 | 1 | 1 | 1 |
| 10 | CQDs (mL) | - | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 |
| Elements | Weight Percentile (wt.%) | Atomic Percentile (at. %) |
|---|---|---|
| Carbon | 78.46 | 82.37 |
| Oxygen | 15.69 | 12.36 |
| Nitrogen | 5.86 | 5.27 |
| Peak Position (cm−1) | Functional Groups | Vibration Mode | Intensity |
|---|---|---|---|
| 3341.08 | Hydroxyl/amine | O-H/N-H stretch | Strong |
| 1636.3 | Carbonyl | C=O | Medium |
| 647.001 | Alkenes | C-H Bend | Medium |
| Parameters | Experimental Feeds | |||||
|---|---|---|---|---|---|---|
| Feed 1 (Control) | Feed 2 (0.5 mL) | Feed 3 (1.0 mL) | Feed 4 (1.5 mL) | Feed 5 (2.0 mL) | Feed 6 (2.5 mL) | |
| Feed consumption (FC) | 0.96 ± 0.13 | 0.12 ± 0.13 | 0.13 ± 0.14 | 0.14 ± 0.17 | 0.20 ± 0.22 | 0.10 ± 0.11 |
| Feed conversion efficiency (FCE) | 0.52 ± 0.76 | 1.43 ± 1.84 | 1.35 ± 1.75 | 1.45 ± 1.53 | 2.09 ± 2.23 | 1.96 ± 2.10 |
| Feed conversion ratio (FCR) | 2.14 ± 3.50 | 0.72 ± 0.87 | 0.82 ± 1.25 | 0.68 ± 0.75 | 0.45 ± 0.50 | 0.49 ± 0.50 |
| Growth | 0.73 ± 0.10 | 0.18 ± 0.24 | 0.16 ± 0.21 | 0.17 ± 0.20 | 0.29 ± 0.32 | 0.21 ± 0.22 |
| Percentage growth (PG) | 21.77 ± 28.5 | 54.81 ± 72.72 | 52.29 ± 67.74 | 53.18 ± 62.50 | 84.27 ± 94.11 | 57.50 ± 64.70 |
| Assimilation (g/g live wt/28 days) | 0.93 ± 0.13 | 0.12 ± 0.13 | 0.14 ± 0.14 | 0.14 ± 0.17 | 0.20 ± 0.22 | 0.10 ± 0.11 |
| Metabolism (g/glive wt/28 days) | 0.16 ± 0.22 | 0.54 ± 0.74 | 0.45 ± 0.61 | 0.39 ± 0.49 | 0.91 ± 1.04 | 0.64 ± 0.68 |
| Gross growth efficiency (GGE) | 0.31 ± 0.61 | 1.43 ± 1.84 | 1.35 ± 1.75 | 1.45 ± 1.53 | 2.08 ± 2.20 | 1.96 ± 2.10 |
| Net growth efficiency (NGE) | 0.58 ± 0.80 | 1.53 ± 2.00 | 1.19 ± 1.90 | 1.59 ± 1.66 | 2.25 ± 2.41 | 2.18 ± 2.33 |
| Parameters | Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
|---|---|---|---|---|---|---|
| Feed consumption | Between groups | 0.22 | 5 | 0.004 | 7.931 | 0.002 |
| Within groups | 0.07 | 12 | 0.001 | |||
| Total | 0.29 | 17 | ||||
| Growth | Between groups | 0.76 | 5 | 0.015 | 9.016 | 0.001 |
| Within groups | 0.02 | 12 | ||||
| Total | 0.096 | 17 | 0.002 | |||
| GGE | Between groups | 5.919 | 5 | 1.184 | 13.942 | 0 |
| Within groups | 1.019 | 12 | ||||
| Total | 6.938 | 17 | 0.85 | |||
| NGF | Between groups | 5.858 | 5 | 1.172 | 5.575 | 0.007 |
| Within groups | 2.522 | 12 | 0.21 | |||
| Total | 8.38 | 17 |
| Parameters | Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
|---|---|---|---|---|---|---|
| Gill carbohydrate | Between groups | 2.641 | 5 | 0.528 | 888.650 | 0.000 |
| Within groups | 0.007 | 12 | 0.001 | - | - | |
| Total | 2.648 | 17 | - | - | - | |
| Muscle carbohydrate | Between groups | 12.588 | 5 | 2.518 | 2197.241 | 0.000 |
| Within groups | 0.014 | 12 | 0.001 | - | - | |
| Total | 12.602 | 17 | - | - | - | |
| Liver carbohydrate | Between groups | 1.721 | 5 | 0.344 | 480.349 | 0.000 |
| Within Groups | 0.009 | 12 | 0.001 | - | - | |
| Total | 1.730 | 17 | - | - | - | |
| Gill protein | Between groups | 2.369 | 5 | 0.474 | 761.459 | 0.000 |
| Within groups | 0.007 | 12 | 0.001 | - | - | |
| Total | 2.376 | 17 | - | - | - | |
| Muscle protein | Between groups | 13.397 | 5 | 2.679 | 958.857 | 0.000 |
| Within groups | 0.034 | 12 | 0.003 | - | - | |
| Total | 13.431 | 17 | - | - | - | |
| Liver protein | Between groups | 2.251 | 5 | 0.450 | 90.044 | 0.000 |
| Within groups | 0.060 | 12 | 0.005 | - | - | |
| Total | 2.311 | 17 | - | - | - | |
| Gill lipid | Between groups | 0.001 | 5 | 0.000 | 2.764 | 0.049 |
| Within groups | 0.001 | 12 | 0.000 | - | - | |
| Total | 0.002 | 17 | - | - | - | |
| Muscle lipid | Between groups | 1.259 | 5 | 0.252 | 219.000 | 0.000 |
| Within groups | 0.014 | 12 | 0.001 | - | - | |
| Total | 1.273 | 17 | - | - | - | |
| Liver lipid | Between groups | 0.001 | 5 | 0.000 | 6.250 | 0.004 |
| Within groups | 0.000 | 12 | 0.000 | - | - | |
| Total | 0.001 | 17 | - | - | - |
| Parameters | Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
|---|---|---|---|---|---|---|
| RBC | Between groups | 0.056 | 5 | 0.011 | 5.001 | 0.010 |
| Within groups | 0.027 | 12 | 0.002 | - | - | |
| Total | 0.083 | 17 | - | - | - | |
| Haemoglobin | Between groups | 2.691 | 5 | 0.538 | 168.461 | 0.000 |
| Within groups | 0.038 | 12 | 0.003 | - | - | |
| Total | 2.729 | 17 | - | - | - | |
| Haematocrit | Between groups | 6.091 | 5 | 1.218 | 145.211 | 0.000 |
| Within groups | 0.101 | 12 | 0.008 | - | - | |
| Total | 6.191 | 17 | - | - | - | |
| WBC | Between groups | 3.484 × 109 | 5 | 6.967 × 107 | 15127458.367 | 0.000 |
| Within groups | 552.667 | 12 | 46.056 | - | - | |
| Total | 3.484 × 109 | 17 | - | - | - | |
| Platelets | Between groups | 9.908 × 109 | 5 | 1.982 × 109 | 1.049 × 109 | 0.000 |
| Within groups | 22.667 | 12 | 1.889 | - | - | |
| Total | 9.908 × 109 | 17 | - | - | - |
| Parameters | Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
|---|---|---|---|---|---|---|
| AST | Between groups | 5.249 × 104 | 5 | 1.050 × 104 | 1.112 × 104 | 0.000 |
| Within groups | 11.333 | 12 | 0.944 | - | - | |
| Total | 5.250 × 104 | 17 | - | - | - | |
| ALT | Between groups | 5.251 × 104 | 5 | 1.050 × 104 | 1.260 × 104 | 0.000 |
| Within groups | 10.000 | 12 | 0.833 | - | - | |
| Total | 5.252 × 104 | 17 | - | - | - | |
| LDH | Between groups | 1.369 × 105 | 5 | 2.739 × 104 | 2.739 × 104 | 0.000 |
| Within groups | 12.000 | 12 | 1.000 | - | - | |
| Total | 1.370 × 105 | 17 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malavika, V.; Rajan, M.R.; Krishnamoorthi, R.; Adithya, K.C.; Kim, K.-s. Citrus-Derived Carbon Quantum Dots: Synthesis, Characterization, and Safety Evaluation in Zebrafish (Danio rerio) for Potential Biomedical and Nutritional Applications. Micro 2025, 5, 50. https://doi.org/10.3390/micro5040050
Malavika V, Rajan MR, Krishnamoorthi R, Adithya KC, Kim K-s. Citrus-Derived Carbon Quantum Dots: Synthesis, Characterization, and Safety Evaluation in Zebrafish (Danio rerio) for Potential Biomedical and Nutritional Applications. Micro. 2025; 5(4):50. https://doi.org/10.3390/micro5040050
Chicago/Turabian StyleMalavika, Vijayan, Muthuswami Ruby Rajan, Raman Krishnamoorthi, Kozhikamabath Chandrasekharan Adithya, and Kwang-sun Kim. 2025. "Citrus-Derived Carbon Quantum Dots: Synthesis, Characterization, and Safety Evaluation in Zebrafish (Danio rerio) for Potential Biomedical and Nutritional Applications" Micro 5, no. 4: 50. https://doi.org/10.3390/micro5040050
APA StyleMalavika, V., Rajan, M. R., Krishnamoorthi, R., Adithya, K. C., & Kim, K.-s. (2025). Citrus-Derived Carbon Quantum Dots: Synthesis, Characterization, and Safety Evaluation in Zebrafish (Danio rerio) for Potential Biomedical and Nutritional Applications. Micro, 5(4), 50. https://doi.org/10.3390/micro5040050

