Preparation and Characterization of Polystyrene Hybrid Composites Reinforced with 2D and 3D Inorganic Fillers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials—Organic Modification of Nanoclay
2.2. Preparation of PS/Composites
2.3. Characterization
3. Results
Mesoporous Silicas’ Characterization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Loeffen, A.; Cree, D.E.; Sabzevari, M.; Wilson, L.D. Effect of Graphene Oxide as a Reinforcement in a Bio-Epoxy Composite. J. Compos. Sci. 2021, 5, 91. [Google Scholar] [CrossRef]
- Blanco, I. The Rediscovery of POSS: A Molecule Rather than a Filler. Polymers 2018, 10, 904. [Google Scholar] [CrossRef] [Green Version]
- Ali Charfi, M.; Mathieu, R.; Chatelain, J.-F.; Ouellet-Plamondon, C.; Lebrun, G. Effect of Graphene Additive on Flexural and Interlaminar Shear Strength Properties of Carbon Fiber-Reinforced Polymer Composite. J. Compos. Sci. 2020, 4, 162. [Google Scholar] [CrossRef]
- Arrigo, R.; Teresi, R.; Gambarotti, C.; Parisi, F.; Lazzara, G.; Dintcheva, N.T. Sonication-Induced Modification of Carbon Nanotubes: Effect on the Rheological and Thermo-Oxidative Behaviour of Polymer-Based Nanocomposites. Materials 2018, 11, 383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cicala, G.; Tosto, C.; Latteri, A.; La Rosa, A.D.; Blanco, I.; Elsabbagh, A.; Russo, P.; Ziegmann, G. Green Composites Based on Blends of Polypropylene with Liquid Wood Reinforced with Hemp Fibers: Thermomechanical Properties and the Effect of Recycling Cycles. Materials 2017, 10, 998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazzara, G.; Cavallaro, G.; Panchal, A.; Fakhrullin, R.; Stavitskaya, A.; Vinokurov, V.; Lvov, Y. An Assembly of Organic-Inorganic Composites Using Halloysite Clay Nanotubes. Curr. Opin. Colloid Interface Sci. 2018, 35, 42–50. [Google Scholar] [CrossRef]
- Mohan, V.B.; Lau, K.; Hui, D.; Bhattacharyya, D. Graphene-Based Materials and Their Composites: A Review on Production, Applications and Product Limitations. Compos. Part B Eng. 2018, 142, 200–220. [Google Scholar] [CrossRef]
- Blanco, I.; Bottino, F.A.; Cicala, G.; Cozzo, G.; Latteri, A.; Recca, A. Synthesis and Thermal Characterization of New Dumbbell Shaped POSS/PS Nanocomposites: Influence of the Symmetrical Structure of the Nanoparticles on the Dispersion/Aggregation in the Polymer Matrix. Polym. Compos. 2015, 36, 1394–1400. [Google Scholar] [CrossRef]
- Bajwa, D.S.; Shojaeiarani, J.; Liaw, J.D.; Bajwa, S.G. Role of Hybrid Nano-Zinc Oxide and Cellulose Nanocrystals on the Mechanical, Thermal, and Flammability Properties of Poly (Lactic Acid) Polymer. J. Compos. Sci. 2021, 5, 43. [Google Scholar] [CrossRef]
- Albiter, E.; Merlano, A.S.; Rojas, E.; Barrera-Andrade, J.M.; Salazar, Á.; Valenzuela, M.A. Synthesis, Characterization, and Photocatalytic Performance of ZnO–Graphene Nanocomposites: A Review. J. Compos. Sci. 2021, 5, 4. [Google Scholar] [CrossRef]
- Alexandre, M.; Dubois, P. Polymer-Layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials. Mater. Sci. Eng. R Rep. 2000, 28, 1–63. [Google Scholar] [CrossRef]
- Giannelis, E.P. Polymer Layered Silicate Nanocomposites. Adv. Mater. 1996, 8, 29–35. [Google Scholar] [CrossRef]
- Giannakas, A.; Spanos, C.G.; Kourkoumelis, N.; Vaimakis, T.; Ladavos, A. Preparation, Characterization and Water Barrier Properties of PS/Organo-Montmorillonite Nanocomposites. Eur. Polym. J. 2008, 44, 3915–3921. [Google Scholar] [CrossRef]
- Giannakas, A.; Xidas, P.; Triantafyllidis, K.S.; Katsoulidis, A.; Ladavos, A. Preparation and Characterization of Polymer/Organosilicate Nanocomposites Based on Unmodified LDPE. J. Appl. Polym. Sci. 2009, 114, 83–89. [Google Scholar] [CrossRef]
- Panwar, A.; Choudhary, V.; Sharma, D.k. Review: A Review: Polystyrene/Clay Nanocomposites. J. Reinf. Plast. Compos. 2011, 30, 446–459. [Google Scholar] [CrossRef]
- Di Pasquale, G.; Polllicino, A. Properties of Polystyrene Clay Nanocomposites Prepared Using Two New Imidazolium Surfactants. Available online: https://www.hindawi.com/journals/jnm/2017/2594958/ (accessed on 20 November 2019).
- Pugazhenthi, G.; Suresh, K.; Vinoth Kumar, R.; Kumar, M.; Rajkumar Surin, R. A Simple Sonication Assisted Solvent Blending Route for Fabrication of Exfoliated Polystyrene (PS)/Clay Nanocomposites: Role of Various Clay Modifiers. Mater. Today Proc. 2018, 5, 13191–13210. [Google Scholar] [CrossRef]
- Dağ, S.E.; Bozkurt, P.A.; Eroğlu, F.; Çelik, M. Preparation, Characterization, and Properties of Polystyrene/Na-Montmorillonite Composites. J. Thermoplast. Compos. Mater. 2019, 32, 1078–1091. [Google Scholar] [CrossRef]
- Kourki, H.; Famili, M.H.N.; Mortezaei, M.; Malekipirbazari, M. Mixing Challenges for SiO2/Polystyrene Nanocomposites. J. Thermoplast. Compos. Mater. 2018, 31, 709–726. [Google Scholar] [CrossRef] [Green Version]
- Jeon, I.-Y.; Baek, J.-B. Nanocomposites Derived from Polymers and Inorganic Nanoparticles. Materials 2010, 3, 3654–3674. [Google Scholar] [CrossRef] [Green Version]
- Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface Modification of Inorganic Nanoparticles for Development of Organic–Inorganic Nanocomposites—A Review. Prog. Polym. Sci. 2013, 38, 1232–1261. [Google Scholar] [CrossRef]
- Khezri, K.; Roghani-Mamaqani, H. Effect of MCM-41 Nanoparticles on ARGET ATRP of Styrene: Investigating Thermal Properties. Available online: https://journals.sagepub.com/doi/abs/10.1177/0021998314535961?journalCode=jcma (accessed on 20 November 2019).
- Suresh, K.; Kumar, R.V.; Pugazhenthi, G. Processing and Characterization of Polystyrene Nanocomposites Based on CoAl Layered Double Hydroxide. J. Sci. Adv. Mater. Devices 2016, 1, 351–361. [Google Scholar] [CrossRef] [Green Version]
- Meynen, V.; Cool, P.; Vansant, E.F. Verified Syntheses of Mesoporous Materials. Microporous Mesoporous Mater. 2009, 125, 170–223. [Google Scholar] [CrossRef]
- Karakoulia, S.A.; Triantafyllidis, K.S.; Lemonidou, A.A. Preparation and Characterization of Vanadia Catalysts Supported on Non-Porous, Microporous and Mesoporous Silicates for Oxidative Dehydrogenation of Propane (ODP). Microporous Mesoporous Mater. 2008, 110, 157–166. [Google Scholar] [CrossRef]
- Achilias, D.S.; Gerakis, K.; Giliopoulos, D.J.; Triantafyllidis, K.S.; Bikiaris, D.N. Effect of High Surface Area Mesoporous Silica Fillers (MCF and SBA-15) on Solid State Polymerization of PET. Eur. Polym. J. 2016, 81, 347–364. [Google Scholar] [CrossRef]
- Robens, E. Adsorption by Powders and Porous Solids. F. Rouquerol, J. Rouquerol, K. Sing, Academic Press, San Diego 1999, ISBN: 0-12-598920-2, 467 S. £79.95. Vak. Forsch. Und Prax. 1999, 11, 191. [Google Scholar] [CrossRef]
- Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B.F.; Stucky, G.D. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc. 1998, 120, 6024–6036. [Google Scholar] [CrossRef]
- Schmidt-Winkel, P.; Lukens, W.W.; Zhao, D.; Yang, P.; Chmelka, B.F.; Stucky, G.D. Mesocellular Siliceous Foams with Uniformly Sized Cells and Windows. J. Am. Chem. Soc. 1999, 121, 254–255. [Google Scholar] [CrossRef]
- Li, L.; Li, B.; Hood, M.A.; Li, C.Y. Carbon Nanotube Induced Polymer Crystallization: The Formation of Nanohybrid Shish–Kebabs. Polymer 2009, 50, 953–965. [Google Scholar] [CrossRef] [Green Version]
- Paul, D.R.; Robeson, L.M. Polymer Nanotechnology: Nanocomposites. Polymer 2008, 49, 3187–3204. [Google Scholar] [CrossRef] [Green Version]
- Faraguna, F.; Pötschke, P.; Piontecka, J. Preparation of polystyrene nanocomposites with functionalized carbon nanotubes by melt and solution mixing: Investigation of dispersion, melt rheology, electrical and thermal properties. Polymer 2017, 132, 325–341. [Google Scholar] [CrossRef]
- Panwar, A.; Choudhary, V.; Sharma, D. Role of Compatibilizer and Processing Method on the Mechanical, Thermal and Barrier Properties of Polystyrene/Organoclay Nanocomposites. Available online: https://journals.sagepub.com/doi/abs/10.1177/0731684413477770 (accessed on 20 November 2019).
- Yano, K.; Usuki, A.; Okada, A. Synthesis and Properties of Polyimide-Clay Hybrid Films. J. Polym. Sci. Part A Polym. Chem. 1997, 35, 2289–2294. [Google Scholar] [CrossRef]
SSA (1) | Total Pore Volume (2) | Average Pore Diameter (3) | |
---|---|---|---|
Material | (m2/g) | (cc/g) | (nm) |
SBA-15 | 701 | 1.081 | 8.4 |
MCF | 572 | 1.418 | 18.0 |
Materials | 2θ001 (O) | d001 (nm) | Tensile Stressat Break (MPa) | Elongation at Break (%) | Elastic Modulus (MPa) | T50% (°C) | OTR (cc/m2 day) Thickness = 200–300 μm | OTR (cc/m2 day) Thickness = 400–500 μm |
---|---|---|---|---|---|---|---|---|
PS | - | - | 71 ± 0.5 | 3.1 ± 0.1 | 2560 ± 65 | 391 | 1200 ± 120 | 520 ± 50 |
orgMMT | 2.9 | 3.04 | ||||||
PSorgMMT_1 | 2.3 | 3.81 | 55 ± 0.5 | 2.6 ± 0.1 | 2750 ± 40 | 403 | 723 ± 80 | 362 ± 50 |
PSorgMMT_3 | 2.4 | 3.67 | 59 ± 0.5 | 2.4 ± 0.1 | 2940 ± 50 | 407 | 628 ± 90 | 261 ± 50 |
PSorgMMT_5 | 2.5 | 3.54 | 63 ± 0.5 | 2.3 ± 0.1 | 3120 ± 45 | 409 | 640 ± 70 | 238 ± 50 |
orgZenith | 2.7 | 3.28 | ||||||
PSorgZenith_1 | 2.2 | 4.00 | 68 ± 0.5 | 3.1 ± 0.1 | 2500 ± 50 | 423 | 748 ± 80 | 360 ± 50 |
PSorgZenith_3 | 2.3 | 3.81 | 66 ± 0.5 | 3.5 ± 0.1 | 2590 ± 65 | 427 | 611 ± 80 | 280 ± 50 |
PSorgZenith_5 | 2.4 | 3.67 | 65 ± 0.5 | 3.4 ± 0.1 | 2610 ± 70 | 428 | 582 ± 90 | 262 ± 50 |
SBA-15 | - | |||||||
PS_SBA_1 | - | 50 ± 0.5 | 2.3 ± 0.1 | 2300 ± 220 | 355 | |||
PS_SBA_3 | - | 46 ± 0.5 | 2.0 ± 0.1 | 2200 ± 280 | 351 | |||
PS_SBA_5 | - | 41 ± 0.5 | 2.4 ± 0.1 | 1800 ± 320 | 358 | |||
mPS_SBA_1 | - | 98 ± 0.5 | 1.1 ± 0.1 | 3540 ± 185 | 407 | 140 ± 30 | ||
mPS_SBA_3 | - | 102 ± 0.5 | 0.9 ± 0.1 | 3740 ± 190 | 406 | 123 ± 20 | ||
mPS_SBA_5 | - | 107 ± 0.5 | 0.8 ± 0.1 | 3810 ± 160 | 406 | 110 ± 20 | ||
MCF | - | |||||||
PS_MCF_1 | - | 53 ± 0.5 | 2.1 ± 0.1 | 2600 ± 250 | 323 | |||
PS_MCF_3 | - | 39 ± 0.5 | 1.7 ± 0.1 | 2200 ± 240 | 330 | |||
PS_MCF_5 | - | 32 ± 0.5 | 1.5 ± 0.1 | 2050 ± 310 | 342 | |||
mPS_MCF_1 | - | 99 ± 0.5 | 1.1 ± 0.1 | 3630 ± 180 | 407 | 113 ± 30 | ||
mPS_MCF_3 | - | 104 ± 0.5 | 1.0 ± 0.1 | 3741 ± 160 | 409 | 96 ± 20 | ||
mPS_MCF_5 | - | 110 ± 0.5 | 0.9 ± 0.1 | 3850 ± 190 | 411 | 92 ± 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ladavos, A.; Giannakas, A.E.; Xidas, P.; Giliopoulos, D.J.; Baikousi, M.; Gournis, D.; Karakassides, M.A.; Triantafyllidis, K.S. Preparation and Characterization of Polystyrene Hybrid Composites Reinforced with 2D and 3D Inorganic Fillers. Micro 2021, 1, 3-14. https://doi.org/10.3390/micro1010002
Ladavos A, Giannakas AE, Xidas P, Giliopoulos DJ, Baikousi M, Gournis D, Karakassides MA, Triantafyllidis KS. Preparation and Characterization of Polystyrene Hybrid Composites Reinforced with 2D and 3D Inorganic Fillers. Micro. 2021; 1(1):3-14. https://doi.org/10.3390/micro1010002
Chicago/Turabian StyleLadavos, Athanasios, Aris E. Giannakas, Panagiotis Xidas, Dimitrios J. Giliopoulos, Maria Baikousi, Dimitrios Gournis, Michael A. Karakassides, and Konstantinos S. Triantafyllidis. 2021. "Preparation and Characterization of Polystyrene Hybrid Composites Reinforced with 2D and 3D Inorganic Fillers" Micro 1, no. 1: 3-14. https://doi.org/10.3390/micro1010002