On the Diffusion of Anti-Tuberculosis Drugs in Cyclodextrin-Containing Aqueous Solutions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. pH Measurements
2.3. Taylor Dispersion Method
3. Results and Discussion
3.1. Aqueous Isoniazid (1) + Cyclodextrin (2) Solutions
3.2. Aqueous Isoniazid (1) + Ethambutol Dihydrochloride (2) Solutions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mazurek, A.H.; Szeleszczuk, Ł. A Review of Applications of Solid-State Nuclear Magnetic Resonance (SsNMR) for the Analysis of Cyclodextrin-Including Systems. Int. J. Mol. Sci. 2023, 24, 3648. [Google Scholar] [CrossRef] [PubMed]
- González-Méndez, I.; Aguayo-Ortiz, R.; Sorroza-Martínez, K.; Solano, J.D.; Porcu, P.; Rivera, E.; Dominguez, L. Conformational Analysis by NMR and Molecular Dynamics of Adamantane-Doxorubicin Prodrugs and Their Assemblies with β–Cyclodextrin: A Focus on the Design of Platforms for Controlled Drug Delivery. Bioorganic Med. Chem. 2020, 28, 115510. [Google Scholar] [CrossRef] [PubMed]
- Pathania, V.; Garg, A.; Kaur, N.; Neha. Molecular Interaction Studies of Antituberculosis Drug Isoniazid in Aq. β–Cyclodextrin Solution: A Volumetric, Spectroscopic and Molecular Docking Approach. J. Chem. Thermodyn. 2024, 189, 107194. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report 2022; World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022 (accessed on 3 July 2024).
- World Health Organization. Global Tuberculosis Report 2013; World Health Organization: Geneva, Switzerland, 2013; ISBN 978 92 4 156465 6. [Google Scholar]
- Almeida Da Silva, P.E.; Palomino, J.C. Molecular Basis and Mechanisms of Drug Resistance in Mycobacterium Tuberculosis: Classical and New Drugs. J. Antimicrob. Chemother. 2011, 66, 1417–1430. [Google Scholar] [CrossRef] [PubMed]
- Saviola, B. Mycobacterium Tuberculosis Adaptation to Survival in a Human Host. In Tuberculosis—Current Issues in Diagnosis and Management; InTech: Chennai, India, 2013. [Google Scholar]
- Dandawate, P.; Vemuri, K.; Venkateswara Swamy, K.; Khan, E.M.; Sritharan, M.; Padhye, S. Synthesis, Characterization, Molecular Docking and Anti-Tubercular Activity of Plumbagin—Isoniazid Analog and Its β—Cyclodextrin Conjugate. Bioorganic Med. Chem. Lett. 2014, 24, 5070–5075. [Google Scholar] [CrossRef] [PubMed]
- Aiassa, V.; Garnero, C.; Zoppi, A.; Longhi, M.R. Cyclodextrins and Their Derivatives as Drug Stability Modifiers. Pharmaceuticals 2023, 16, 1074. [Google Scholar] [CrossRef]
- Kali, G.; Haddadzadegan, S.; Bernkop-Schnürch, A. Cyclodextrins and Derivatives in Drug Delivery: New Developments, Relevant Clinical Trials, and Advanced Products. Carbohydr. Polym. 2024, 324, 121500. [Google Scholar] [CrossRef] [PubMed]
- Jansook, P.; Ogawa, N.; Loftsson, T. Cyclodextrins: Structure, Physicochemical Properties and Pharmaceutical Applications. Int. J. Pharm. 2018, 535, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Tyrrell, H.J.V.; Harris, K.R. Diffusion in Liquids: A Theoretical and Experimental Study; Butterworths: London, UK, 1984. [Google Scholar]
- Fangaia, S.I.G.; Nicolau, P.M.G.; Guerra, F.A.D.R.A.; Rodrigo, M.M.; Ribeiro, A.C.F.; Valente, A.J.M.; Santos, J.R.C.; Marques, J.M.C.; Esteso, M.A. The Behaviour of Aluminium Ions in Artificial Saliva and the Impact of the Chlorhexidine Digluconate on Its Removal—A Diffusion Model. J. Mol. Liq. 2022, 353, 118749. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Valente, A.J.M.; Santos, C.I.A.V.; Prazeres, P.M.R.A.; Lobo, V.M.M.; Burrows, H.D.; Esteso, M.A.; Cabral, A.M.T.D.P.V.; Veiga, F.J.B. Binary Mutual Diffusion Coefficients of Aqueous Solutions of α–Cyclodextrin, 2-Hydroxypropyl-α–Cyclodextrin, and 2-Hydroxypropyl-β–Cyclodextrin at Temperatures from (298.15 to 312.15) K. J. Chem. Eng. Data 2007, 52, 586–590. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Santos, A.C.G.; Lobo, V.M.M.; Veiga, F.J.B.; Cabral, A.M.T.D.P.V.; Esteso, M.A.; Ortona, O. Binary Mutual Diffusion Coefficients of Isoniazid Aqueous Solutions at (298.15 and 310.15) K. J. Chem. Eng. Data 2009, 54, 3235–3237. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Leaist, D.G.; Esteso, M.A.; Lobo, V.M.M.; Valente, A.J.M.; Santos, C.I.A.V.; Cabral, A.M.T.D.P.V.; Veiga, F.J.B. Binary Mutual Diffusion Coefficients of Aqueous Solutions of β–Cyclodextrin at Temperatures from 298.15 to 312.15 K. J. Chem. Eng. Data 2006, 51, 1368–1371. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Santos, C.I.A.V.; Valente, A.J.M.; Ascenso, O.S.; Lobo, V.M.M.; Burrows, H.D.; Cabral, A.M.T.D.P.V.; Veiga, F.J.B.; Teijeiro, C.; Esteso, M.A. Some Transport Properties of γ–Cyclodextrin Aqueous Solutions at (298.15 and 310.15) K. J. Chem. Eng. Data 2008, 53, 755–759. [Google Scholar] [CrossRef]
- Szejtli, J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev. 1998, 98, 1743–1754. [Google Scholar] [CrossRef] [PubMed]
- Paduano, L.; Sartorio, R.; Vitagliano, V.; Albright, J.G.; Miller, D.G. Measurement of the Mutual Diffusion Coefficients at One Composition of the Four-Component System α–Cyclodextrin-L-Phenylalanine-Monobutylurea-Water at 25 °C. J. Phys. Chem. 1992, 96, 7478–7483. [Google Scholar] [CrossRef]
- Paduano, L.; Sartorio, R.; Vitagliano, V.; Albright, J.G.; Miller, D.G.; Mitchell, J. Diffusion Coefficients in Systems with Inclusion Compounds. 1. α–Cyclodextrin-L-Phenylalanine-Water at 25 °C. J. Phys. Chem. 1990, 94, 6885–6888. [Google Scholar] [CrossRef]
- Sun, Z.; Zheng, L.; Wang, K.; Huai, Z.; Liu, Z. Primary vs. Secondary: Directionalized Guest Coordination in β–Cyclodextrin Derivatives. Carbohydr. Polym. 2022, 297, 120050. [Google Scholar] [CrossRef] [PubMed]
Chemical Name | Source | CAS Number | Mass Fraction Purity a |
---|---|---|---|
Isoniazid | Sigma-Aldrich(Sigma-Aldrich Quimica S.L., Lisboa, Portugal) | 54–85–3 | >0.99 |
Ethambutol dihydrochloride | Sigma-Aldrich (Sigma-Aldrich Quimica S.L., Lisboa, Portugal) | 1070–11–7 | >0.99 |
α–Cyclodextrin b | Sigma-Aldrich (Sigma-Aldrich Quimica S.L., Lisboa, Portugal) | 10016–20–3 | ≥0.98 |
β–Cyclodextrin c | Sigma-Aldrich (Sigma-Aldrich Quimica S.L., Lisboa, Portugal) | 7585–39–9 | > 0.97 |
γ–Cyclodextrin d | Sigma-Aldrich (Sigma-Aldrich Quimica S.L., Lisboa, Portugal) | 17465–86–0 | ≥0.98 |
H2O | Millipore-Q water (ρ = 1.82 × 105 Ω m at 298.15 K) | 7732–18–5 |
C1 a | C2 a | X b | D11 ± SD c | D12 ± SD c | D21 ± SD c | D22 ± SD c | D12/D22 d | D21/D11 e |
---|---|---|---|---|---|---|---|---|
Isoniazid (C1) + α − CD (C2) | ||||||||
0.000 | 0.010 | 0.000 | 0.787 ± 0.007 | 0.018 ± 0.011 | 0.001 ± 0.001 | 0.379 ± 0.001 | 0.047 | 0.001 |
0.005 | 0.005 | 0.500 | 0.785 ± 0.009 | −0.033 ± 0.012 | 0.009 ± 0.022 | 0.380 ± 0.006 | −0.087 | 0.011 |
0.010 | 0.000 | 1.000 | 0.786 ± 0.010 | −0.046 ± 0.017 | 0.003 ± 0.014 | 0.382 ± 0.008 | −0.120 | 0.004 |
Isoniazid (C1) + β − CD (C2) | ||||||||
0.000 | 0.010 | 0.000 | 0.714 ± 0.011 | 0.020 ± 0.003 | 0.008 ± 0.001 | 0.349 ± 0.001 | 0.057 | 0.011 |
0.005 | 0.005 | 0.500 | 0.740 ± 0.011 | −0.029 ± 0.006 | 0.005 ± 0.013 | 0.350 ± 0.004 | −0.083 | 0.007 |
0.010 | 0.000 | 1.000 | 0.787 ± 0.010 | −0.040 ± 0.015 | 0.002 ± 0.014 | 0.352 ± 0.003 | −0.114 | 0.002 |
Isoniazid (C1) + γ − CD (C2) | ||||||||
0.000 | 0.010 | 0.000 | 0.789 ± 0.010 | 0.011 ± 0.008 | 0.010 ± 0.006 | 0.329 ± 0.003 | 0.033 | 0.013 |
0.005 | 0.005 | 0.500 | 0.787 ± 0.009 | 0.010 ± 0.005 | 0.014 ± 0.006 | 0.310 ± 0.008 | 0.032 | 0.018 |
0.010 | 0.000 | 1.000 | 0.791 ± 0.008 | 0.005 ± 0.009 | 0.002 ± 0.003 | 0.332 ± 0.005 | 0.015 | 0.002 |
Species | Ds/(10−9 m2 s−1) |
---|---|
Isoniazid | 0.826 a |
β–CD | 0.326 b |
α–CD | 0.353 c |
ISO–β–CD | 0.320 d |
C1 a | C2 a | X b | D11 ± SD c | D12 ± SD c | D21 ± SD c | D22 ± SD c | D12/D22 d | D21/D11 e |
---|---|---|---|---|---|---|---|---|
Isoniazid (C1) + Ethambutol dihydrochloride (C2) | ||||||||
0.000 | 0.010 | 0.000 | 0.775 ± 0.012 | 0.011 ± 0.003 | 0.008 ± 0.037 | 0.903 ± 0.001 | 0.012 | 0.010 |
0.005 | 0.005 | 0.500 | 0.780 ± 0.009 | 0.109 ± 0.012 | 0.009 ± 0.022 | 0.890 ± 0.005 | 0.122 | 0.011 |
0.010 | 0.000 | 1.000 | 0.785 ± 0.003 | 0.478 ± 0.099 | 0.014 ± 0.008 | 0.815 ± 0.021 | 0.590 | 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigo, M.M.; Cabral, A.M.T.D.P.V.; Fangaia, S.I.G.; Nogueira, A.C.; Valente, A.J.M.; Ribeiro, A.C.F.; Esteso, M.A. On the Diffusion of Anti-Tuberculosis Drugs in Cyclodextrin-Containing Aqueous Solutions. Liquids 2024, 4, 702-709. https://doi.org/10.3390/liquids4040039
Rodrigo MM, Cabral AMTDPV, Fangaia SIG, Nogueira AC, Valente AJM, Ribeiro ACF, Esteso MA. On the Diffusion of Anti-Tuberculosis Drugs in Cyclodextrin-Containing Aqueous Solutions. Liquids. 2024; 4(4):702-709. https://doi.org/10.3390/liquids4040039
Chicago/Turabian StyleRodrigo, M. Melia, Ana M. T. D. P. V. Cabral, Sónia I. G. Fangaia, Afonso C. Nogueira, Artur J. M. Valente, Ana C. F. Ribeiro, and Miguel A. Esteso. 2024. "On the Diffusion of Anti-Tuberculosis Drugs in Cyclodextrin-Containing Aqueous Solutions" Liquids 4, no. 4: 702-709. https://doi.org/10.3390/liquids4040039
APA StyleRodrigo, M. M., Cabral, A. M. T. D. P. V., Fangaia, S. I. G., Nogueira, A. C., Valente, A. J. M., Ribeiro, A. C. F., & Esteso, M. A. (2024). On the Diffusion of Anti-Tuberculosis Drugs in Cyclodextrin-Containing Aqueous Solutions. Liquids, 4(4), 702-709. https://doi.org/10.3390/liquids4040039