Survey of the Trunk Wood Mycobiome of an Ancient Tilia × europaea L.
Abstract
1. Introduction
2. Materials and Methods
2.1. Linden Tree
2.2. Sampling
2.3. High-Throughput Amplicon Sequencing Methodology
2.4. Bioinformatics and Data Evaluation
2.5. Fungal Diversity and Statistical Analysis
3. Results
3.1. High-Throughput Amplicon Sequencing
3.2. Taxonomy
3.3. Morphological Evaluation of the Linden Tree
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lukaszkiewicz, J.; Kosmala, M.; Chrapka, M.; Borowski, J. Determining the age of streetside Tilia cordata trees with a DBH-based model. J. Arboric. 2005, 31, 280–284. [Google Scholar] [CrossRef]
- Bilous, S.; Prysiazhniuk, L.M. DNA analysis of centuries-old linden trees using SSR-markers. Ukr. J. For. Wood Sci. 2020, 11, 4–14. [Google Scholar] [CrossRef]
- Stravinskienė, V.; Snieškienė, V.; Stankevičienė, A. Health condition of Tilia cordata Mill. trees growing in the urban environment. Urban For. Urban Green. 2015, 14, 115–122. [Google Scholar] [CrossRef]
- Purahong, W.; Pietsch, K.A.; Lentendu, G.; Schöps, R.; Bruelheide, H.; Wirth, C.; Buscot, F.; Wubet, T. Characterization of unexplored deadwood mycobiome in highly diverse subtropical forests using culture-independent molecular technique. Front. Microbiol. 2017, 8, 574. [Google Scholar] [CrossRef]
- Purahong, W.; Mapook, A.; Wu, Y.-T.; Chen, C.-T. Characterization of the Castanopsis carlesii deadwood mycobiome by PacBio sequencing of the full-length fungal nuclear ribosomal internal transcribed spacer (ITS). Front. Microbiol. 2019, 10, 983. [Google Scholar] [CrossRef]
- Eichmeier, A.; Pečenka, J.; Peňázová, E.; Baránek, M.; Català-García, S.; León, M.; Armengol, J.; Gramaje, D. High-throughput amplicon sequencing based analysis of active fungal communities inhabiting grapevine after hot-water treatments reveals unexpectedly high fungal diversity. Fungal Ecol. 2018, 36, 26–38. [Google Scholar] [CrossRef]
- Ricker, M.; Gutiérrez-García, G.; Juárez-Guerrero, D.; Evans, M.E.K. Statistical age determination of tree rings. PLoS ONE 2020, 15, e0239052. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data; Babraham Bioinformatics: Cambridge, UK, 2010. [Google Scholar]
- Glynou, K.; Nam, B.; Thines, M.; Maciá-Vicente, J.G. Facultative root-colonizing fungi dominate endophytic assemblages in roots of nonmycorrhizal Microthlaspi species. New Phytol. 2018, 217, 1190–1202. [Google Scholar] [CrossRef]
- Ellis, M.B. Dematiaceous Hyphomycetes: IV; Commonwealth Mycological Institute: Surrey, UK, 1963; Volume 89, pp. 1–33. [Google Scholar]
- Seifert, K.; Morgan-Jones, G.; Gams, W.; Kendrick, B. The Genera of Hyphomycetes; CBS Biodiversity Series 9; CBS-KNAW Fungal Biodiversity Centre: Utrecht, The Netherlands, 2011. [Google Scholar]
- McNeill, J.; Barrie, F.R.; Buck, W.R.; Demoulin, V.; Greuter, W.; Hawksworth, D.L.; Herendeen, P.S.; Knapp, S.; Marhold, K.; Prado, J.; et al. International Code of Nomenclature for Algae, Fungi, and Plants (Melbourne Code); Koeltz Scientific Books: Königstein, Germany, 2012. [Google Scholar]
- Crous, P.W.; Groenewald, J.Z. A phylogenetic re-evaluation of Arthrinium. IMA Fungus 2013, 4, 133–154. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Jiang, N.; Liang, L.Y.; Yang, Q.; Tian, C.M. Arthrinium trachycarpum sp. nov. from Trachycarpus fortunei in China. Phytotaxa 2019, 400, 203–210. [Google Scholar] [CrossRef]
- Ai, C.; Dong, Z.; Yun, J.; Zhang, Z.; Xia, J.; Zhang, X. Phylogeny, taxonomy and morphological characteristics of Apiospora (Amphisphaeriales, Apiosporaceae). Microorganisms 2024, 12, 1372. [Google Scholar] [CrossRef]
- Gerin, D.; Nigro, F.; Faretra, F.; Pollastro, S. Identification of Arthrinium marii as causal agent of olive tree dieback in Apulia (Southern Italy). Plant Dis. 2020, 104, 694–701. [Google Scholar] [CrossRef]
- Gams, W.; McGinnis, M.R. Phialemonium, a new anamorph genus intermediate between Phialophora and Acremonium. Mycologia 1983, 75, 977–987. [Google Scholar] [CrossRef]
- Manici, L.M.; Bonora, P. The relationship between tree species and wood-colonising fungi and fungal interactions influences wood degradation. Ecol. Indic. 2023, 151, 110312. [Google Scholar] [CrossRef]
- Hiratsuka, Y.; Chakravarty, P. Role of Phialemonium curvatum as a potential biological control agent against a blue stain fungus on aspen. Eur. J. For. Pathol. 1999, 29, 305–310. [Google Scholar] [CrossRef]
- Yang, X.; Strobel, G.A.; Stierle, A.; Hess, W.M.; Lee, J.; Clardy, J. A fungal endophyte–tree relationship: Phoma sp. in Taxus wallachiana. Plant Sci. 1994, 102, 1–9. [Google Scholar] [CrossRef]
- Migheli, Q.; Cacciola, S.O.; Balmas, V.; Pane, A.; Ezra, D.; Di San Lio, G.M. Mal secco disease caused by Phoma tracheiphila: A potential threat to lemon production worldwide. Plant Dis. 2009, 93, 852–867. [Google Scholar] [CrossRef]
- Nigro, F.; Ippolito, A.; Salerno, M.G. Mal secco disease of citrus: A journey through a century of research. J. Plant Pathol. 2011, 93, 523–560. Available online: https://www.jstor.org/stable/41999031 (accessed on 4 November 2025).
- Wang, Q.-M.; Yurkov, A.M.; Göker, M.; Lumbsch, H.T.; Leavitt, S.D.; Groenewald, M.; Theelen, B.; Liu, X.-Z.; Boekhout, T.; Bai, F.-Y. Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud. Mycol. 2015, 81, 149–189. [Google Scholar] [CrossRef]
- Haelewaters, D.; Toome-Heller, M.; Albu, S.; Aime, M.C. Red yeasts from leaf surfaces and other habitats: Three new species and a new combination of Symmetrospora (Pucciniomycotina, Cystobasidiomycetes). Fungal Syst. Evol. 2020, 5, 187–196. [Google Scholar] [CrossRef]
- An, X.; Han, S.; Ren, X.; Sichone, J.; Fan, Z.; Wu, X.; Zhang, Y.; Wang, H.; Cai, W.; Sun, F. Succession of Fungal Community during Outdoor Deterioration of Round Bamboo. J. Fungi 2023, 9, 691. [Google Scholar] [CrossRef]
- Xi, M.Y.; Deyett, E.; Stajich, J.E.; El-Kereamy, A.; Roper, M.C.; Rolshausen, P.E. Microbiome diversity, composition and assembly in a California citrus orchard. Front. Microbiol. 2023, 14, 1100590. [Google Scholar] [CrossRef]
- Bagherabadi, S.; Zafari, D. Isolation and characterization of Alternaria malorum as a causal agent of bark canker on walnut trees. J. Plant Prot. Res. 2022, 62, 102–106. [Google Scholar] [CrossRef]
- Chauiyakh, O.; El Fahime, E.; Ninich, O.; Aarabi, S.; Bentata, F.; Chaouch, A.; Ettahir, A. Short notes: First report of the phytopathogenic fungus Alternaria tenuissima in cedarwood (Cedrus atlantica M.) in Morocco. Wood Res. 2023, 68, 619–626. [Google Scholar] [CrossRef]
- Trakunyingcharoen, T.; Lombard, L.; Groenewald, J.Z.; Cheewangkoon, R.; Toanun, C.; Alfenas, A.C.; Crous, P.W. Mycoparasitic species of Sphaerellopsis, and allied lichenicolous and other genera. IMA Fungus 2014, 5, 391–414. [Google Scholar] [CrossRef] [PubMed]
- Ertz, D.; Diederich, P.; Lawrey, J.D.; Berger, F.; Freebury, C.E.; Coppins, B.J.; Gardiennet, A.; Hafellner, J. Phylogenetic insights resolve Dacampiaceae (Pleosporales) as polyphyletic: Didymocyrtis (Pleosporales, Phaeosphaeriaceae) with Phoma-like anamorphs resurrected and segregated from Polycoccum (Trypetheliales, Polycoccaceae fam. nov.). Fungal Divers. 2015, 74, 53–89. [Google Scholar] [CrossRef]
- Crous, P.W.; Wingfield, M.J.; Burgess, T.I.; Hardy, G.E.S.J.; Barber, P.A.; Alvarado, P.; Barnes, C.W.; Buchanan, P.K.; Heykoop, M.; Moreno, G. Fungal Planet description sheets: 558–624. Persoonia Mol. Phylogeny Evol. Fungi 2017, 38, 240–384. [Google Scholar] [CrossRef] [PubMed]
- Crous, P.W.; Wingfield, M.J.; Burgess, T.I.; Hardy, G.E.S.J.; Barber, P.A.; Alvarado, P.; Barnes, C.W.; Buchanan, P.K.; Heykoop, M.; Moreno, G. Fungal Planet description sheets: 716–784. Persoonia Mol. Phylogeny Evol. Fungi 2018, 40, 240–393. [Google Scholar] [CrossRef]
- Das, K.; Lee, S.-Y.; Jung, H.-Y. Morphology and phylogeny of two novel species within the class Dothideomycetes collected from soil in Korea. Mycobiology 2020, 49, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Bensch, K.; Braun, U.; Groenewald, J.Z.; Crous, P.W. The genus Cladosporium. Stud. Mycol. 2012, 72, 1–401. [Google Scholar] [CrossRef]
- Gorlenko, S.V.; Panko, N.A. Formirovanie Mikoflory i Entomofauny Gorodskikh Zelenykh Nasazhdenii: The Formation of Microflora and Entomofauna of Urban Green Plantations. Avtory. Nauka I Tekhnika. 1972. Available online: https://elib.bsu.by/bitstream/123456789/319880/1/Journal%20of%20the%20Belarusian%20State%20University.%20Biology_2023_No_2.pdf (accessed on 4 November 2025).
- Kalamees, K.; Saar, I. Mycobiota of the Naissaar Nature Park (Estonia). Folia Cryptog. Estonica. Fasc. 2006, 42, 25–41. [Google Scholar]
- Tomiczek, C.; Diminić, D.; Cech, T.; Hrašovec, B.; Krehan, H.; Pernek, M.; Perny, B. Pests and Diseases of Urban Trees; Šumarski Institute: Zagreb, Croatia; Šumarski Fakultet Sveučilišta u Zagrebu: Jastrebarsko, Croatia, 2008; p. 370. [Google Scholar]
- Bernadovičová, S.; Ivanová, H. Leaf spot disease on Tilia cordata caused by the fungus Cercospora microsora. Biologia 2008, 63, 44–49. [Google Scholar] [CrossRef]
- Mulenko, W.M.T.; Ruszkiewicz-Michalska, M. A Preliminary Checklist of Micromycetes in Poland; W. Szafer Institute of Botany, Polish Academy of Sciences: Krakow, Poland, 2008. [Google Scholar]
- Szabo, I. Leaf Pathogenic Fungi of Forest Trees and Shrubs in Hungary; Mycologische Dreiländert: Graz, Austria, 2002; pp. 67–70. [Google Scholar]
- Kolemasova, N.N.; Kovalevskaja, N.V. Fungous Leaf Diseases of Trees and Shrubs in Parks and Gardens; Lesnoj Vestnik: Saint Petersburg, Russia, 2000; Volume 6, pp. 119–124. [Google Scholar]




| Diversity Indices | Value |
|---|---|
| Taxa_S | 8 |
| Individuals | 9262 |
| Dominance_D | 0.1798 |
| Simpson_1-D | 0.8202 |
| Shannon_H | 1.813 |
| Evenness_e^H/S | 0.7662 |
| Brillouin | 1.81 |
| Menhinick | 0.08313 |
| Margalef | 0.7664 |
| Equitability_J | 0.8719 |
| Fisher_alpha | 0.8618 |
| Berger-Parker | 0.2333 |
| Chao-1 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eichmeier, A.; Spetik, M.; Frejlichova, L.; Pecenka, J.; Cechova, J.; Stefl, L.; Simek, P. Survey of the Trunk Wood Mycobiome of an Ancient Tilia × europaea L. Appl. Microbiol. 2025, 5, 131. https://doi.org/10.3390/applmicrobiol5040131
Eichmeier A, Spetik M, Frejlichova L, Pecenka J, Cechova J, Stefl L, Simek P. Survey of the Trunk Wood Mycobiome of an Ancient Tilia × europaea L. Applied Microbiology. 2025; 5(4):131. https://doi.org/10.3390/applmicrobiol5040131
Chicago/Turabian StyleEichmeier, Ales, Milan Spetik, Lucie Frejlichova, Jakub Pecenka, Jana Cechova, Lukas Stefl, and Pavel Simek. 2025. "Survey of the Trunk Wood Mycobiome of an Ancient Tilia × europaea L." Applied Microbiology 5, no. 4: 131. https://doi.org/10.3390/applmicrobiol5040131
APA StyleEichmeier, A., Spetik, M., Frejlichova, L., Pecenka, J., Cechova, J., Stefl, L., & Simek, P. (2025). Survey of the Trunk Wood Mycobiome of an Ancient Tilia × europaea L. Applied Microbiology, 5(4), 131. https://doi.org/10.3390/applmicrobiol5040131

