Capacity of Microbial Strains and Communities to Degrade Sewerage Fats, Oils, and Grease Clog Deposits
Abstract
1. Introduction
2. Materials and Methods
2.1. FOG Samples Collection
2.2. Fatty Acid Composition Identification
2.3. FOG Library Preparation for 16s rRNA Gene Amplicon Sequencing
2.4. FOG Microbiome Community Analyses
2.5. Microbial Strains and Communities
2.5.1. Synthetic Microbial Communities
2.5.2. Microbial Strains
2.5.3. Sequencing-Based Strain Identification
2.6. FOG Degradation Tests
2.6.1. Shaking vs. Non-Shaking and Reapplication vs. No Reapplication
2.6.2. Varying Ratios
2.6.3. Dry FOG Degradation Tests
2.6.4. Degradation Measurements
2.6.5. Degradation Performance and Enhancement Rubric
3. Results
3.1. FOG Sample Analyses
3.2. Microbial Strain Sequencing
3.3. Effect of Shaking and Reapplication on Degradation
3.4. Inoculum Concentration Impact on Degradation
3.5. Effect of Microbial Strains and Communities on Degradation
4. Discussion
4.1. FOG Samples
4.2. Shaking or Reapplication Conditions
4.3. Ratio of Added Microbes/FOG
4.4. FOG Degradation Enhancement
4.4.1. Microbial Strain or Community Membership
4.4.2. FOG Samples and FOG Sample Types
4.4.3. Microbial Communities vs. Microbial Strains
4.5. Other Phenotypic Changes
4.6. Implications for Application
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| FOG | Fats, oils, and grease |
| SSO | Sanitary sewer overflow |
| GI | Grease interceptor |
| FSE | Food service establishment |
| PS | Pumping station |
| ARV | Air release valve |
| GC-FID | Gas chromatography flame ionization detector |
| FA | Fatty acid |
| QIIME2 | Quantitative Insights Into Microbial Ecology 2 |
| ASV | Amplicon sequence variants |
| BC OR BD | Biodyne community |
| MS | Microbial strain |
| BLAST | Basic local alignment search tool |
| DES | Degradation enhancement score |
| ANOMISM | Analysis of similarity |
| CFU | Colony-forming unit |
References
- Swann, C. Report to Congress on the Impacts and Control of CSOs and SSOs. 2016. Available online: https://owl.cwp.org/mdocs-posts/report-to-congress-on-the-impacts-and-control-of-csos-and-ssos/ (accessed on 3 April 2025).
- Wallace, T.; Gibbons, D.; O’Dwyer, M.; Curran, T.P. International evolution of fat, oil and grease (FOG) waste management—A review. J. Environ. Manag. 2017, 187, 424–435. [Google Scholar] [CrossRef]
- Sojobi, A.O.; Zayed, T. Impact of sewer overflow on public health: A comprehensive scientometric analysis and systematic review. Environ. Res. 2022, 203, 111609. [Google Scholar] [CrossRef]
- US EPA O. Sanitary Sewer Overflow (SSO) Frequent Questions. 2015. Available online: https://www.epa.gov/npdes/sanitary-sewer-overflow-sso-frequent-questions (accessed on 11 April 2025).
- Wastewater Systems Effluent Regulations 2018 Annual Report. 2018. Available online: https://www.canada.ca/en/environment-climate-change/services/wastewater/publications/wastewater-data-reports/wastewater-system-effluent-regulations-annual-report.html (accessed on 5 October 2025).
- EPA. Controlling Fats, Oils and Grease Dischages from Food Service Establishments. Office of Water. September 2012. Available online: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P10099TU.txt (accessed on 11 April 2025).
- He, X.; De Los Reyes, F.L.; Ducoste, J.J. A critical review of fat, oil, and grease (FOG) in sewer collection systems: Challenges and control. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1191–1217. [Google Scholar] [CrossRef]
- He, X.; Iasmin, M.; Dean, L.O.; Lappi, S.E.; Ducoste, J.J.; de los Reyes, F.L.I. Evidence for Fat, Oil, and Grease (FOG) Deposit Formation Mechanisms in Sewer Lines. Environ. Sci. Technol. 2011, 45, 4385–4391. [Google Scholar] [CrossRef]
- He, X.; Zhang, Q.; Cooney, M.J.; Yan, T. Biodegradation of fat, oil and grease (FOG) deposits under various redox conditions relevant to sewer environment. Appl. Microbiol. Biotechnol. 2015, 99, 6059–6068. [Google Scholar] [CrossRef]
- Gurd, C.; Villa, R.; Jefferson, B. Understanding why fat, oil and grease (FOG) bioremediation can be unsuccessful. J. Environ. Manag. 2020, 267, 110647. [Google Scholar] [CrossRef]
- Bioremediation of Vegetable Oil and Grease from Polluted Wastewater Using a Sand Biofilm System. ResearchGate. Available online: https://www.researchgate.net/publication/226939815_Bioremediation_of_Vegetable_Oil_and_Grease_from_Polluted_Wastewater_Using_a_Sand_Biofilm_System (accessed on 11 April 2025).
- Fan, G. Biodegradation of Fat, Oil, and Grease (FOG) in Wet Wells. 2014. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2014. [Google Scholar]
- Tang, H.L.; Xie, Y.F.; Chen, Y.-C. Use of Bio-Amp, a commercial bio-additive for the treatment of grease trap wastewater containing fat, oil, and grease. Bioresour. Technol. 2012, 124, 52–58. [Google Scholar] [CrossRef]
- Home. Hotrod Septic Treatment. Available online: https://hotrodseptic.com/ (accessed on 3 April 2025).
- Grease Traps|Ecotabs. Available online: https://www.eco-tabs.com/grease-traps-2/ (accessed on 3 April 2025).
- MARC 99 Micro-Zyme Bacterial Enzymes. Mid-American Research Chemical. Available online: https://www.marc1.com/marc-99-micro-zyme-bacterial-enzymes.html (accessed on 3 April 2025).
- Wakelin, N.G.; Forster, C.F. An investigation into microbial removal of fats, oils and greases. Bioresour. Technol. 1997, 59, 37–43. [Google Scholar] [CrossRef]
- Litwack, G. Metabolism of Fat, Carbohydrate, and Nucleic Acids. Human Biochemistry; Elsevier: Amsterdam, The Netherlands, 2022; pp. 441–474. [Google Scholar] [CrossRef]
- Henriksson, J.; Bergström, M. Characterization of Composition of the Fat-Rich Residues from Grease Separators; Degree Project; Linnaeus University: Växjö, Sweden, 2016; Available online: https://www.diva-portal.org/smash/get/diva2:944380/FULLTEXT01.pdf (accessed on 23 January 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 3 September 2024).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; D’Agostino McGowan, L.; Fancois, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the {tidyverse}. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Co-exposure to Polyethylene Fiber and Salmonella enterica Typhimurium Alters Microbiome and Metabolome of In Vitro Chicken Cecal Mesocosms. bioRxiv 2023. Available online: https://www.biorxiv.org/content/10.1101/2023.11.22.568320v1.full (accessed on 3 April 2025).
- Bisanz, J.E. Qiime2R: Importing QIIME2 Artifacts and Associated Data into R Sessions. 2018. Available online: https://github.com/jbisanz/qiime2R (accessed on 5 June 2024).
- Callahan, B.J.; Mcmurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef] [PubMed]
- Robeson, M.S.; O’rourke, D.R.; Kaehler, B.D.; Ziemski, M.; Dillon, M.R.; Foster, J.T.; Bokulich, N.A. RESCRIPt: Reproducible sequence taxonomy reference database management. PLoS Comput. Biol. 2021, 17, e1009581. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef]
- Barnett, D.J.; Arts, I.C.; Penders, J. microViz: An R package for microbiome data visualization and statistics. J. Open Source Softw. 2021, 6, 3201. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package. 2024. Available online: https://CRAN.R-project.org/package=vegan (accessed on 5 June 2024).
- O’Toole, G.A. Microtiter Dish Biofilm Formation Assay. J. Vis. Exp. 2011, 47, 2437. [Google Scholar] [CrossRef]
- Kouker, G.; E Jaeger, K. Specific and sensitive plate assay for bacterial lipases. Appl. Environ. Microbiol. 1987, 53, 211–213. [Google Scholar] [CrossRef]
- Wentworth (1922) Grain Size Classification. The Planetary Society. Available online: https://www.planetary.org/space-images/wentworth-1922-grain-size (accessed on 11 April 2025).
- Wilkes, R.; Aristilde, L. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: Capabilities and challenges. J. Appl. Microbiol. 2017, 123, 582–593. [Google Scholar] [CrossRef]
- Betancur-Murillo, C.L.; Aguilar-Marín, S.B.; Jovel, J. Prevotella: A Key Player in Ruminal Metabolism. Microorganisms 2022, 11, 1. [Google Scholar] [CrossRef]
- Marchandin, H.; Jumas-Bilak, E. The Family Veillonellaceae. In The Prokaryotes; Springer: Berlin/Heidelberg, Germany, 2014; pp. 433–453. [Google Scholar] [CrossRef]
- Durán, N.; Menck, C.F. Chromobacterium violaceum: A review of pharmacological and industiral perspectives. Crit. Rev. Microbiol. 2001, 27, 201–222. [Google Scholar] [CrossRef]
- Rivera-Kohr, D.A.; Rodriguez-Ramos, D.; Tanner, L.; Vo, P.; Thalpur, N.A.; Nielsen-Fox, H.C.; Shatara, F.J.; Bingman, C.A.; Hou, L.; Fox, B.G.; et al. Draft genome of the caprolactam-degrading Paenarthrobacter sp. CAP02 isolated from a landfill. Microbiol. Resour. Announc. 2024, 13, e00650-24. [Google Scholar] [CrossRef]
- Ahmad, I.; Abdullah, N.; Koji, I.; Yuzir, A.; Ahmad, M.D.; Rachmadona, N.; Al-Dailami, A.; Show, P.L.; Khoo, K.S. Micro and macro analysis of restaurant wastewater containing fat, oil, grease (FOG): An approach based on prevention, control, and sustainable management. Chemosphere 2023, 325, 138236. [Google Scholar] [CrossRef]
- He, X.; Yan, T. Impact of microbial activities and hydraulic retention time on the production and profile of long chain fatty acids in grease interceptors: A laboratory study. Environ. Sci. Water Res. Technol. 2016, 2, 474–482. [Google Scholar] [CrossRef]
- Mancini, A.; Imperlini, E.; Nigro, E.; Montagnese, C.; Daniele, A.; Orrù, S.; Buono, P. Biological and Nutritional Properties of Palm Oil and Palmitic Acid: Effects on Health. Molecules 2015, 20, 17339–17361. [Google Scholar] [CrossRef]
- Alvarez, A.M.R.; Rodríguez, M.L.G. Lipids in pharmaceutical and cosmetic preparations. Grasas y Aceites 2000, 51, 74–96. [Google Scholar] [CrossRef]
- Stolp, L.J.; Kodali, D.R. Chapter 2—Naturally Occurring High-Oleic Oils: Avocado, Macadamia, and Olive Oils. In High Oleic Oils; Flider, F.J., Ed.; AOCS Press: Champaign, IL, USA, 2022; pp. 7–52. [Google Scholar] [CrossRef]
- Zambelli, A. Current Status of High Oleic Seed Oils in Food Processing. J. Am. Oil Chem. Soc. 2021, 98, 129–137. [Google Scholar] [CrossRef]
- Phuah, E.-T.; Yap, J.W.-L.; Lau, C.-W.; Lee, Y.-Y.; Tang, T.-K. Vegetable Oils and Animal FatsAnimal fats: Sources, Properties and RecoveryRecovery. In Recent Advances in Edible Fats and Oils Technology: Processing, Health Implications, Economic and Environmental Impact; Lee, Y.-Y., Tang, T.-K., Phuah, E.-T., Lai, O.-M., Eds.; Springer: Singapore, 2022; pp. 1–26. [Google Scholar] [CrossRef]
- Denke, M. Role of beef and beef tallow, an enriched source of stearic acid, in a cholesterol-lowering diet. Am. J. Clin. Nutr. 1994, 60, 1044S–1049S. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.; Lee, C.; Cassidy, T.; Long, M.; Heyler, K.; Corl, B.; Forster, R. Effects of lauric and myristic acids on ruminal fermentation, production, and milk fatty acid composition in lactating dairy cows. J. Dairy Sci. 2011, 94, 382–395. [Google Scholar] [CrossRef]
- Abera, G.B.; Trømborg, E.; Solli, L.; Walter, J.M.; Wahid, R.; Govasmark, E.; Horn, S.J.; Aryal, N.; Feng, L. Biofilm application for anaerobic digestion: A systematic review and an industrial scale case. Biotechnol. Biofuels Bioprod. 2024, 17, 145. [Google Scholar] [CrossRef]
- Lu, Z.; Imlay, J.A. When anaerobes encounter oxygen: Mechanisms of oxygen toxicity, tolerance and defence. Nat. Rev. Microbiol. 2021, 19, 774–785. [Google Scholar] [CrossRef]
- Tzirita, M.; Papanikolaou, S.; Quilty, B. Enhanced fat degradation following the addition of a Pseudomonas species to a bioaugmentation product used in grease traps. J. Environ. Sci. 2019, 77, 174–188. [Google Scholar] [CrossRef]
- Tzirita, M.; Papanikolaou, S.; Chatzifragkou, A.; Quilty, B. Waste fat biodegradation and biomodification by Yarrowia lipolytica and a bacterial consortium composed of Bacillus spp. and Pseudomonas putida. Eng. Life Sci. 2018, 18, 932–942. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.G.; Incha, M.R.; Pearson, A.N.; Schmidt, M.; Sharpless, W.A.; Eiben, C.B.; Cruz-Morales, P.; Blake-Hedges, J.M.; Liu, Y.; Adams, C.A.; et al. Fatty Acid and Alcohol Metabolism in Pseudomonas putida: Functional Analysis Using Random Barcode Transposon Sequencing. Appl. Environ. Microbiol. 2020, 86, e01665-20. [Google Scholar] [CrossRef]
- Morjaria, S.; Zhang, A.W.; Kim, S.; Peled, J.U.; Becattini, S.; Littmann, E.R.; Pamer, E.G.; Abt, M.C.; Perales, M.-A. Monocyte Reconstitution and Gut Microbiota Composition after Hematopoietic Stem Cell Transplantation. Clin. Hematol. Int. 2020, 2, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Ruijgrok, G.; Wu, D.-Y.; Overkleeft, H.S.; Codée, J.D.C. Synthesis and application of bacterial exopolysaccharides. Curr. Opin. Chem. Biol. 2024, 78, 102418. [Google Scholar] [CrossRef] [PubMed]
- Duboc, P.; Mollet, B. Applications of exopolysaccharides in the dairy industry. Int. Dairy J. 2001, 11, 759–768. [Google Scholar] [CrossRef]
- Flemming, H.-C. EPS—Then and Now. Microorganisms 2016, 4, 41. [Google Scholar] [CrossRef]






| FOG Sample Name | FOG Sample Type |
|---|---|
| PS-1; PS-2; PS-3 | Pumping Station FOG Samples |
| ARV-1; ARV-2; ARV-3; ARV-4; ARV-5; ARV-6; ARV-7; ARV-8; ARV-9 | Air Release Valve FOG Samples |
| GI-1; GI-2; GI-3; GI-4; GI-5 | Grease Interceptor FOG Samples |
| Microbial Strain or Community Name | Description |
|---|---|
| BD-A | Biodyne provided synthetic microbial community, designed to target hydrocarbons |
| BD-B | Biodyne provided synthetic microbial community, designed for general organic breakdown |
| BD-C | Biodyne provided synthetic microbial community, designed to degrade waste and sludge, containing Bacillus amyloliquefaciens (1 × 107 CFU/mL), Bacullus subtilus (1 × 107 CFU/mL), and Pseudomonas balearica (1 × 107 CFU/mL), and other strains |
| BD-D | Biodyne provided synthetic microbial community, designed to digest biological stubble, containing Bacillus licheniformis and subtilis (each at 1 × 107 CFU/mL), Cellulomonas cellasea (1 × 104 CFU/mL), Pseudomonas balearica (1 × 107 CFU/mL), Rhodopseudomonas palustris (1 × 107 CFU/mL), Yarrowia lipolytica (1 × 104 CFU/mL), and other strains |
| BC-1; BC-2; BC-3; BC-4; BC-5; BC-6; BC-7; BC-8; BC-9; BC-10; BC-11 | Biodyne provided trial synthetic microbial communities, each stated to contain genomic potential for fatty acid degradation |
| MS-1 | Microbial strain isolated from the Dane County Landfill in Madison, WI; best species match is Serratia grimesii |
| MS-2 | Microbial strain isolated from the Dane County Landfill in Madison, WI; best species match is Serratia grimesii |
| MS-3 | Microbial strain isolated from the Dane County Landfill in Madison, WI; best species match is Alcaligenes faecalis |
| MS-4 | Pseudomonas putida strain KT2440 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woods, A.M.; Pettinger, C.J.; Harris, C.; Soule, T.; Farley, G.; Majumder, E.L.-W. Capacity of Microbial Strains and Communities to Degrade Sewerage Fats, Oils, and Grease Clog Deposits. Appl. Microbiol. 2025, 5, 116. https://doi.org/10.3390/applmicrobiol5040116
Woods AM, Pettinger CJ, Harris C, Soule T, Farley G, Majumder EL-W. Capacity of Microbial Strains and Communities to Degrade Sewerage Fats, Oils, and Grease Clog Deposits. Applied Microbiology. 2025; 5(4):116. https://doi.org/10.3390/applmicrobiol5040116
Chicago/Turabian StyleWoods, Allondra M., Catherine J. Pettinger, Catherine Harris, Tanya Soule, Garth Farley, and Erica L.-W. Majumder. 2025. "Capacity of Microbial Strains and Communities to Degrade Sewerage Fats, Oils, and Grease Clog Deposits" Applied Microbiology 5, no. 4: 116. https://doi.org/10.3390/applmicrobiol5040116
APA StyleWoods, A. M., Pettinger, C. J., Harris, C., Soule, T., Farley, G., & Majumder, E. L.-W. (2025). Capacity of Microbial Strains and Communities to Degrade Sewerage Fats, Oils, and Grease Clog Deposits. Applied Microbiology, 5(4), 116. https://doi.org/10.3390/applmicrobiol5040116

