The Gut–Brain Axis in Schizophrenia: A Systems-Level Understanding of Psychiatric Illness
Abstract
1. Introduction
2. The Gut–Brain Axis and Its Implications for Broad Mental Health Conditions
3. Microbiome Dysbiosis and Its Role in Schizophrenic Pathophysiology
4. Mechanistic Pathways Linking Gut Microbiota to Schizophrenia
5. Therapeutic Implications
5.1. Probiotics
5.2. Prebiotics
5.3. Dietary Interventions
5.4. FMT
6. Challenges in Implementation
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BBB | Blood–brain barrier |
BDNF | Brain-derived neurotrophic factor |
BMI | Body mass index |
CNS | Central nervous system |
FMT | Fecal microbiota transplantation |
GI | Gastrointestinal |
GABA | Gamma-aminobutyric acid |
LPS | Lipopolysaccharide |
MCP-1 | Monocyte chemoattractant protein-1 |
MDD | Major depressive disorder |
SCFA | Short-chain fatty acid |
vWF | Von Willebrand factor |
HDACs | Histone deacetylases |
PANSS | Positive and Negative Syndrome Scale |
NMDA | N-methyl-D-aspartate |
Appendix A
Microbial Genus | Change in Schizophrenia | Functional Relevance |
---|---|---|
Faecalibacterium | Decreased | Produces butyrate (SCFA); anti-inflammatory; supports gut barrier and brain health |
Roseburia | Decreased | Butyrate producer; anti-inflammatory; supports gut–brain axis |
Coprococcus | Decreased | SCFA-producing; linked to cognitive function |
Dialister/Megasphaera | Decreased | SCFA-producing; neuroprotective and anti-inflammatory roles |
Eggerthella | Increased | Linked to pro-inflammatory signaling; altered glutamate metabolism |
Escherichia/Shigella | Increased | Elevates inflammation; affects GABAergic signaling |
Lactobacillus | Increased | Produces lactic acid; strain-dependent effects on neurotransmission and pH |
Clostridium | Variable | Associated with neurotransmitter shifts (glutamate, nicotinamide, etc.) |
Parabacteroides goldsteinii | Increased | Correlation with altered serotonin/dopamine; associated with inflammation markers |
Intervention Type | Study (Author, Year) | Intervention | Results |
---|---|---|---|
Probiotic | Tomasik et al. (2015) [34] | L. rhamnosus GG, B. animalis (14 weeks) | Decreased von Willebrand factor; no PANSS change |
Ghaderi et al. (2019) [36] | Multi-strain probiotic (12 weeks) | Decreased PANSS total and general subscale | |
Severance et al. (2017) [35] | Same strains as above (14 weeks) | Decreased C. albicans antibodies in males; Decreased PANSS in positive/general domains | |
Jamilian & Ghaderi (2021) [37] | Probiotics + Selenium (12 weeks) | Decreased PANSS; improved GI symptoms; antioxidant support via glutathione | |
Mujahid et al. (2022) [42] | Probiotics + Risperidone (6 weeks) | Decreased PANSS significantly | |
Mohammadi et al. (2024) [43] | Probiotics + Vitamin D (12 weeks) | Increased MoCA cognition; Decreased CRP, cholesterol, blood sugar; non-significant PANSS decrease | |
Romero-Ferreiro et al. (2025) [33] | Meta-analysis | Modest improvements in general psychopathology | |
Tamtaji et al. (2019) [45] | Probiotics + Selenium | Decreased CRP; systemic inflammation improved | |
Prebiotic | Kao et al. (2018) [47] | B-GOS with Olanzapine (mice) | Decreased Weight gain, Decreased neuroinflammatory markers; Increased cortical cognition-related proteins |
Dietary | Sarnyai & Palmer (2020) [53]; Sethi et al. (2024) [54] | Ketogenic diet | Decreased PANSS, improved memory, social function; remission reported |
Kelly et al. (2019) [55] | Gluten-free diet (5 weeks) | Decreased AGA IgG, GI symptoms, and negative symptoms; Increased attention | |
Joseph et al. (2017) [51]; Akerele et al. (2025) [52] | Mediterranean diet (proposed) | Improves SCFA production; underexplored in clinical trials yet | |
FMT | Wei et al. (2024) [32] | FMT from schizophrenia patients to mice | Induced schizophrenia-like behaviors and altered gene expression linked to neurotransmission |
References
- Schoretsanitis, G. The role of neurotransmitters in schizophrenia. Neurosci. Psychiatry 2024, 7, 239–241. [Google Scholar]
- Hirvonen, J.; Hietala, J. Dysfunctional brain networks and genetic risk for schizophrenia: Specific neurotransmitter systems. CNS Neurosci. Ther. 2010, 17, 89–96. [Google Scholar] [CrossRef]
- Grace, A.A. Dopamine system dysregulation and the pathophysiology of schizophrenia: Insights from the methylazoxymethanol acetate model. Biol. Psychiatry 2017, 81, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Munawar, N.; Ahsan, K.; Muhammad, K.; Ahmad, A.; Anwar, M.A.; Shah, I.; Al Ameri, A.K.; Al Mughairbi, F. Hidden role of gut microbiome dysbiosis in schizophrenia: Antipsychotics or psychobiotics as therapeutics? Int. J. Mol. Sci. 2021, 22, 7671. [Google Scholar] [CrossRef] [PubMed]
- Kahn, R.S.; Sommer, I.E.; Murray, R.M.; Meyer-Lindenberg, A.; Weinberger, D.R.; Cannon, T.D.; O’Donovan, M.; Correll, C.U.; Kane, J.M.; van Os, J.; et al. Schizophrenia. Nat. Rev. Dis. Primers 2015, 1, 15067. [Google Scholar] [CrossRef] [PubMed]
- Generoso, J.S.; Giridharan, V.V.; Lee, J.; Macedo, D.; Barichello, T. The role of the microbiota-gut-brain axis in neuropsychiatric disorders. Braz. J. Psychiatry 2020, 43, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Góralczyk-Bińkowska, A.; Szmajda-Krygier, D.; Kozłowska, E. The microbiota–gut–brain axis in psychiatric disorders. Int. J. Mol. Sci. 2022, 23, 11245. [Google Scholar] [CrossRef] [PubMed]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef] [PubMed]
- Bostick, J.W.; Schonhoff, A.M.; Mazmanian, S.K. Gut microbiome-mediated regulation of neuroinflammation. Curr. Opin. Immunol. 2022, 76, 102177. [Google Scholar] [CrossRef] [PubMed]
- O’Riordan, K.J.; Collins, M.K.; Moloney, G.M.; Knox, E.G.; Aburto, M.R.; Fülling, C.; Morley, S.J.; Clarke, G.; Schellekens, H.; Cryan, J.F. Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Mol. Cell. Endocrinol. 2022, 546, 111572. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.D.; Xu, Q.J.; Chang, R.B. Vagal sensory neurons and gut-brain signaling. Curr. Opin. Neurobiol. 2020, 62, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018, 1693 Pt B, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.-S. Roles of diet-associated gut microbial metabolites on brain health: Cell-to-cell interactions between gut bacteria and the central nervous system. Adv. Nutr. 2024, 15, 100136. [Google Scholar] [CrossRef] [PubMed]
- Missiego-Beltrán, J.; Beltrán-Velasco, A.I. The role of microbial metabolites in the progression of neurodegenerative diseases—Therapeutic approaches: A comprehensive review. Int. J. Mol. Sci. 2024, 25, 10041. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Gong, X.; Zhou, D.; Hong, Z. Perturbations in gut microbiota composition in patients with autoimmune neurological diseases: A systematic review and meta-analysis. Front. Immunol. 2025, 16, 1513599. [Google Scholar] [CrossRef] [PubMed]
- Gründer, G.; Cumming, P. The dopamine hypothesis of schizophrenia. Neurobiol. Schizophr. 2016, 109–124. [Google Scholar] [CrossRef]
- Qi, D.; Liu, P.; Wang, Y.; Tai, X.; Ma, S. Unveiling the gut microbiota blueprint of schizophrenia: A multilevel omics approach. Front. Psychiatry 2024, 15, 1452604. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, V.L.; Smith, M.R.B.; Hall, L.J.; Cleare, A.J.; Stone, J.M.; Young, A.H. Perturbations in gut microbiota composition in psychiatric disorders. JAMA Psychiatry 2021, 78, 1343–1354. [Google Scholar] [CrossRef] [PubMed]
- McGuinness, A.J.; Davis, J.A.; Dawson, S.L.; Loughman, A.; Collier, F.; O’Hely, M.; Simpson, C.A.; Green, J.; Marx, W.; Hair, C.; et al. A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Mol. Psychiatry 2022, 27, 1920–1935. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Kosciolek, T.; Eyler, L.T.; Knight, R.; Jeste, D.V. Overview and systematic review of studies of microbiome in schizophrenia and bipolar disorder. J. Psychiatr. Res. 2018, 99, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Theleritis, C.; Stefanou, M.-I.; Demetriou, M.; Alevyzakis, E.; Triantafyllou, K.; Smyrnis, N.; Spandidos, D.; Rizos, E. Association of gut dysbiosis with first episode psychosis. Mol. Med. Rep. 2024, 30, 130. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, E.; Maukonen, J.; Hyytiäinen, T.; Kieseppä, T.; Orešič, M.; Sabunciyan, S.; Mantere, O.; Saarela, M.; Yolken, R.; Suvisaari, J. Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response. Schizophr. Res. 2018, 192, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Ouyang, L.; Li, D.; Li, Z.; Yuan, L.; Fan, L.; Liao, A.; Li, J.; Wei, Y.; Yang, Z.; et al. Short-chain fatty acids in patients with schizophrenia and ultra-high risk population. Front. Psychiatry 2022, 13, 977538. [Google Scholar] [CrossRef] [PubMed]
- Ju, S.T.; Shin, Y.; Han, S.; Kwon, J.S.; Choi, T.G.; Kang, I.; Kim, S.S. The gut–brain axis in schizophrenia: The implications of the gut microbiome and SCFA production. Nutrients 2023, 15, 4391. [Google Scholar] [CrossRef]
- Shi, L.; Ju, P.; Meng, X.; Wang, Z.; Yao, L.; Zheng, M.; Cheng, X.; Li, J.; Yu, T.; Xia, Q.; et al. Intricate role of intestinal microbe and metabolite in schizophrenia. BMC Psychiatry 2023, 23, 856. [Google Scholar] [CrossRef] [PubMed]
- Hare, S.M.; Adhikari, B.M.; Mo, C.; Chen, S.; Wijtenburg, S.A.; Seneviratne, C.; Kane-Gerard, S.; Sathyasaikumar, K.V.; Notarangelo, F.M.; Schwarcz, R.; et al. Tryptophan challenge in individuals with schizophrenia and healthy controls: Acute effects on circulating kynurenine and kynurenic acid, cognition and cerebral blood flow. Neuropsychopharmacology 2023, 48, 1594–1601. [Google Scholar] [CrossRef] [PubMed]
- Pedraz-Petrozzi, B.; Elyamany, O.; Rummel, C.; Mulert, C. Effects of inflammation on the kynurenine pathway in schizophrenia—A systematic review. J. Neuroinflamm. 2020, 17, 56. [Google Scholar] [CrossRef] [PubMed]
- Szeligowski, T.; Yun, A.L.; Lennox, B.R.; Burnet, P.W.J. The gut microbiome and schizophrenia: The current state of the field and clinical applications. Front. Psychiatry 2020, 11, 156. [Google Scholar] [CrossRef] [PubMed]
- Kamath, S.; Sokolenko, E.; Collins, K.; Chan, N.S.L.; Mills, N.; Clark, S.R.; Marques, F.Z.; Joyce, P. IUPHAR themed review: The gut microbiome in schizophrenia. Pharmacol. Res. 2024, 211, 107561. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Sirivichayakul, S.; Kanchanatawan, B.; Vodjani, A. Breakdown of the paracellular tight and adherens junctions in the gut and blood brain barrier and damage to the vascular barrier in patients with deficit schizophrenia. Neurotox. Res. 2019, 36, 306–322. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, M.; Benedict, G.; Mei, T.M.; Ramly, S.S.; Arif, M.; Croft, L.; Parimannan, S.; Rajandas, H.; Lee, S.Y.; Rasat, M. Functional associations of the gut microbiome with dopamine, serotonin, and BDNF in schizophrenia: A pilot study. Egypt. J. Neurol. Psychiatry Neurosurg. 2024, 60, 123. [Google Scholar] [CrossRef]
- Wei, N.; Ju, M.; Su, X.; Zhang, Y.; Huang, Y.; Rao, X.; Cui, L.; Lin, Z.; Dong, Y. Transplantation of gut microbiota derived from patients with schizophrenia induces schizophrenia-like behaviors and dysregulated brain transcript response in mice. Schizophrenia 2024, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Romero-Ferreiro, V.; García-Fernández, L.; Romero, C.; De la Fuente, M.; Diaz-del Cerro, E.; Scala, M.; González-Soltero, R.; Álvarez-Mon, M.A.; Peñuelas-Calvo, I.; Rodriguez-Jimenez, R. Impact of probiotic treatment on clinical symptom reduction in schizophrenia: A systematic review and meta-analysis. J. Psychiatr. Res. 2025, 182, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Tomasik, J.; Yolken, R.H.; Bahn, S.; Dickerson, F.B. Immunomodulatory effects of probiotic supplementation in schizophrenia patients: A randomized, placebo-controlled trial. Biomark. Insights 2015, 10, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Severance, E.G.; Gressitt, K.L.; Stallings, C.R.; Katsafanas, E.; Schweinfurth, L.A.; Savage, C.L.G.; Adamos, M.B.; Sweeney, K.M.; Origoni, A.E.; Khushalani, S.; et al. Probiotic normalization of Candida albicans in schizophrenia: A randomized, placebo-controlled, longitudinal pilot study. Brain Behav. Immun. 2017, 62, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Ghaderi, A.; Banafshe, H.R.; Mirhosseini, N.; Moradi, M.; Karimi, M.-A.; Mehrzad, F.; Bahmani, F.; Asemi, Z. Clinical and metabolic response to vitamin D plus probiotic in schizophrenia patients. BMC Psychiatry 2019, 19, 77. [Google Scholar] [CrossRef] [PubMed]
- Jamilian, H.; Ghaderi, A. The effects of probiotic and selenium co-supplementation on clinical and metabolic scales in chronic schizophrenia: A randomized, double-blind, placebo-controlled trial. Biol. Trace Elem. Res. 2021, 199, 4430–4438. [Google Scholar] [CrossRef] [PubMed]
- Zajkowska, I.; Niczyporuk, P.; Urbaniak, A.; Tomaszek, N.; Modzelewski, S.; Waszkiewicz, N. Investigating the impacts of diet, supplementation, microbiota, gut–brain axis on schizophrenia: A narrative review. Nutrients 2024, 16, 2228. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Du, F.; Liu, X.; Song, M.; Grosso, G.; Battino, M.; Boesch, C.; Li, H.; Liu, X. Effect of supplementation with probiotics in patients with schizophrenia: Systematic review and meta-analysis of randomized controlled clinical trials. Foods 2025, 14, 1773. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, F.; Stallings, C.; Origoni, A.; Vaughan, C.; Khushalani, S.; Leister, F.; Yang, S.; Krivogorsky, B.; Alaedini, A.; Yolken, R. Markers of gluten sensitivity and celiac disease in recent-onset psychosis and multi-episode schizophrenia. Biol. Psychiatry 2010, 68, 100–104. [Google Scholar] [CrossRef] [PubMed]
- De Hert, M.; Dockx, L.; Bernagie, C.; Peuskens, B.; Sweers, K.; Leucht, S.; Tack, J.; Van de Straete, S.; Wampers, M.; Peuskens, J. Prevalence and severity of antipsychotic related constipation in patients with schizophrenia: A retrospective descriptive study. BMC Gastroenterol. 2011, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- Mujahid, E.H.; Limoa, E.; Syamsuddin, S.; Bahar, B.; Renaldi, R.; Aminuddin, A.; Lisal, S.T. Effect of probiotic adjuvant therapy on improvement of clinical symptoms interleukin 6 levels in patients with schizophrenia. Psychiatry Investig. 2022, 19, 898–908. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Sadighi, G.; Nazeri Astaneh, A.; Tajabadi-Ebrahimi, M.; Dejam, T. Co-administration of probiotic and vitamin D significantly improves cognitive function in schizophrenic patients: A double-blinded randomized controlled trial. Neuropsychopharmacol. Rep. 2024, 44, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, P.; Chi, D.; Wu, T.; Mei, Z.; Cui, G. Association between C-reactive protein and risk of schizophrenia: An updated meta-analysis. Oncotarget 2017, 8, 75445–75454. [Google Scholar] [CrossRef] [PubMed]
- Tamtaji, O.R.; Heidari-soureshjani, R.; Mirhosseini, N.; Kouchaki, E.; Bahmani, F.; Aghadavod, E.; Tajabadi-Ebrahimi, M.; Asemi, Z. Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: A randomized, double-blind, controlled trial. Clin. Nutr. 2019, 38, 2569–2575. [Google Scholar] [CrossRef] [PubMed]
- Suez, J.; Zmora, N.; Segal, E.; Elinav, E. The pros, cons, and many unknowns of probiotics. Nat. Med. 2019, 25, 716–729. [Google Scholar] [CrossRef] [PubMed]
- Kao, A.C.-C.; Spitzer, S.; Anthony, D.C.; Lennox, B.; Burnet, P.W.J. Prebiotic attenuation of olanzapine-induced weight gain in rats: Analysis of central and peripheral biomarkers and gut microbiota. Transl. Psychiatry 2018, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Strassnig, M.; Brar, J.S.; Ganguli, R. Nutritional assessment of patients with schizophrenia: A preliminary study. Schizophr. Bull. 2003, 29, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Nunes, D.; Eskinazi, B.; Camboim Rockett, F.; Delgado, V.B.; Schweigert Perry, I.D. Nutritional status, food intake and cardiovascular disease risk in individuals with schizophrenia in southern Brazil: A case-control study. Rev. De Psiquiatr. Y Salud Ment. 2014, 7, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Henderson, D.C.; Borba, C.P.; Daley, T.B.; Boxill, R.; Nguyen, D.D.; Culhane, M.A.; Louie, P.; Cather, C.; Evins, A.E.; Freudenreich, O.; et al. Dietary intake profile of patients with schizophrenia. Ann. Clin. Psychiatry 2006, 18, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.; Depp, C.; Shih, P.B.; Cadenhead, K.S.; Schmid-Schönbein, G. Modified mediterranean diet for enrichment of short chain fatty acids: Potential adjunctive therapeutic to target immune and metabolic dysfunction in schizophrenia? Front. Neurosci. 2017, 11, 155. [Google Scholar] [CrossRef] [PubMed]
- Akerele, C.A.; Koralnik, L.R.; Lafont, E.; Gilman, C.; Walsh-Messinger, J.; Malaspina, D. Nutrition and brain health: Implications of Mediterranean diet elements for psychiatric disorders. Schizophr. Res. 2025, 281, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Sarnyai, Z.; Palmer, C.M. Ketogenic therapy in serious mental illness: Emerging evidence. Int. J. Neuropsychopharmacol. 2020, 23, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Wakeham, D.; Ketter, T.; Hooshmand, F.; Bjorstead, J.; Richards, B.; Westman, E.; Krauss, R.M.; Saslow, L. Ketogenic diet intervention on metabolic and psychiatric health in bipolar and schizophrenia: A pilot trial. Psychiatry Res. 2024, 335, 115866. [Google Scholar] [CrossRef] [PubMed]
- Kelly, D.L.; Demyanovich, H.K.; Rodriguez, K.M.; Čiháková, D.; Talor, M.V.; McMahon, R.P.; Richardson, C.M.; Vyas, G.; Adams, H.A.; August, S.M.; et al. Randomized controlled trial of a gluten-free diet in patients with schizophrenia positive for antigliadin antibodies (AGA IgG): A pilot feasibility study. J. Psychiatry Neurosci. 2019, 44, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Levinta, A.; Mukovozov, I.; Tsoutsoulas, C. Use of a gluten-free diet in schizophrenia: A systematic review. Adv. Nutr. 2018, 9, 824–832. [Google Scholar] [CrossRef] [PubMed]
- Stürup, A.E.; Hjorthøj, C.; Jensen, H.D.; Melau, M.; Davy, J.W.; Nordentoft, M.; Albert, N. Self-reported reasons for discontinuation or continuation of antipsychotic medication in individuals with first-episode schizophrenia. Early Interv. Psychiatry 2023, 17, 974–983. [Google Scholar] [CrossRef] [PubMed]
- Murashita, M.; Kusumi, I.; Inoue, T.; Takahashi, Y.; Hosoda, H.; Kangawa, K.; Koyama, T. Olanzapine increases plasma ghrelin level in patients with schizophrenia. Psychoneuroendocrinology 2005, 30, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.C.; Lindenmayer, J.-P.; Davis, J.M.; Kelly, E.; Viviano, T.F.; Cornwell, J.; Hu, Q.; Khan, A.; Vaidhyanathaswamy, S. Effects of olanzapine and risperidone on glucose metabolism and insulin sensitivity in chronic schizophrenic patients with long-term antipsychotic treatment: A randomized 5-month study. J. Clin. Psychiatry 2009, 70, 1501–1513. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Zhou, Y.; Zhang, X.; Jiang, H. Gut microbiome profiles may be related to atypical antipsychotic associated overweight in Asian children with psychiatric disorder: A preliminary study. Front. Cell. Infect. Microbiol. 2023, 13, 1124846. [Google Scholar] [CrossRef] [PubMed]
- Meuldermans, W.; Hendrickx, J.; Mannens, G.; Lavrijsen, K.; Janssen, C.; Bracke, J.; Jeune, L.L.; Lauwers, W.; Heykants, J. The metabolism and excretion of risperidone after oral administration in rats and dogs. Drug Metab. Dispos. 1994, 22, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Wilson, I.D.; Nicholson, J.K. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl. Res. J. Lab. Clin. Med. 2017, 179, 204–222. [Google Scholar] [CrossRef] [PubMed]
- Seeman, M.V. The gut microbiome and antipsychotic treatment response. Behav. Brain Res. 2020, 396, 112886. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Xia, L.; Xu, L.; Deng, L.; Jin, G. A comparative study to determine the association of gut microbiome with schizophrenia in Zhejiang, China. BMC Psychiatry 2022, 22, 731. [Google Scholar] [CrossRef] [PubMed]
- Wathen, A.B.; West, E.S.; Lydic, R.; Baghdoyan, H.A. Olanzapine causes a leptin-dependent increase in acetylcholine release in mouse prefrontal cortex. SLEEP 2012, 35, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Lin, Q.; Xiong, W.; Li, L.; Straub, L.; Zhang, D.; Zapata, R.; Zhu, Q.; Sun, X.-N.; Zhang, Z.; et al. Hyperleptinemia contributes to antipsychotic drug–associated obesity and metabolic disorders. Sci. Transl. Med. 2023, 15, eade8460. [Google Scholar] [CrossRef] [PubMed]
- Borkent, J.; Ioannou, M.; Neijzen, D.; Haarman, B.C.M.; Sommer, I.E.C. Probiotic formulation for patients with bipolar or schizophrenia spectrum disorder: A double-blind, randomized placebo-controlled trial. Schizophr. Bull. 2024, sbae188. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mardon, A.; Chaudhry, H.; Harline, J.; Mardon, C.; Banks, J.; Hodgson, E.; Leong-Sit, J.-L. The Gut–Brain Axis in Schizophrenia: A Systems-Level Understanding of Psychiatric Illness. Appl. Microbiol. 2025, 5, 70. https://doi.org/10.3390/applmicrobiol5030070
Mardon A, Chaudhry H, Harline J, Mardon C, Banks J, Hodgson E, Leong-Sit J-L. The Gut–Brain Axis in Schizophrenia: A Systems-Level Understanding of Psychiatric Illness. Applied Microbiology. 2025; 5(3):70. https://doi.org/10.3390/applmicrobiol5030070
Chicago/Turabian StyleMardon, Austin, Haadiya Chaudhry, Jonathan Harline, Catherine Mardon, Jenna Banks, Eric Hodgson, and Jean-Luc Leong-Sit. 2025. "The Gut–Brain Axis in Schizophrenia: A Systems-Level Understanding of Psychiatric Illness" Applied Microbiology 5, no. 3: 70. https://doi.org/10.3390/applmicrobiol5030070
APA StyleMardon, A., Chaudhry, H., Harline, J., Mardon, C., Banks, J., Hodgson, E., & Leong-Sit, J.-L. (2025). The Gut–Brain Axis in Schizophrenia: A Systems-Level Understanding of Psychiatric Illness. Applied Microbiology, 5(3), 70. https://doi.org/10.3390/applmicrobiol5030070